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second predictor. The majority of the variability in BCEF 
was explained by the variation in tree species. Miombo spe-
cies had larger crown biomass per unit of stem diameter and 
stored larger amounts of biomass per stem volume. How-
ever, due to relatively rapid growth, larger stem diameters, 
heights, and stand density, the plantations stored more bio-
mass per tree and per unit area.

Keyword Biomass allometry · Biomass partitioning · 
Miombo · Exotic forest plantations · Brachystegia 
spiciformis · Julbernardia globiflora · Eucalyptus · Pinus

Introduction

Forests sequester one third of carbon dioxide  (CO2) emis-
sions from fuel and land use changes (Houghton 2007; Pan 
et al. 2011), store large amounts of carbon (C) in vegetation 
and soils, are sources of C when disturbed or destroyed by 
anthropogenic or natural causes, and become atmospheric 
C sinks during forest growth after disturbance (Brown et al. 
1999). Land use changes are associated with ecosystem C 
change (Fan et al. 2016) and are the second largest cause of 
C losses after fossil fuel combustion (Fu et al. 2010; Lozano-
García and Parras-Alcántara 2013).

Miombo is the main and most extensive forest type in 
southern Africa (Ribeiro et al. 2015), and in Mozambique, 
it comprises about two-thirds of the country´s forested land 
(Aquino et al. 2018). Secondary Miombo woodlands and 
forest plantations have been occupying increasing areas in 
Mozambique, the former due to anthropogenic activities. 
Plantations, mainly species of Eucalyptus and Pinus (Blid 
2014), are being established in areas previously occupied by 
secondary Miombo woodlands, where shrubs and small trees 
predominate due to past exploitation (Magalhães 2014). This 
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land use change, from natural forest cover to plantations, 
may affect the evolution, cycle and spatiotemporal patterns 
of C storage and stocks in forest ecosystems. Estimation of C 
storage over time and space is indispensable for formulating 
climate change policies on sequestrating  CO2 (Chen et al. 
2019), and requires developing tools such as biomass mod-
els and biomass conversion and expansion factors (BCEF).

Biomass allocation patterns and tree allometry are widely 
affected by tree architecture (Coll et al. 2008; Trubat et al. 
2012). However, tree species may differ greatly in architec-
ture (Ketterings et al. 2001). Biomass allocation and tree 
allometry also vary with stand characteristics, e.g., den-
sity and composition (Zhang et al. 2015; Fang et al. 2018). 
Consequently, generic models (mixed-species models) are 
unlikely to yield accurate biomass estimates compared to 
species-specific ones (Vieilledent et al. 2012; Annighöfer 
et al. 2016; Goussanou et al. 2016); i.e., species-specific 
models are preferred over generic ones. Thus, when model-
ling biomass, species-specific effects need to be incorporated 
in order to account for inter-species variability. One efficient 
way of incorporating inter-subject variability is through 
mixed-effects models.

To quantify the impact that planting exotic species on 
former secondary Miombo lands has on carbon sequestra-
tion, biomass models and estimates are required for both 
Miombo species and exotic species. Because the exotic 
species are predominantly species of Eucalyptus (e.g., E. 
cloeziana F. Muell.) and Pinus (e.g., P. elliottii Engelm., P. 
patula Schltdl. & Cham., P. taeda L.) and the Miombo spe-
cies comprise mainly Brachystegia spiciformis Benth. and 
Julbernardia globiflora (Benth.), biomass equations on these 
species are indispensable.

This research aimed to: (1) fit species-specific allometric 
biomass models and biomass conversion and expansion fac-
tors (BCEF) for exotic and indigenous species; and, (2) test 
the allometric universal scaling law between aboveground 
biomass and diameter at breast height (DBH).

Materials and methods

Experimental site

The study area is in the Machipanda locality in the central 
province of Manica, in the Inhamacarri Forest owned by 
Machipanda Agroforestry Centre of the Eduardo Mondlane 
University. The Forest is located between 32°37′30″ and 
32°42′43″ E and 25°54′15″ and 25°56′40″ S, and is in hilly 
terrain with altitudes varying from 1400 to 1700 m a.s.l. 
Mean annual temperature is about 21 °C and mean annual 
precipitation is estimated at 1300 mm (Guedes et al. 2018). 
Soils are mainly deep, intensely weathered Ferralsols and 

slight to moderately weathered Cambisols with weak hori-
zontal differentiation (Guedes et al. 2018).

The indigenous forests are small-sized trees of B. spici-
formis, J. globiflora, and Uapaca kirkiana Müll. Arg. and 
the plantations are monocultures of Pinus (P. taeda, P. elli-
otti, and P. patula), Eucalyptus (E. cloeziana, E. grandis 
W. Hill, and E. camaldulensis Dehnh.) and more recently, 
Araucaria spp. The plantations were established on former 
wet Miombo soils (Guedes et al. 2016).

Data acquisition

The target species with DBH ≥ 5 cm were the Miombo spe-
cies B. spiciformis and J. globiflora, and plantations of E. 
cloeziana, P. taeda, P. elliotti, and P. patula (Table 1). A 
total of 120 trees, distributed among the species as shown in 
Table 1, were randomly selected, their diameters measured, 
and harvested.

Total heights (H) were recorded, and the trees divided 
into aboveground biomass (AGB) components, stem and 
crown. The stem was defined as the length of the trunk from 
a predefined stump height of 20 cm to a top diameter of 
2.5 cm. The crown was the sum of branches, foliage, seeds, 
flowers, and the remaining portion of the stem, from the 
2.5 cm diameter height to the tip of the tree.

The stem was dived into five equal segments and the 
diameter measured at the midpoint. After fresh-weighting 
each segment, a disc sample was removed from the top, fresh 
weighted, oven-dried at 105 °C to constant mass, and sub-
sequently re-weighed. The dry mass of the whole segment 
was then obtained by multiplying the ratio of oven dry to 
fresh mass of the disc by the fresh mass of the segment. The 
dry mass of the stem (stem biomass), was the sum of the 
dry masses of the constituent segments. The volume of the 
stem was computed using Hohenadl’s formula (Magalhães 
and Seifert 2015a).

For logistical reasons and to ensure the largest sample 
size, the foliage was not separated from the branches, as it 
is a time-demanding task. The crown was fresh weighed, a 
sample was collected, weighed in the field, and oven-dried 
in the laboratory. To ensure proportionality in sampling, the 
primary branches were divided in coarse (Ø ≥ 5 cm), and 
fine (Ø < 5 cm), where Ø is the diameter of the branch at the 
insertion point on the stem. For each size class, a primary 
branch with mid diameter was selected and a 3–5 cm disc 
removed from the insertion point. A portion of the twigs, 
leaves, flowers, and fruits of each primary branch was col-
lected. The crown sample, therefore, consisted of the discs, 
twigs, leaves, flowers, and fruit from the selected branches. 
The dry mass of the crown was obtained similarly to that for 
each stem segment. The total aboveground biomass (AGB) 
was the sum of the dry masses of the stem and crown.
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Data analysis

Tree component biomass models were fitted using nonlin-
ear regression, being preferred over linear ones because 
biomass is a nonlinear function of stem diameter and 
height (Schroeder et al. 1997; Ter-Mikaelian and Kor-
zukhin 1997; Bolte et al. 2004; Salis et al. 2006). Power 
or allometric functions, as an extension of nonlinear 
functions, were preferred over other forms of nonlinear 
functions because growing plants maintain the propor-
tions between different parts, e.g., between tree biomass 
and predictive biometric variables such as DBH and tree 
height (Pilli et al. 2006). Allometric growth is observed 
when a constant ratio or proportion is maintained between 
the growth rates of different parts of the plant (Enquist 
2002; Opik and Rolfe 2005). This is observed between bio-
mass and the easily measurable variables DBH and height 
(Zianis and Mencuccini 2004; Fehrmann and Kleinn 2006; 
Pilli et al. 2006). Biomass allometric functions are repre-
sented as y = bxk, where y represents tree or component 
biomass, x an easily measurable tree variable, k is the ratio 
of growth rate between y and x, and b is the scaling coef-
ficient. The ratio of growth rate is the scaling exponent 
(Zianis and Mencuccini 2004; Fehrmann and Kleinn 2006; 
Packard and Boardman 2008). Because both the scaling 
coefficient and the scaling exponent vary with species 
(Pilli et al. 2006) as a result of varying architecture and 
wood density (Ketterings et al. 2001), species-specific 
allometric models; are preferred over general ones. Archi-
tecture influences biomass allocation and allometry (Coll 
et al. 2008; Trubat et al. 2012). Therefore, biomass models 
were fitted using nonlinear mixed-effects (NLME) models 
to incorporate inter-species variability. The general form 
of NLME models is:

where f is a nonlinear function of the parameter vector ɸij, 
a composite parameter vector incorporating both fixed and 
random effects, and the predictor vector xij, M is the number 
of species, ni the number of trees within a species, Yij the 
response vector or tree component biomass vector for the 
ni trees in the ith species, and εij the vector of multivariate 
normally distributed errors in species i. ɸij is modelled as:

where β is the vector of fixed-effects parameters, δi the vec-
tor of random-effects parameters for species i, Aij and Bij are 
design matrices of known constants for combining the fixed 
and random effects of species i.

Biomass models were fitted using allometric equations, 
a specific form of nonlinear equations, expressed as:

(1)Yij = f
(

�ij,Xij

)

+ �ij i = 1,… ,M j = 1,… , ni

(2)ϕij = Aij × � + Bij × �i

Therefore, the general form of allometric mixed-effects 
model is expressed as:

where β0 is the fixed scaling coefficient, δ0i the random scal-
ing coefficient for species i, β1 the fixed scaling exponent, 
δ1i the random scaling exponent for species i, ɸ0i the com-
posite scaling coefficient (β0 + δ0i, fixed + random scaling 
coefficient) for species i, ɸ1i the composite scaling exponent 
(β1 + δ1i, fixed + random scaling exponent) for species i.

The relation between response variable, the tree com-
ponent biomass, and the predictors DBH and height were 
described by the widely used allometric biomass functions 
(Zianis et al. 2005; Cienciala et al. 2006; Vejpustková et al. 
2015), as follows:

Additionally, a model form using the root collar diam-
eter (RCD) only as a predictor was considered to allow the 
estimate of harvested biomass, as after harvesting the stump 
dimensions are still available.

Allometric models are often fitted to logarithmically 
transformed data (Overman et  al. 1994; Bervian et  al. 
2006; Cienciala et al. 2006; Blujdea et al. 2012; Makungwa 
et al. 2013; Paul et al. 2013a, b, 2019; Vahedi et al. 2014; 
Annighöfer et al. 2016; Goussanou et al. 2016; Chen et al. 
2017) to deal with heteroskedasticity, where the standard 
errors of a variable, over a specific time, are non-constant 
(Overman et al. 1994; Blujdea et al. 2012; Zapata-Cuartas 
et al. 2012; Vahedi et al. 2014; Goussanou et al. 2016). 
They facilitate model fitting by transforming the equation 
to a linear form (Overman et al. 1994; Blujdea et al. 2012; 
Zapata-Cuartas et al. 2012; Goussanou et al. 2016), allow-
ing the use of linear least squares. In this study, logarithmic 
transformation of the data was avoided because the results 
of standard statistical tests performed on such data are often 
not relevant (Feng et al. 2014). Log-transformation leads 
to biased results (Packard and Boardman 2008). Tradi-
tional allometric method, which consists of linear fitting to 
logarithmically transformed data and back-transformation 
to power-law form, is not well suited for fitting statistical 

(3)Y = �0 × X�1 + �

(4)Y =
(

�0 + �0i
)

× X(�1+�1i) + � = �0i × X�1i + �

(5)Y =
(

�0 + �0i
)

× D(�1+�1i) + � = �0i × Dϕ1i + �

(6)
Y =

(

�0 + �0i
)

× D(�1+�1i) × H(�2+�2i) + � = �0i × Dϕ1i × Hϕ2i + �

(7)
Y =

(

�0 + �0i
)

× (D2H)(�1+�1i) + � = �0i × (D2H)ϕ1i + ε

(8)Y =
(

�0 + �0i
)

× RCD(�1+�1i) + � = �0i × RCDϕ1i + �



1051Species‑specific biomass allometric models and expansion factors for indigenous and planted…

1 3

models to data expressed in the arithmetic scale (Packard 
2013). Castro et al. (1996) maintained that modelling raw 
un-transformed data gives the best results.

To address within-species heteroskedasticity, the models 
in Eqs. 5–8 were, instead of being log-transformed, fitted 
using weighted NLME models. This is justified because, 
quite often in regression, the error variance is functionally 
related to the predictors (Parresol 1999), i.e., the variability 
of the biomass increases with the predictors (Picard 2012).

The weight functions that describe the within-species 
heteroskedasticity structure were obtained by modelling the 
error structure of ordinary least squares (OLS), following 
the description by Parresol (1999, 2001). The squares of 
OLS residuals were fitted against the different combination 
of the predictors and it was assumed that the squares are 
representative of the error variance (Parresol 2001). NLME 
models were fitted using the NLME package (Pinheiro et al. 
2019) of R software (R Core Team 2020).

Various authors have suggested that tree biomass scales 
against stem diameter with a universal scaling exponent 
of 8/3 (West et al. 1999; Enquist 2002; Pilli et al. 2006). 
However, several researchers have noted a lack of agreement 
between the scaling exponent in allometric equations and the 
universal scaling exponent (Chambers et al. 2001; Zianis 
and Mencuccini 2004; Li et al. 2005; Návar 2009). Other 
researchers have stressed that the universal scaling exponent 
is not acceptable, since the ratio of aboveground biomass 
to diameters in different environmental conditions is not 
constant (Zianis and Mencuccini 2004; Niklas 2006), and 
because there is a large variability in allometry across spe-
cies (Zapata-Cuartas et al. 2012). Therefore, to test the allo-
metric universal scaling law, Eq. 5 was refitted for all tree 
components with the scaling exponent set to 8/3. Predicted 
biomass values from Eq. 5 fitted without and with limita-
tions on the scaling exponent and the observed biomass were 
compared using one-way ANOVA. Pairwise comparisons 
among biomass means were tested using Tukey HSD test.

When fitting the models, parameters, either fixed or ran-
dom, with estimates not significantly different from zero at 
α = 0.05 were removed, and the reduced model refitted. This 
procedure was continued until only parameters with statisti-
cally significant estimates remained.

Tree component BCEFs were computed as the ratio of 
tree component biomass and stem volume (Magalhães and 
Mate 2018). A three-way ANOVA was carried out to test for 
the effects of species, DBH and total height on BCEF. Tukey 
HSD test was used to find species-level BCEFs statistically 
different from each other.

Communality analysis was carried out to quantify the 
variance that was unique to each predictor and the variance 
that was common to groups of predictors, thereby identify-
ing which predictor accounted the most to the variability of 
BCEF. Commonality analysis was performed using “yhat” 

package (Nimon et al. 2015). The dependence of BCEF on 
DBH and height was analysed by testing the significance of 
the Pearson´s correlation coefficient.

All statistical analyses were performed at a 5% signifi-
cance level.

Model evaluation and validation

Predictive accuracy determined which model(s) described 
the relationship between component biomass and the most 
used dendrometric predictors better, based on the following 
goodness of fit statistics: Akaike´s Information Criterion, 
AIC, (Akaike 1973), mean residual E , (von Gadow and Hui 
1999), model precision V (Calama and Montero 2004; Cor-
reia et al. 2010a), Furnival´s index of fit, FI (Furnival 1961), 
and the root mean square error, RMSE (von Gadow and Hui 
1999), Eqs. 9–13, respectively:

where Li is the maximum likelihood of the ith model,  Pi the 
number of parameters of the ith model, Yi observed biomass, 
Ŷi predicted biomass of the ith model, εij residual from the 
biomass of the jth tree of the ith model, f´(Y) is the first 
derivative of the transformed response variable, and  MSEi 
the mean square error of the ith model. Square brackets indi-
cate the geometric mean.

For ease of comparison between models, E , V, and RMSE 
were expressed as relative values, a percentage of observed 
biomass Y, which is more revealing. Model precision (V) 
was expressed as the standard error of the residuals.

The ideal value of E , V, and RMSE is zero (von Gadow 
and Hui 1999), indicating a perfect fit. Lower values of AIC 
and FI indicate a better fit model (Furnival 1961; Akaike 
1973). Therefore, models with the lowest AIC, FI, E , V, and 
RMSE were judged the best.

The coefficient of determination  (R2) was not used to 
evaluate the performance of the models because it is inap-
propriate for demonstrating the performance or validity of 

(9)AICi = −2logLi + 2Pi

(10)Ei =

∑
�

Yi − Ŷi
�

n
=

∑

𝜀2
ij

n

(11)Vi =

∑

ε2
ij
−
�
∑

εij
�2
∕n

(n − 1)n

(12)FIi =
�

f (Y)
�−1

×
√

MSEi

(13)RMSEi =

�

�

�

�

∑
�

Yi − Ŷi
�2

n − 1 − Pi
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nonlinear models (Spiess and Neumeyer 2010; Magalhães 
and Mate 2018). This is because the regression sum-of-
squares and the residual sum-of-squares do not total the 
sum-of-squares as in linear least squares, and thus  R2 is no 
longer between 0 and 100% (Magalhães and Mate 2018).

To evaluate the predictive ability, the models were vali-
dated using an independent dataset. The following statistics 
were used: model efficiency or EF, (Soares et al. 1995; Van-
clay and Skovsgaard 1997) and Error (Calama and Montero 
2004), Eqs. 14 and 15. Additionally, observed and predicted 
biomasses were compared using the Wilcoxon signed rank 
test.

EF was expressed as a percentage. The ideal values of EF 
and Error are 100% and 0%, respectively, indicating perfect 
predictive ability. Therefore, models with the largest EF, 
the smallest Error, and no significant difference between 
observed and predicted biomass, as judged by the Wilcoxon 
test, were considered the best.

The independent dataset used for validation consisted of 
data from 81 trees: 12 B. spiciformis (DBH 5.1–34.0 cm), 
8 J. globiflora (DBH 5.0–29.3 cm), 6 E. cloeziana (DBH 
23.0–39.0 cm), 28 P. taeda (DBH 9.5–38.5 cm), 10 P. elliotti 
(DBH 9.8–25.5 cm), and 17 P. patula (DBH 14.5–28.5 cm). 
Of these sampled trees, 59 were collected in 2017 (Guedes 
et al. 2018) and the remaining collected between 2014 and 
2018 for various unpublished research.

Results

Measured data

Component biomass plotted against DBH, stratified by spe-
cies, strongly followed a power relationship for all compo-
nents (Fig. 1). Tree species revealed a differing set of trees, 
especially for crown biomass. The power trend was strong 
for stems and AGB but the scatter was larger for crowns, 
especially for larger DBH trees. The ratio of stem biomass 
to AGB was larger for exotic species than for indigenous 
species, and amounted to 94%, 81%, 77%, and 71% for E. 
cloeziana, P. patula, P. taeda, and P. elliotti, respectively 
(Fig. 2). For the Miombo species, the largest ratio was crown 
biomass to AGB, and amounted to 55% and 54% for B. spici-
formis and J. globiflora, respectively (Fig. 2).

(14)EF = 1 −

∑

�

Yi − Yi

�2

∑

�

Yi − Yi

�2

(15)Error =
∑

(

Yi − Yi
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The share of component biomass on total aboveground 
biomass showed a species-specific pattern (Fig. 3). For all 
exotic species except for Pinus patula, the percentage of 
stem and crown biomass was stable over the DBH range. 
The percentage of stem biomass of P. patula increased 
slightly with diameter and a slight decrease was found for 
crown biomass. For the Miombo species, while the percent-
age of stem biomass decreased steeply with DBH, there was 
a steep increase for the percentage of crown biomass with 
DBH. For B. spiciformis, the portion of stem biomass to 
AGB decreased with DBH from approximately 90% to 30% 
and that of the crown increased from 14 to 73%. Similar 
results were observed for J. globiflora, with the percentage 
of stem biomass decreasing with DBH from 87 to 8% and 
the crown increasing from 13 to 92%.

Biomass allometry

Species-specific allometric biomass models with DBH, 
RCD (root collar diameter), and height (H) as predictors 
and component biomass as response variables were con-
structed. The weight functions and the random scaling 
coefficients and exponents of the models were influenced 
by species-specific factors and by biomass components. 
All fixed scaling exponents and fixed and random scaling 
coefficients were significant at α = 0.05 (Tables 2, 3, 4 and 
5). However, the random scaling exponents were signifi-
cant only for crown biomass models (Tables 2, 3, 4 and 
5). All biomass allometric models had an acceptable pre-
dictive accuracy and ability (Table 6). However, stem and 
AGB allometric models fitted the data better than crown 
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models as indicated by the AIC, V, E, FI, and RMSE val-
ues (Table 6).

Using only DBH as a predictor, the models estimated 
tree component biomass with a satisfactory predictive accu-
racy, i.e., model precision (V) < 2% and mean residual (E) 
not statistically different from zero, and predictive ability, 
model efficiency (EF) > 72% and Wilcoxon test revealing 
that observed and predicted biomass were statistically identi-
cal. Adding height as an incorporated variable  (D2H) or as a 
second variable improved the predictive accuracy and abil-
ity, however better prediction was observed when height was 
added as a second variable (Eq. 6, Y = �0i × Dϕ1i × Hϕ2i + � ). 
Adding height as an incorporated variable  (D2H), AIC, 
model precision V, and the root mean square error, RMSE, 
decreased up to 5%, 23%, and 26%, respectively, and the EF 
increased up to 15%. However, adding height as a second 
variable, the AIC, V, and RMSE decreased up to 10%, 28%, 
and 50%, respectively, and EF increased up to 28%. The 
allometric biomass model including height as the second 
predictor (Eq. 6) was the best for all components.

Satisfactory predictive accuracy and predictive ability 
were also attained for the models using only root col-
lar diameter (RCD), however the models were not better 
as those with only DBH as a predictor (Table 6). The 
models fitted using the universal scaling exponent  (D8/3) 
were better than the RCD models and fitted the data simi-
larly as the DBH models. Figure 4 shows clearly that the 

measured biomass, the predicted biomass from Eq. 5, and 
the predicted biomass using the universal scaling expo-
nent did not differ statistically.

Using the interactive  D2H as a predictor, an isomet-
ric scaling  (b1 = 1) was obtained for all tree components, 
implying that, for the DBH range considered in this study, 
the ratio of biomass and  D2H was constant. A positive 
allometry was found when DBH or RCD were used as 
the sole predictor. A fixed scaling exponent  (b1) of ≈ 3 
(range: 2.89–3.07) was found when RCD was used as the 
predictor. Using only DBH as a predictor, the fixed scaling 
exponent  (b1) ranged from 2.60 to 2.89. These fixed scal-
ing exponents, obtained when biomass is scaled against 
DBH only, were not statistically different to the universal 
scaling exponent (8/3) proposed by West et al. (1999).

Crown models using only DBH as a predictor for the 
Miombo species had larger scaling exponents (up to 25%) 
than those for exotic species. The larger values for the 
indigenous species imply that, per unit of DBH growth, 
the increment of crown biomass is larger, up to 25%, com-
pared with exotic species. Note that, for stem biomass and 
AGB models, the random scaling exponents were not sta-
tistically different from zero, thus the composite scaling 
exponents were equal to the fixed ones, denoting that a unit 
of DBH increase resulted in similar stem and aboveground 
biomass increment for all species.

Table 2  Parameter estimates of 
the models for stem biomass

where δ0i is the random scaling coefficient of the species i, (e.g., δ0 B. spiciformis random scaling coefficient 
for Brachystegia spiciformis), s(δ0) standard deviation of the random scaling coefficients, s(e) standard 
deviation of the residuals, ɸ0i composite scaling coefficient of the species i. Non-significant random param-
eters are not presented

Parameter Equation 5 Equation 6 Equation 7 Equation 8

Weight function exp  (D0.5250) exp  (D0.8257) 0.6818 × D 2.8479 exp ((D2H) 0.0821)
β0 (± SE) 0.0209 (± 0.0049) 0.0184 (± 0.0032) 0.0186 (± 0.0028) 0.0057 (± 0.0017)
β1 (± SE) 2.8929 (± 0.0576) 2.0708 (± 0.1103) 1.0060 (± 0.0137) 3.0735 (± 0.0669)
β2 (± SE) – 0.9386 (± 0.1150) – –
δ0 B. spiciformis − 0.0032 0.0040 0.0046 − 0.0017
δ0 E. cloeziana 0.0178 0.0029 0.0018 0.0062
δ0 J. globiflora − 0.0037 0.0040 0.0047 − 0.0019
δ0 P. elliotti − 0.0042 − 0.0032 − 0.0033 − 0.0014
δ0 P. patula − 0.0027 − 0.0039 − 0.0034 − 0.0007
δ0 P. taeda − 0.0040 − 0.0038 − 0.0044 − 0.0005
s(δ0) 0.0081 0.0038 0.0040 0.0029
s(e) 0.2240 0.9536 0.0492 0.0038
ɸ0 B. spiciformis 0.0178 0.0224 0.0232 0.0040
ɸ0 E. cloeziana 0.0387 0.0213 0.0204 0.0119
ɸ0 J. globiflora 0.0172 0.0224 0.0233 0.0038
ɸ0 P. elliotti 0.0167 0.0151 0.0153 0.0043
ɸ0 P. patula 0.0182 0.0145 0.0152 0.0050
ɸ0 P. taeda 0.0170 0.0146 0.0142 0.0052
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Biomass conversion and expansion factors (BCEF)

Biomass conversion and expansion factors (BCEF) are 
widely used to convert timber volume of forest inventories 
to tree biomass, and are calculated as the ratio of compo-
nent biomass to stem volume. Aboveground biomass of B. 
spiciformis and J. globiflora were approximately 157% and 
139% of the stem volume (Table 7), respectively; however, 
the AGB of the exotic species were only up to 69% of stem 
volume. This suggests that Miombo species store more than 
double the aboveground biomass per stem volume, i.e., 
the BCEF are more than double that of the exotic species. 
Miombo species store up to 13 times more biomass in the 
crown per stem volume than the introduced species.

The three-way ANOVA revealed that, for all three compo-
nents, stem, crown, and shoot system, the species was a sig-
nificant source of variation of the BCEF (P value = 0.0000). 
In addition to species, DBH and height also had significant 
effects on crown BCEF; height was also a significant source 
of aboveground BCEF variation. Tukey HSD test showed 
that BCEF values of the two Miombo species were statisti-
cally superior to those of all introduced species (Table 7).

From the commonality analysis, the majority (60–99%) 
of the regression effect was explained by variance that was 
unique to a species, i.e., species uniquely accounted for up 
to 99% of the regression effect. Tree species accounted for 
59.5%, 62.5%, and 99% of the regression effect of crown, 
aboveground, and stem BCEF, respectively.

Table 3  Parameter estimates of 
the models for crown biomass

where δ1i and δ2i are the random scaling exponents of the species i, (e.g., δ1 B. Spiciformis random scaling 
exponent for Brachystegia spiciformis), s (δ1) standard deviation of the random scaling exponents δ1, and 
s (δ2) standard deviation of the random scaling exponents δ2. Non-significant random parameters are not 
presented

Parameter Equation 5 Equation 6 Equation 7 Equation 8

Weight function 53.0000 × D 41.4121 exp  (D0.1212) exp  (D1.3793) 37.0800 × D 28.5197

β0 (± SE) 0.0186 (± 0.0047) 0.0256 (± 0.0074) 0.0080 (± 0.0033) 0.0029 (± 0.0012)
β1 (± SE) 2.5969 (± 0.1254) 3.1152 (± 0.1509) 0.9657 (± 0.0680) 2.9707 (± 0.1435)
β2 (± SE) – − 0.6760 (± 0.2050) – –
δ1 B. spiciformis 0.2828 – 0.1441 0.2504
δ1 E. cloeziana − 0.2751 – − 0.1623 − 0.2276
δ1 J. globiflora 0.2823 – 0.1579 0.2188
δ1 P. elliotti − 0.0924 – − 0.0304 − 0.0489
δ1 P. patula − 0.0650 – − 0.0426 − 0.1143
δ1 P. taeda − 0.1326 – − 0.0667 − 0.0784
δ2 B. spiciformis – 0.2210 – –
δ2 E. cloeziana – − 0.1558 – –
δ2 J. globiflora – 0.2147 – –
δ2 P. elliotti – − 0.1066 – –
δ2 P. patula – − 0.0442 – –
δ2 P. taeda – − 0.1291 – –
s(δ1) 0.2166 – 0.1166 0.1840
s(δ2) – 0.1658 – –
s(e) 0.0274 2.50 × 10−07 4.2769 0.0892
ɸ1 B. spiciformis 2.8796 – 1.1398 3.2211
ɸ1 E. cloeziana 2.3218 – 0.8334 2.7431
ɸ1 J. globiflora 2.8792 – 1.1536 3.1895
ɸ1 P. elliotti 2.5045 – 0.9653 2.9218
ɸ1 P. patula 2.5319 – 0.9530 2.8564
ɸ1 P. taeda 2.4643 – 0.9290 2.8923
ɸ2 B. spiciformis – − 0.4549 – –
ɸ2 E. cloeziana – − 0.8318 – –
ɸ2 J. globiflora – − 0.4612 – –
ɸ2 P. elliotti – − 0.7825 – –
ɸ2 P. patula – − 0.7201 – –
ɸ2 P. taeda – − 0.8051 – –
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Tree component BCEF of all exotic or introduced spe-
cies, and stem and aboveground BCEF of Miombo spe-
cies were not linearly correlated to DBH nor to height (P 
value > 0.2). Crown BCEF of Miombo species was posi-
tively dependent on both DBH and height (Fig. 5), and 
Pearson´s correlation coefficients between crown BCEF 
and DBH and height were 0.55 (P value = 0.0002), and 
0.33 (P value = 0.0349), respectively.

Discussion

Biomass allocation patterns

Studies on biomass allocation patterns into different tree 
components are of considerable interest in forest carbon 
monitoring and dynamics (Fournier et al. 2003; Pajtík et al. 
2008; Magalhães and Seifert 2015b). For example, with the 

Table 4  Parameter estimates 
of the models for aboveground 
biomass

Non-significant random parameters are not presented

Parameter Equation 5 Equation 6 Equation 7 Equation 8

Weight function exp  (D0.1190) 8.0189 × D22.2793 26.2926 × D30.9585 35.4436 × D22.5197

β0 (± SE) 0.0414 (± 0.0068) 0.0334 (± 0.0058) 0.0302 (± 0.0065) 0.0086 (± 0.0019)
β1 (± SE) 2.7921 (± 0.0431) 2.3767 (± 0.0923) 1.0012 (± 0.0143) 3.0614 (± 0.0573)
β2 (± SE) – 0.5420 (± 0.1096) – –
δ0 B. spiciformis 0.0063 0.0131 0.0178 0.0003
δ0 E. cloeziana 0.0158 0.0005 − 0.0073 0.0047
δ0 J. globiflora 0.0062 0.0139 0.0189 − 0.0003
δ0 P. elliotti − 0.0102 − 0.0087 − 0.0087 − 0.0017
δ0 P. patula − 0.0067 − 0.0080 − 0.0094 − 0.0016
δ0 P. taeda − 0.0113 − 0.0109 − 0.0113 − 0.0013
s(δ0) 0.0103 0.0104 0.0131 0.0023
s(e) 4.42 × 10−08 0.0307 0.0296 2.1158
ɸ0 B. spiciformis 0.0477 0.0465 0.0480 0.0089
ɸ0 E. cloeziana 0.0572 0.0339 0.0229 0.0133
ɸ0 J. globiflora 0.0476 0.0473 0.0491 0.0084
ɸ0 P. elliotti 0.0312 0.0247 0.0215 0.0069
ɸ0 P. patula 0.0346 0.0254 0.0208 0.0070
ɸ0 P. taeda 0.0300 0.0225 0.0189 0.0074

Table 5  Parameter estimates 
of Eq. 5 fitted using universal 
scaling exponent

Parameter Equation 5 (Stem) Equation 5 (Crown) Equation 5 (AGB)

Weight function exp  (D0.5250) 53.0000 × D41.4121 exp  (D0.1190)
β0 (± SE) 0.0407 (± 0.0067) 0.0172 (± 0.0072) 0.0596 (± 0.0063)
β1 (± SE) 2.6667 2.6667 2.6667
δ0 B. spiciformis − 0.0057 0.0172 0.0088
δ0 E. cloeziana 0.0348 − 0.0112 0.0231
δ0 J. globiflora − 0.0070 0.0174 0.0084
δ0 P. elliotti − 0.0108 − 0.0060 − 0.0168
δ0 P. patula − 0.0042 − 0.0062 − 0.0080
δ0 P. taeda − 0.0071 − 0.0060 − 0.0156
s(δ0) 0.0160 0.0124 0.0149
S(e) 0.1675 0.0379 1.26 × 10−08

ɸ0 B. spiciformis 0.0350 0.0344 0.0684
ɸ0 E. cloeziana 0.0755 0.0060 0.0827
ɸ0 J. globiflora 0.0338 0.0346 0.0679
ɸ0 P. elliotti 0.0299 0.0112 0.0428
ɸ0 P. patula 0.0365 0.0110 0.0516
ɸ0 P. taeda 0.0336 0.0112 0.0440
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Miombo woodlands, while the stem or bole is used in the 
forest industry and thus the C remains stored for some time, 
the branches are either left in the forest or collected and used 
as firewood by local communities. In either case, the stored 
carbon is released to the atmosphere by decomposition or 
burning.

The biomass allocation patterns of the exotic species in 
this study is in agreement with a number of studies (Cien-
ciala et al. 2006; Correia et al. 2010a, b; Xiang et al. 2011; 
Vargas-Larreta et al. 2017) for Pine and Eucalyptus spe-
cies; as trees grow larger, the proportion of aboveground 

biomass allocated to the stem increases and that allocated 
to the crown decreases, and/or the majority of the AGB is 
allocated to the stem. However, this pattern of allocation 
was not supported by the two Miombo species as most of 
the AGB was allocated to the crown, and the proportion 
increased with increasing tree size. An increase propor-
tion of branch biomass, and thus crown biomass, has been 
reported by Pajtík et al. (2008) for Norway spruce (Picea 
abies (L.) H. Karst.). The proportion of AGB allocated to 
the stem for the Miombo species in this study, 45% and 46% 
for B. spiciformis and J. globiflora, respectively, is lower 

Table 6  Predictive accuracy and ability of the fitted models

Equation 5 (Universal) = Eq. 5 fitted under the constraint of the scaling exponent being equal to the universal scaling of 8/3; i.e. assuming that 
tree biomass scales against stem diameter with a universal scaling exponent of 8/3

Parameter Species-specific models

Equation 5 Equation 6 Equation 7 Equation 8 Equation 5 
(universal)

Stem biomass
Goodness of fit statistics (predictive accuracy)
 AIC 1047 943 994 1047 1052
 E (%) 0.0898ns 1.0097ns 0.3460ns 3.0482ns 9.4382ns

 V (%) 1.3456 1.1170 1.2391 1.3048 1.5134
 FI 594 579 642 680 730
 RMSE (%) 12.6579 6.2695 12.1670 14.4946 13.11848

Validation (predictive ability)
 EF (%) 76.52 94.37 84.90 79.15 76.45
 Error (kg) 1.7774 0.1649 0.8897 5.7630 1.9117
 P value for Wilcoxon test 0.1660 0.9549 0.9970 0.1445 0.2466

Crown biomass
Goodness of fit statistics (predictive accuracy)
 AIC 1111 1004 1058 1168 1120
 E (%) − 0.3920ns − 0.5782ns − 0.2457ns 0.7234ns − 0.1960
 V (%) 3.4926 2.5289 2.7304 4.7645 3.7119
 FI 6973 5051 5452 8508 7416
 RMSE (%) 18.5852 12.3457 13.6892 27.0770 23.0200

Validation (predictive ability)
 EF (%) 72.23 92.50 81.10 51.67 70.11
 Error (kg) − 4.4789 1.4786 4.0859 18.6122 − 4.6953
 P value for Wilcoxon test 0.1085 0.4593 0.1071 0.1465 0.0617

Aboveground biomass
Goodness of fit statistics (predictive accuracy)
 AIC 1029 985 1002 1050 1038
 E (%) 1.5513ns 0.1631ns 1.2360ns 3.2019ns 2.4781ns

 V (%) 2.7112 2.0075 2.5134 4.2022 3.0731
 FI 1056 661 715 1281 1103
 RMSE (%) 15.0298 9.5807 12.7952 17.5641 15.8618

Validation (predictive ability)
 EF (%) 76.59 94.13 88.28 81.05 76.35
 Error (kg) − 0.8198 0.9280 0.9981 5.2396 − 2.9780
 P value for Wilcoxon test 0.1158 0.8734 0.1307 0.0668 0.0587
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Fig. 4  Tukey HSD test results 
showing the similarities 
between observed biomass, 
predicted biomass by Eq. 5, and 
predicted biomass using the 
universal scaling exponent
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than that reported by Henry et al. (2010) for tropical rain 
forests of Africa (69%), by Peltier et al. (2007) for tropical 
dry forests (70%) and by Henry et al. (2009) for tropical 
agroforestry systems in Kenya (62%).

The different biomass allocation patterns of indigenous 
and exotic species could be a result of differences in stand 
density. The Miombo forest is composed of small trees 
(Table 1) and no more than 200 trees per hectare, while 
the plantations have upwards of 1000 trees per hectare. 
Xiang et al. (2011) maintained that stand density enhances 
the proportion of stem biomass but decreases biomass of 
branches. As a consequence of competition for light, exotic 
species have small branches and smaller quantities of leaves, 
resulting in smaller crowns than indigenous species which 
do not face limitations in light resources and growing space. 
Crown size has been reported to decrease with competition 
(van Laar and Akça 2007) as a result of natural pruning as a 
consequence of inter-tree competition for light and growing 
space and self-shading and shading by neighbouring trees.

Biomass allometry

Miombo species are the most important trees of southern 
Africa and of Mozambique (Ribeiro et al. 2015; Aquino 
et al. 2018), and Eucalyptus and Pinus species the most 
important reforestation species, planted mainly for commer-
cial purposes (Blid 2014). Therefore, the accurate estimation 
of biomass of the Miombo species and the Eucalyptus and 
Pinus plantations is essential. The species-specific allomet-
ric models developed here predict biomass accurately for the 
exotic and indigenous species across the range of DBHs used 
to develop the models (Table 1) and have good applicability 
as tested using the independent samples. Nevertheless, it is 
not advisable to extrapolate beyond the data range as the 
results may be biased.

Crown models for the Miombo species had larger com-
posite scaling exponents (up to 25%) compared with those of 
the exotics, and composite scaling coefficients were constant 
for all species as a result of insignificant random scaling 
coefficients. As a result, the Miombo species had high pre-
dicted biomass for a given diameter and height compared 

with the exotic species. This is consistent with the finding 
that: (1) Miombo species store more biomass per stem vol-
ume than exotic species; (2) Miombo species allocate more 
biomass to crowns than to stems as compared to exotic spe-
cies (Fig. 2); and, (3) per unit of DBH growth, the increment 
of crown biomass of Miombo is larger than that of exotic 
species. However, although Miombo species had larger 
increments of crown biomass per unit stem diameter growth 
and stored larger amounts of biomass per stem volume than 
the exotic species, due to their rapid growth, larger stem 
diameters and heights (on average), and stand density, the 
plantations store more biomass per tree and per unit area.

For all models, AGB and stem biomass had higher pre-
dictabilities than crown biomass. This is in agreement with 
Jagodziński et al. (2018a, b). Branch and crown biomass 
components are difficult to estimate with the same accuracy 
as stem biomass or total aboveground biomass (Vargas-Lar-
reta et al. 2017). The high predictability of stem biomass and 
AGB models is attributed to the high correlation between 
these component biomasses and DBH (Fig. 1).

Diameter at breast height was the main predictor for esti-
mating tree biomass components for all species, indigenous 
and exotics. For all components, the inclusion of height sig-
nificantly improved the predictability of aboveground bio-
mass and stem and crown biomass. Height as a second pre-
dictor substantially improved model precision (V) of stem 
biomass, AGB and crown biomass by 17%, 26%, and 28%, 
respectively, and model efficiency (EF) was improved by 
23%, 23%, and 28%, respectively. The inclusion of height led 
to a substantial increase in predictive accuracy and ability. 
This is consistent with the findings by Pajtík et al. (2008), 
Xiang et al. (2011) and Vargas-Larreta et al. (2017). How-
ever, other researchers (Johansson 1999; Porté et al. 2002; 
Jenkins et al. 2003) reported that the inclusion of height does 
not lead to a significant increase in predictive ability.

Height is not directly measured in forest inventories and 
it is thus more susceptible to measuring error than DBH 
(Loetsch et al. 1973; Machado and Figueiredo Filho 2006; 
Sanquetta et al. 2006) and its measurement is not stand-
ardized (Sileshi 2014). Therefore, although with better 
predictability, models using height (Eqs. 6, 7) will lead to 

Table 7  Average (± SE) 
BCEFs (Mg  m−3) per species 
and per tree component

Means with different letters along rows differ significantly. The subscripts c, s, and t indicate crown, stem 
and total-tree (e.g., BCEFc = crown BCEF)

Tree species BCEFc (± SE) BCEFs (± SE) BCEFt (± SE)

B. spiciformis 0.7357 (± 0.0935)a 0.8296 (± 0.1080)a 1.5652 (± 0.1361)a

J. globiflora 0.7045 (± 0.0790)a 0.6845 (± 0.0367)ab 1.3891 (± 0.0790)a

E. cloeziana 0.0566 (± 0.0069)b 0.6313 (± 0.0188)b 0.6878 (± 0.0217)b

P. elliottii 0.1564 (± 0.0171)b 0.3880 (± 0.0087)bc 0.5444 (± 0.0206)b

P. patula 0.1813 (± 0.0419)b 0.4992 (± 0.0238)c 0.6805 (± 0.0522)b

P. taeda 0.1223 (± 0.0118)b 0.4027 (± 0.0094)c 0.5250 (± 0.0153)b
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biased results because of inherent measurement errors of 
tree height. The inclusion of height in Eq. 4, either as a 
combined variable  D2H (Eq. 7) or as a second predictor 
(Eq. 6), will introduce two sources of errors over and above 
those expected in Eq. 4 (Sileshi 2014): (1) errors due to 
measurement of height; and, (2) errors due to the estima-
tion of model parameters. Moreover, 1-predictor biomass 
models, (DBH only models), are easier and faster to use 

and less expensive than 2-predictors models since the lat-
ter require height measurements which are expensive and 
time-consuming.

In biomass modelling, height is included in the model, 
either as a combined variable  D2H (Eq. 7) or as a second 
variable, in addition to DBH (Eq. 6) (Zianis et al. 2005; 
Cienciala et al. 2006; Vejpustková et al. 2015). In this study, 
better prediction and accuracy were obtained when height 
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was added as a second variable (Eq. 6). This contradicts Car-
valho and Parresol (2003) and Bi et al. (2004) who obtained 
better estimates for the model with a combined predictor 
 D2H. However, our results are consistent with Vahedi et al. 
(2014) and Vejpustková et al. (2015).

Biomass conversion and expansion factors
Larger BCEF values were found for Miombo species 

and lower ones for the plantation species. Slow-growing 
species such as B. spiciformis and J. globiflora have high 
wood density, whereas fast-growing species (e.g., Eucalyp-
tus and Pinus species) have low densities (Ouédraogo et al. 
2013; Yeboah et al. 2014; Ramananantoandro et al. 2016). 
This explains why slow-growing Miombo species (Grundy 
1995; Elifuraha et al. 2008; Chiteculo and Surovy 2018) had 
higher biomass conversion and expansion factors compared 
to exotic species as these factors are directly proportional to 
wood density (Pajtík et al. 2008; Schepaschenko et al. 2018). 
In other words, BCEF = BEF × ρ, where BEF and ρ are bio-
mass expansion factors and wood density, respectively.

BCEFs have been reported to be reversely dependent on 
DBH and height (Brown et al. 1989; Lehtonen et al. 2004; 
Dutca et al. 2010; Sanquetta et al. 2011; Magalhães and 
Seifert 2015a) or to be independent of tree size (Marková 
and Pokorný 2011; Magalhães and Seifert 2015a). In this 
study, BCEF values of exotic species were not dependent 
on size; only crown BCEF of Miombo species were depend-
ent on DBH and height. This is because the proportion of 
crown biomass on AGB increased with tree size, whereas 
that of stem biomass decreased (Fig. 3), resulting in BEF, 
and consequently BCEF, to increase with increasing tree 
size. At the same time, the stability of the biomass conver-
sion and expansion factors of exotic species over tree size is 
also related to the stability of the proportions of crown and 
stem biomass on AGB over tree size (Fig. 3).

Dutca et al. (2010) maintained that the reverse relation-
ship between BEF and tree size is a result of an inverse rela-
tionship between wood density and size. This suggests that 
the direct dependence of crown BCEF of Miombo species 
to tree size may be due to the direct relationship between 
branch wood density and size. Increasing wood density with 
age and tree size has been reported by various researchers 
(Pajtík et al. 2008; Nock et al. 2009; Henry et al. 2010; Deng 
et al. 2014). However, there are also studies showing that 
wood density does not vary with stem diameter (Ramanana-
ntoandro et al. 2016; Fajardo 2018), whereas others have 
reported that wood density decreases with tree age and size 
(Pajtík et al. 2008; Liepiņš et al. 2017). This pattern of vari-
ability in wood density explains the variability of patterns 
of BCEF with tree size (Fig. 3).

Stem, crown, and aboveground BCEF values of B. spici-
formis and J. globiflora are larger than those observed by 
Magalhães and Mate (2018) for other Miombo species, 
Umbila (Pterocarpus angolensis DC.) and Chanfuta (Afzelia 

quanzensis Welw.) except for Panga-panga (Millettia stuh-
lmannii Taub.), and are also larger for other Mozambican 
indigenous species such as Mecrusse (Androstachys john-
sonii Prain) (Magalhães and Seifert 2015a) and Mopane 
(Colophospermum mopane (Kirk ex Banth.) Kirk ex J. 
Leonard) (Magalhães and Mate 2018). It was assumed that 
the differences in BCEF are attributed to the differences in 
climate, soil conditions, altitude, and species.

The majority of variation of the biomass conversion and 
expansion factors was attributed uniquely to species rather 
than to stem diameter and height, and this is consistent with 
Luo et al. (2014) who found that BCEF exhibited remarkable 
variation across forest types.

Conclusions

This study provided species-species biomass allometric 
models and biomass conversion and expansion factors for 
the Miombo species B. spiciformis and J. globiflora and for 
exotic species of Eucalyptus cloeziana, Pinus elliotti, Pinus 
patula, and Pinus taeda growing in highlands of Manica 
province, Mozambique. The allometric biomass models, for 
all tree components, had an acceptable predictive accuracy 
and ability. The highest predictive accuracy and ability was 
found with models with tree height as a second variable 
(Y = �0i × Dϕ1i × Hϕ2i + �) . The Miombo species had larger 
increments of crown biomass per unit of stem diameter as 
seen by their larger scaling exponents. Similarly, they stored 
larger amounts of biomass per stem volume unit, i.e., their 
biomass conversion and expansion factors were up to 13-fold 
larger than those of the exotic species. The majority of the 
variation of these factors (up to 99%) was attributed uniquely 
to species rather than to diameter or height. Although with 
relatively lower, yet acceptable predictive accuracy and abil-
ity, the model fitted under the constraint of the allometric 
universal scaling law (Y = ɸ0i × D8/3 + ε) showed that the 
universal exponent (8/3) was data acceptable for both indig-
enous and exotic tree species.
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