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Abstract Accurate information on the location and mag-

nitude of vegetation change in scenic areas can guide the

configuration of tourism facilities and the formulation of

vegetation protection measures. High spatial resolution

remote sensing images can be used to detect subtle vege-

tation changes. The major objective of this study was to

map and quantify forest vegetation changes in a national

scenic location, the Purple Mountains of Nanjing, China,

using multi-temporal cross-sensor high spatial resolution

satellite images to identify the main drivers of the

vegetation changes and provide a reference for sustainable

management. We used Quickbird images acquired in 2004,

IKONOS images acquired in 2009, and WorldView2

images acquired in 2015. Four pixel-based direct change

detection methods including the normalized difference

vegetation index difference method, multi-index integrated

change analysis (MIICA), principal component analysis,

and spectral gradient difference analysis were compared in

terms of their change detection performances. Subse-

quently, the best pixel-based detection method in con-

junction with object-oriented image analysis was used to

extract subtle forest vegetation changes. An accuracy

assessment using the stratified random sampling points was

conducted to evaluate the performance of the change

detection results. The results showed that the MIICA

method was the best pixel-based change detection method.

And the object-oriented MIICA with an overall accuracy of

0.907 and a kappa coefficient of 0.846 was superior to the

pixel-based MIICA. From 2004 to 2009, areas of vegeta-

tion gain mainly occurred around the periphery of the study

area, while areas of vegetation loss were observed in the

interior and along the boundary of the study area due to

construction activities, which contributed to 79% of the

total area of vegetation loss. During 2009–2015, the

greening initiatives around the construction areas increased

the forest vegetation coverage, accounting for 84% of the

total area of vegetation gain. In spite of this, vegetation loss

occurred in the interior of the Purple Mountains due to

infrastructure development that caused conversion from

vegetation to impervious areas. We recommend that: (1) a

local multi-agency team inspect and assess law enforce-

ment regarding natural resource utilization; and (2)

strengthen environmental awareness education.

Electronic supplementary material The online version of this
article (https://doi.org/10.1007/s11676-019-00978-x) contains sup-
plementary material, which is available to authorized users.

Project funding: The work was supported by the National Natural

Science Foundation of China (31670552), the PAPD (Priority

Academic Program Development) of Jiangsu provincial universities

and the China Postdoctoral Science Foundation funded project.

Additionally, this work was performed while the corresponding

author acted as an awardee of the 2017 Qinglan Project sponsored by

Jiangsu Province.

The online version is available at http://www.springerlink.com.

Corresponding editor: Tao Xu.

& Mingshi Li

nfulms@njfu.edu.cn

1 College of Forestry, Nanjing Forestry University,

Nanjing 210037, People’s Republic of China

2 Co-Innovation Center for Sustainable Forestry in Southern

China, Nanjing Forestry University, Nanjing 210037,

People’s Republic of China

3 Jiangsu Provincial Key Laboratory of Geographic

Information Science and Technology, International Institute

for Earth System Science, Nanjing University,

Nanjing 210023, People’s Republic of China

123

J. For. Res. (2020) 31(5):1743–1758

https://doi.org/10.1007/s11676-019-00978-x

https://doi.org/10.1007/s11676-019-00978-x
http://www.springerlink.com
http://crossmark.crossref.org/dialog/?doi=10.1007/s11676-019-00978-x&amp;domain=pdf
https://doi.org/10.1007/s11676-019-00978-x


Keywords High spatial resolution satellite images �
Vegetation change � Direct detection method � Object-
oriented � Purple Mountains

Introduction

Scenic forest areas are precious and non-renewable natural

resources. In spite of their provision of social, ecological,

and environmental services, urban and suburban scenic

forests continue to suffer risk of degradation due to socio-

economic advancement, demographic growth, and the

acceleration of urbanization (Qi 2013). Knowledge of the

changes in forest vegetation in scenic forests helps to

assess conservation management effectiveness and to for-

mulate conservation measures to respond to vegetation

changes and to promote sustainable development of the

urban forest environment and the social economy (Qi 2013;

Pu and Landry 2012). The development of remote sensing

images and technology provides advanced technological

measures for detecting these changes.

Traditional assessment methods are useful for medium-

and coarse-scale change detection. In contrast, sub-meter

scale vegetation change detection is more suitable for

determining diverse, subtle changes in scenic forest areas,

such as mapping networks of unpaved unofficial moun-

taineering paths that have increased due to the walking and

climbing of local residents (Zhou et al. 2008). High spatial

resolution remote sensing images can help detect such

subtle changes that are not recorded in the official data-

bases and assess their impacts on forest vegetation and

soils that are underestimated by analyses of medium and

coarse remotely sensed images.

In traditional vegetation cover change analyses, images

are usually classified first and then the classifications are

compared. In this case, change detection accuracy depends

heavily on classification accuracy. Several highly auto-

mated direct change detection methods have been devel-

oped and applied to vegetation change detection, including

the Landsat-based detection of Trends in Disturbance and

Recovery (LandtrendR, Kennedy et al. 2010), the Breaks

For Additive Seasonal and Trend (BFAST, Verbesselt et al.

2010) and Vegetation Change Tracker (VCT, Huang et al.

2010). However, these methods are mainly used for time

series analyses using relatively low and medium spatial

resolution images and are not suitable for high spatial

resolution image analyses due to the high cost and the

unavailability of high spatial resolution images covering

long time spans. Additionally, some of the parameters

required for these methods (such as the integrated forest

z-score (IFZ) in the VCT) are difficult to derive from high

spatial resolution images due to limited spectral bands.

Thus, in this study, we considered other detection methods

that are easily implemented and suitable for high spatial

resolution images. Weismiller et al. (1977) first proposed

the image difference method. However, when different

sensors are used for change detection, a simple band dif-

ference method results in large errors. In order to utilize

multiple bands and reduce the amount of workload at the

same time, Byrne et al. (1980) applied change detection

based on principal component analysis (PCA). However,

few studies have used the PCA method with different

sensor images for change detection. Chen et al. (2013)

proposed the use of the spectral gradient difference (SGD)

to detect changes to reduce the impact of different sensors.

In addition, many studies applied vegetation index infor-

mation to reduce the influences of illumination, terrain,

atmospheric conditions and other factors. These include the

normalized difference vegetation index (NDVI) difference

method (Rouse et al. 1973; Yang et al. 2000), and multi-

index integrated change analysis (MIICA, Jin et al. 2013)

method. Besides NDVI, MIICA added other characteristic

parameters that indicate change intensity to improve

detection accuracy.

The above-mentioned change detection methods are all

pixel-based methods. Since the spatial relationship among

pixels is ignored, salt-and-pepper noise is commonly

observed and the higher the spatial resolution, the higher

the salt-and-pepper noise (Han 2016). To address this

problem when change detection is performed using high

spatial resolution images, object-oriented image analysis

was proposed (Baatz and Schäpe 1999). The traditional

object-oriented change detection method is based on an

image segmentation followed by the classification of the

image objects (Civco et al. 2002; Gamanya et al. 2009;

Chen et al. 2012), thus the detection results are also subject

to the classification accuracy.

To combine the advantages of direct change detection

and object-oriented analysis, in this study, we proposed a

new approach to conduct forest vegetation change detec-

tion by using cross-sensor high spatial resolution satellite

images. This new method integrates the optimal pixel-

based method among several tested methods and object-

oriented analysis to detect vegetation change. Specifically,

we used the precision (P) and recall rate (R) to objectively

determine the optimal segmentation parameter (Zhu et al.

2015). This method performs image segmentation first and

uses the homogeneous segmentation objects as the analysis

units instead of the individual pixels to reduce the salt-and-

pepper noise and minimize the influences of the classifi-

cation accuracy on the detection results.

We used the Purple Mountains in Nanjing, a five A-level

scenic spot with abundant vegetation as the study area to

test the performance of the proposed change detection

methods. The Purple Mountains attract many tourists every
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year because of several well-known scenic spots including

the Dr. Sun Yat-sen Mausoleum and Ming Xiaoling

Mausoleum. The area is also an important scenic forest

location at the lower reaches of the Yangtze River and a

region with scientific research value in the north subtrop-

ical zone of China. Additionally, as the ‘‘green lung’’ of

Nanjing city, the Purple Mountains support many plant

species and have a high forest cover, which provides great

values in terms of air and water purification, soil and water

conservation, tourism, and scientific research (Liu 2015).

Since 1935, forests of the Purple Mountains have suf-

fered from pine caterpillars and government agencies have

taken many prevention and control measures. Many studies

have documented changes in the vegetation of the Purple

Mountains (Xue and Zhao 1982; Cheng and Ni 2004).

However, few studies of vegetation change in the Purple

Mountains have been implemented by the scenic location

management authority in recent years, especially at the

sub-meter scale.

Materials and methods

Study area and datasets

Located in the eastern outskirts of Nanjing City, Jiangsu

Province, the Purple Mountains extend from 118�480E,
32�020N to 118�520E, 32�060N (Fig. 1), covering an area of

approximately 30 km2 with forest coverage of 70% (Wang

and Li 2017). The highest elevation of the Purple Moun-

tains is 448.9 m. This area falls into the northern margin of

the subtropics and is a transitional vegetation zone between

warm-temperate deciduous broad-leaved forest and mid-

subtropical evergreen broad-leaved forest. Evergreen-de-

ciduous broad-leaved mixed forest dominates this region

with a rich diversity of plant species. There are about 113

families and more than 600 species of seed plants (Dong

et al. 2007). Through long-term tending and natural suc-

cession, the restoration of the natural plant flora and the

formation of zonal plant community types have made the

Purple Mountains a scientifically important deciduous

evergreen broad-leaved forest in the northern subtropics of

China (Dong et al. 2011).

The data used in this study (Table 1) include QuickBird

images acquired in 2004 (one 0.6-m resolution panchro-

matic band and four 2.4-m resolution multispectral bands),

IKONOS images acquired in 2009 (one 0.8-m resolution

panchromatic band and four 3.2-m resolution multispectral

bands), and 2015 WorldView2 images (one 0.5-m resolu-

tion panchromatic band and four 2.0-m resolution multi-

spectral bands). The satellite images were captured during

the growing season (June to September in the mid-latitude

regions).

Data preprocessing

The images were radiometrically calibrated using the latest

parameters (Qi and Lalasia 2014) to convert the digital

numbers (DNs) to top-of-atmosphere radiance values. The

FLAASH module in the ENVI software was used to gen-

erate surface reflectance images. Using the 2009 IKONOS

image as a reference image, we identified 100 ground

control points to perform a geometric correction using the

nearest neighbor resampling method to achieve a resolution

Fig. 1 Location of the study

area. The map on the left shows

the administrative boundary of

Nanjing City. The image on the

right is a false-color composite

of the 2015 WorldView2 image

(R: NIR band, G: red band, B:

green band) showing the study

area of the Purple Mountains
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of 0.5 m for all images. The errors after geometric cor-

rection were at the sub-pixel level. To avoid the influences

of atmospheric conditions, we selected the 2009 IKONOS

images as a benchmark and performed a pseudo-invariant

feature (PIF) normalization method to ensure radiometric

consistency among the images. We selected 7000 pixels

including low-, medium-, and high-reflectance pixels and

fitted a number of linear regression equations to achieve

relative radiometric normalization.

Fusion

Because all three sensors included panchromatic and

multispectral bands, we performed image fusion to inte-

grate the spectral and spatial information (Peng and Liu

2007). Based on the atmospherically and geometrically

corrected panchromatic bands and multispectral bands, the

PCA (Chen and Pu 2006), the Brovey transform (Tan et al.

2008; Gillespie et al. 1987), hue-saturation-value (HSV)

transform (Du et al. 2017), Gram–Schmidt (GS) transform

(Witharana et al. 2016; Huang and Gu 2010) and wavelet

transform methods (Gong et al. 2010) were implemented to

fuse the images. For the wavelet transform fusion, we

selected different wavelet basis functions and decomposi-

tion layers to determine the optimal fusion scheme.

Objective quantitative evaluation parameters including the

spectral mean values, the standard deviation, the average

gradient, the information entropy of the fused images, and

the root mean square error (RMSE) between the original

images and fused images were calculated in tandem with

subjective qualitative evaluation to evaluate the fusion

performance. The vegetation indices were generated using

the original multispectral images prior to the fusion.

Pixel-based change detection methods

NDVI difference method

Vegetation strongly absorbs red band energy and reflects

the near-infrared band energy (Yang et al. 2000). There-

fore, the vegetation indices that are calculated using the

spectral values of these two bands represent the above-

ground biomass (Coppin and Bauer 1994). We used the

vegetation index difference of bi-temporal images to obtain

vegetation cover changes. We used the NDVI images of the

three time periods, performed the relative radiometric

normalization, and generated the NDVI difference images.

Subsequently, a change detection threshold (see

Sect. Determination of the thresholds) was specified to

extract the vegetation change areas. The NDVI is defined

by Eq. (1):

NDVI ¼ qðNIRÞ � qðRÞ
qðNIRÞ þ qðRÞ ð1Þ

where q(NIR) represents the near-infrared band reflectance

and q(R) represents the red band reflectance.

MIICA

MIICA is a change detection method developed for

Landsat imagery. It is based on the calculation of four

spectral parameters including the differenced normalized

burn ratio (dNBR),the differenced NDVI (dNDVI), the

change vector (CV), and the relative change vector maxi-

mum (RCVMAX) to extract the change area from bi-

temporal images (Jin et al. 2013). However, the dNBR

could not be calculated for the images used in this study

due to the lack of short-wave infrared bands.

The Purple Mountains are under strict supervision and

control so that forest fires are rare and were therefore

ignored for the purpose of this study. Additionally, the four

parameters are independent in the calculation. Therefore,

only the latter three parameters were used for vegetation

change detection in this study. The MIICA process was

adapted and the flowchart of the application using the 2009

and 2015 images as examples is illustrated in Fig. 2.

Equation (2)–(4) are used to calculate the parameters:

dNDVI ¼ qðNIR1Þ � qðR1Þ
qðNIR1Þ þ qðR1Þ

� qðNIR2Þ � qðR2Þ
qðNIR2Þ þ qðR2Þ

ð2Þ

CV ¼
X

iðqðB1iÞ � qðB2iÞÞ2 ð3Þ

RCVMAX ¼
X

i
qðB1iÞ � qðB2iÞ

maxðqðB1iÞ; qðB2iÞÞ2

" #
ð4Þ

where 1 and 2 represent the pre-image and post-image

respectively; i = 1, 2, 3, and 4, represent the image band

numbers; q(B1i) and q(B2i) are the reflectance values of B1i

and B2i.

Table 1 Data used in this study
Satellite Wavelength (nm) Resolution (m) Acquisition date

Pan Blue Green Red NIR Pan Multi

QuickBird 450–900 450–520 520–660 630–690 760–900 0.6 2.4 2004-07-05

IKONOS 450–900 450–520 520–600 630–690 760–900 0.8 3.2 2009-06-18

WorldView2 450–900 450–520 520–600 630–690 760–900 0.5 2.0 2015-07-29
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PCA

After principal component transformation of the bi-tem-

poral images, the first and second principal component

bands containing the majority of the image information

were extracted for the difference calculation to reduce the

information redundancy. Then we enumerated the sample

pixel values of the first and second principal component

difference bands separately for the different change direc-

tions (the conversions from vegetation to water, to imper-

vious areas, and to bare land) and determined the change

pixels and change types (Byrne et al. 1980; Yuan and

Elvidge 1998; Mo et al. 2013).

SGD

The differences in the land cover types are reflected in the

pixel brightness values, the spectral curves, and the shapes

(Tso and Mather 2001). The SGD change detection method

uses a spectral gradient to quantitatively describe the shape

of the spectral curve and compares the shape differences of

the spectral curves of the bi-temporal images to distinguish

changed areas and unchanged areas. Using the spectral

gradient space instead of the traditional spectral space to

calculate the magnitude of change is a novel approach.

This method has rarely been applied to vegetation change

detection because the results are often not adequate to

directly infer the direction of vegetation change. In the

current analysis, the steps in the SGD method were the

following: (1) Generation of the spectral gradient using the

adjacent bands of the same image; and (2) Generation of

the spectral gradient vectors by combining different spec-

tral gradients and using the spectral gradient vectors of the

bi-temporal images to obtain the gradient difference vec-

tors. Their absolute values represent the change magnitude

(Chen et al. 2013). Equations (5)–(8) express the parame-

ters used in the SGD:

gðk;kþ1Þ ¼
qðkþ1Þ � qðkÞ
kðkþ1Þ � kðkÞ

ð5Þ

G ¼ ðgð1;2Þ; gð2;3Þ; gð3;4ÞÞT ð6Þ

DG ¼ G1 � G2

¼ ðg1ð1;2Þ; g1ð2;3Þ; g1ð3;4ÞÞT � ðg2ð1;2Þ; g2ð2;3Þ; g2ð3;4ÞÞT

ð7Þ

DGj j ¼
Xn

k¼1

g1ðk;kþ1Þ � g2ðk;kþ1Þ
�� �� ð8Þ

where q(k?1) and q(k) denote the spectral reflectance of the

adjacent bands k and k ? 1 respectively andk(k?1) andk(k)
are their corresponding wavelengths; g(k,k?1) denotes the

spectral gradient between the adjacent bands k and k ? 1;

G denotes the spectral gradient vector; DG is the spectral

gradient vector difference derived from the bi-temporal

images and its absolute value |DG| is the change magni-

tude. After the generation of |DG|, we extracted the change

areas using thresholds (Sect. Determination of the thresh-

olds) and masked the non-vegetation change areas. Then

we defined the areas of vegetation gain or loss based on the

dNDVI (Eq. 2). The vegetation change area with dNDVI

values less than 0 was the vegetation gain area, and the

vegetation change area with dNDVI values greater than 0

was the vegetation loss area.

Fig. 2 Flowchart depiction of the adapted MIICA. dNDVI: differ-

enced NDVI, CV: change vector, RCVMAX: relative change vector

maximum
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Determination of the thresholds

The NDVI difference method, MIICA and SGD methods

require a threshold to define the change areas. The

threshold selection directly affects the accuracy of change

detection. Since some thresholds in this study could not be

expressed in a binary format and included two change

directions (vegetation gain and loss), the traditional bina-

rization methods were not suitable. The threshold in this

study was determined using the following steps: (1) esti-

mation of the approximate value by visual inspection of the

histogram of the change magnitude images or the dNDVI

images; (2) adjustment of the value at a ± 0.01 step

interval to determine the threshold; and (3) terminating the

iteration process once the threshold resulted in the highest

matching accuracy compared to the reference data (chan-

ged and unchanged areas that were identified beforehand)

(Pu and Landry 2012). Unlike other adaptive threshold

methods, this method allows for adjusting the initial

threshold and the number of iterations according to the

specific magnitude or dNDVI images, which make the

detection results more reliable.

Accuracy assessment

We calculated the accuracy of vegetation change detection

by comparing the extracted change results with the refer-

ence samples. Due to the lack of higher spatial resolution

land cover change data or ground truth data for the corre-

sponding years, the accuracy assessment data used in this

study were visually interpreted as change or no-change

results based on the reference samples. Random points

were generated by using a stratified random sampling

strategy (Banko 1998) and we used the three stratified areas

of vegetation loss, vegetation gain and no change. We

spatially integrated the detection results, and segregate

vegetation loss and vegetation gain classes as follows. If a

pixel was identified as falling into the vegetation gain or

loss areas using any of the four methods, this pixel was

classified as vegetation gain or loss. The spatially con-

flicted pixels were classified as no-change due to their

small pixel proportion (less than 0.1% of the total study

area) to simplify the evaluation process. Thus, we gener-

ated 75 sample points in each of the three stratified areas

after the specific division (Congalton 1991). For each of the

random sample points, we visually compared the 2009

image with the 2015 image to count the number of no

change pixels and change pixels (vegetation gain and

vegetation loss). Thus, the confusion matrices were gen-

erated to derive the overall accuracy, the kappa coefficient,

the producer’s accuracy and the user’s accuracy and to

compare the performance of different detection methods.

Object-oriented change detection methods

We chose the appropriate segmentation parameters and

segmented the bi-temporal images uniformly to minimize

the effect of the differences in size, shape, area, and spatial

position of the segmented objects in the bi-temporal images

on change detection accuracy. First, the preprocessed bi-

temporal images were stacked and segmented uniformly to

ensure that the segmented objects from the bi-temporal

images corresponded to each other (one-to-one mapping).

The segmentation was performed using the Segment Only

Feature Extraction module of ENVI, including the seg-

mentation and merging processes. This is a very important

step in the process of detecting fine-scale changes in veg-

etation to separate the narrow roads and gaps inside the

forest from vegetation. Therefore, we first used a coarser

scale to segment buildings, water, and forest areas. A

subsequent segmentation was performed inside the forest

areas. Since merging was performed on the basis of the

segmented objects, a very large segmentation scale would

result in under-segmentation (Li et al. 2017). In order to

detect the small open spaces inside the forests, we set the

segmentation scale to zero and continuously changed the

merging scales. The P and R of the segmentation objects

were calculated and compared for different merging scales

to determine the optimal segmentation parameter. We

calculated P and R for merging scales in the range of 0–100

and for a segmentation scale of 0. We wanted to ensure that

P was maximized and a higher R was obtained under this

premise. P and R are defined by Eqs. (9)–(12).

p ¼ si \ sði; jÞj j
sij j ð9Þ

r ¼ si \ sði; jÞj j
sði; jÞj j ð10Þ

P ¼ 1

Ij j
Xn

i¼1

si \ sði; jÞj j ð11Þ

R ¼ 1

Ij j
Xn

i¼1

sij j si \ sði; jÞj j= sði; jÞj j ð12Þ

where p and r are the precision and recall rate of the seg-

mented object respectively, si is the segmentation object,

and s(i,j) is its matching object. P and R are the weighted

averages of the p and r values of all objects in the region

respectively.

Subsequently, homogeneous objects were generated and

the grayscale value of each pixel in the objects was

replaced by the average grayscale value of the object. The

optimal pixel-based change detection method was applied

to the segmented images. Ultimately, the same change

threshold strategy was used to extract the change regions

1748 F. Zhu et al.
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and the same accuracy assessment strategy was imple-

mented to derive the accuracy statistics.

Results

Image fusion

Three pan-sharped images were created by fusing the

multispectral bands with the panchromatic band. Through

subjective qualitative evaluation and objective quantitative

evaluation, we found that the best wavelet basis functions

were sym5, bior2.8, and coif1 for the 2004, 2009, and 2015

images, respectively. The optimum number of decompo-

sition layers was three. The objective evaluation parame-

ters of different fusion methods are presented in Table S1–

Table S2. Among them, the standard deviation, average

gradient, and information entropy represent the sharpness

and information of the fused image. The fusion result is

better when these parameter values are larger. The closer

the spectral mean to the original image, the better the

result. RMSE reflects the difference between fused image

and original image, and the smaller the value, the better the

result is. For three images, the HSV and wavelet transform

fusion results have higher information entropy. But after

considering the other parameters and subjective evaluation

criteria, we determined that the HSV fusion algorithm was

most suitable for the QuickBird image and the wavelet

transform fusion algorithm with the bior2.8 and coif1 basis

function and a three-layered decomposition strategy were

optimal for the IKONOS and WorldView2 images,

respectively. The optimum fusion results for the different

sensors are shown in Fig. 3.

Vegetation change detection results of four pixel-

based methods

Figure 4 shows the vegetation change detection results of

the four pixel-based methods. The corresponding accuracy

statistics derived from the stratified random sampling

strategy are summarized in Table 2. Locations of vegeta-

tion gain and loss from the four methods were spatially

similar and the results of SGD and MIICA were most

similar (Fig. 4).

The accuracy results (Table 2) showed that MIICA

yielded higher user’s accuracy for the vegetation change

areas but it’s producer’s accuracy was lower. This indicates

that MIICA resulted in few false detections but the omis-

sion error was slightly higher for the vegetation change

areas. The producer’s accuracy was higher for NDVI dif-

ference method than for MIICA but there were more false

detections (Fig. 5). The PCA test results were not out-

standing because the producer’s accuracy was low and the

omission error in the vegetation gain area was more than

50%. Some of the accuracy results were high for the SGD

but they were not optimal. MIICA results yielded the

Fig. 3 Image fusion results. a QuickBird image; b IKONOS image; c WorldView2 image. Left: multispectral image; middle: panchromatic

image; right: fused image (a HSV; b wavelet transform with wavelet basis of bior2.8; c wavelet transform with wavelet basis of coif1)

Integrating cross-sensor high spatial resolution satellite images to detect subtle forest… 1749
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highest kappa value, meaning the greatest consistency

between the test and actual results. Also MIICA had

highest overall accuracy. Based on these results, MIICA

was the preferred method for accurate detection, thus, it

was used for the subsequent integration with the object-

oriented detection method.

Vegetation change detection results of the object-

oriented method

When the segmentation scale was 18.2 and the merging

scale was 78.3, the buildings, water and forests could be

easily segmented (Fig. 6). For subsequent segmentation

within forest areas, the trends of P and R with the change in

the merging scale at a step of 10 are shown in Fig. 7a. The

value of P remained at 0.9 for a merging scale from 0 to 80

and then declined after 80. The P and R values for the

merging scale from 80 to 90 at a step of 1 were calculated

to see if there was a merging scale with a P value of 0.9 and

a higher R value (Fig. 7b). Although the R value increased

when merging scale was greater than 81, the P value began

to decline. So 80 and 81 proved to be better scales. Since P

is inversely related to the merging scale, in order to obtain

highest P value and higher R value to ensure that fine-scale

changes could be detected as much as possible (Zhu et al.

2015), we chose 80 as the final merging scale. The internal

segmentation results of the forest land are shown in Fig. 8.

The segmentation algorithm ideally partitioned highly

similar pixel clusters into different homogeneous objects

and accurately delineated the boundaries of the gaps inside

the forest land. Then the MIICA method was applied to the

segmented images for change detection. Since the regions

Fig. 4 Vegetation change detection results (2009 to 2015) derived from different methods. a NDVI difference method; bMIICA; c PCA; d SGD

Table 2 Accuracy assessment of the detection results derived from the four detection methods

Accuracy NDVI difference method MIICA PCA SGD

Loss Gain No change Loss Gain No change Loss Gain No change Loss Gain No change

User’s accuracy 0.844 0.754 0.892 0.974 1.000 0.830 0.818 0.950 0.674 0.860 0.870 0.853

Producer’s accuracy 0.792 0.963 0.804 0.771 0.833 0.992 0.563 0.352 0.943 0.896 0.741 0.894

Overall accuracy 0.840 0.884 0.720 0.858

Kappa 0.739 0.794 0.471 0.759
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Fig. 5 Performance

comparison between NDVI

difference method and MIICA.

a 2009 image; b 2015 image;

c NDVI difference method

detection result; d MIICA

detection result

Fig. 6 The image segmentation

results with a segmentation

scale of 18.2 and a merging

scale of 78.3. a 2009 image;

b 2009 image segmentation

result; c 2015 image; d 2015

image segmentation result
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Fig. 7 Trends of P (precision)

and R (recall rate) with the

change in the merging scale.

a Merging scale changing from

0-100 at a step of 10;

b merging scale changing from

80-90 at a step of 1

Fig. 8 Image segmentation

results for forested land using

the object-oriented image

segmentation analysis. a 2009

image; b 2009 image

segmentation result; c 2015

image; d 2015 image

segmentation result
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of the three stratifications were different in these two

accuracy verifications, stratified random sampling was

performed on object-oriented MIICA and pixel-based

MIICA again using the same method as described in

Sect. Accuracy assessment. The final detection accuracy

results are summarized in Table 3. The overall accuracy

and kappa coefficient of the object-oriented MIICA method

was higher than that of the pixel-based MIICA method.

Besides, object-oriented MIICA method had higher pro-

ducer’s accuracy for the vegetation change areas. Figure 9

shows the differences in the results of the two methods and

we can conclude that the performance of object-oriented

MIICA method was much better than that of pixel-based

MIICA method. This is attributed to the relatively regular

homogeneous areas and fewer isolated small clusters that

were generated by the object-oriented MIICA method.

Thus, object-oriented MIICA was used to map forest

vegetation changes during 2004–2015.

Vegetation changes in Purple Mountains

Figure 10 depicts vegetation change during 2004–2009 and

2009–2015 as detected by the object-oriented MIICA

method. The vegetation change areas and change rates are

presented in Table 4. From 2004 to 2009, vegetation loss

rate was relatively large at 2.20%. The vegetation loss

occurred mainly at the edges of the Purple Mountains

(Fig. 10a). During this period, the rate of the vegetation

gain was 0.90% and the increases occurred mainly at the

edges of the conservation area. A small number of vege-

tation loss areas were detected in the central portion of the

Purple Mountains from 2009 to 2015, and the rate of loss

was 0.66% (Fig. 10b). During this period, the rate of

vegetation gain was 1.36%. The increase in vegetation

cover mainly occurred at the periphery of the Purple

Mountains. The conversion from vegetation to impervious

surfaces is listed in Table 5. From 2004 to 2009, the con-

version rate from vegetation to impervious surfaces was

Table 3 Accuracy assessment

of the object-oriented MIICA

detection results

Accuracy Pixel-based MIICA Object-oriented MIICA

Loss Gain No change Loss Gain No change

User’s accuracy 0.950 0.980 0.824 0.932 0.964 0.873

Producer’s accuracy 0.809 0.762 0.974 0.872 0.841 0.957

Overall accuracy 0.880 0.907

Kappa 0.798 0.846

Fig. 9 Comparison of change

detection performance between

pixel-based MIICA and object-

oriented MIICA. a 2009 image;

b 2015 image; c pixel-based

MIICA detection result;

d object-oriented MIICA

detection result. a, b are

spatially collocated; c, d show

the change detection results

produced by different methods
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large, accounting for 79% of the total vegetation loss areas.

From 2009 to 2015, the conversion rate from impervious

surfaces to vegetation accounted for 84% of the total

vegetation gain and was the main reason for the vegetation

gain during this period.

Discussion

Change detection algorithms

Among the four pixel-based change detection methods, the

detection accuracy of PCA was relatively low and its

omission error of the change area was large, especially the

omission error of the vegetation gain area. This meant that

many change pixels were identified as unchanged areas by

PCA. A potential explanation for this high omission error is

the difference in the radiometric sensitivity of the same

ground objects for the different sensor observations. Thus,

it is often not effective to use only spectral information for

change detection. The advantage of the PCA method is

integrating a few of the original bands and generating

principal components that contain the majority of the

information variance of the original bands to simplify the

calculation and to facilitate the subsequent analyses (Tef-

fera et al. 2018).

The SGD method outperformed PCA. That is because,

although the spectral values of the same object in different

images might differ, the spectral shapes are similar (Chen

et al. 2013), which enables SGD for removing spurious

Fig. 10 Vegetation changes in the Purple Mountains during 2004–2009 (a) and 2009–2015 (b)

Table 4 Area and rate of

change in vegetation in the

Purple Mountains during

2004–2015

Year Loss Gain

Area (m2) Rate of change (%) Area (m2) Rate of change (%)

2004–2009 644,947 2.20 264,565 0.90

2009–2015 196,086 0.66 397,544 1.36

Table 5 Conversion between

vegetation and impervious areas

in the Purple Mountains during

2004–2015

Year From vegetation to impervious areas From impervious areas to vegetation

Area (m2) Rate (%) Area (m2) Rate (%)

2004–2009 506,660 78.56 178,830 67.60

2009–2015 129,549 66.07 334,862 84.23
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changes caused by various interference factors. The |DG|
image obtained by the SGD method is a change magnitude

image and the change regions can be extracted from it by

specifying appropriate thresholds. The changed regions

encompass the conversion between various land use or land

cover types. Thus, it is necessary to separate the non-

vegetated areas from the change areas to determine specific

vegetation changes. The process is relatively complicated.

We set the threshold using the NDVI values of the bi-

temporal images to remove the areas where no vegetation

change had occurred.

The MIICA and NDVI difference methods utilize veg-

etation indices to address the problem of cross-sensor

analysis. dNDVI quantifies the magnitude of biomass

change and reduces error caused by terrain and atmo-

spheric interferences (Apan 1997). The detection perfor-

mance was better for MIICA than for the NDVI difference

method (Fig. 5). NDVI difference method classified some

unchanged pixels into vegetation gain area. Compared to

the NDVI difference method, MIICA included two addi-

tional parameters, viz. CV, which represents the total

spectral change between the two images and RCVMAX,

which detects relative change, quantifies the magnitude of

relative change, and describes a general change pattern

(Diao et al. 2018). This filters out some of the pixels whose

dNDVI values reached a certain range but did not indicate

change in the land cover type. Thus, MIICA performed

better than the NDVI difference method for vegetation

change detection. However, two additional thresholds must

be specified for MIICA, which may increase the omission

error of the vegetation change or result in other uncer-

tainties. The NDVI difference method is the simplest and

most straightforward approach for vegetation change

detection and the results are reliable in most cases. To

retain spectral fidelity, in this study, the NDVI calculation

was implemented by using original bands rather than fused

bands. Therefore, the initial spatial resolution of the

detected vegetation change was at the resolution of 2 m.

Unlike the NDVI difference method, MIICA removed

some pseudo-change area and, most importantly, it pre-

served the high spatial resolution of the detected vegetation

changes because the indices CV and RCVMAX were cal-

culated from the fused bands rather than the original bands.

In change detection studies, it is usually required that the

omission error be minimized without forcing a large

commission error. If we consider the small difference in

the omission errors between MIICA, NDVI difference

method, and SGD, the simplicity of the methods, and the

preserved resolution of the detection results, we conclude

that MIICA proved to be the most suitable method of the

four pixel-based change detection methods.

Combination of the object-oriented method and MIICA

yielded the most accurate depiction of vegetation change in

this study. This method segments and merges objects with

similar spectral features, a process that greatly reduces the

salt-and-pepper noise (Sun et al. 2011). On the other hand,

the setting of the threshold for direct change detection was

not completely accurate and pixels at the edge of the

threshold range likely produced different results (change or

no change) due to small changes in the threshold. However,

when these pixels aggregated with other pixels as an

object, the impact of threshold change was minimized.

Therefore, detection accuracy was greater than that

achieved when using only the pixel-based MIICA. The

pixel-based MIICA is based on a simpler process and is

more suitable for change detection using low- and medium-

resolution remotely sensed images. In contrast, the object-

oriented MIICA is more appropriate for the detection of

fine changes from high spatial resolution images.

Vegetation changes in the Purple Mountains

From 2004 to 2009, the land type conversion at the edge of

the Purple Mountains mainly consisted of the transforma-

tion of farmland and forest into lakes and buildings

(Fig. 11a–c). This was the main cause of vegetation loss

during this period and the increase in construction was the

most important factor (Table 5). In other words, during this

period, the development occurred mostly at the periphery

of the Purple Mountains. In spite of this, in some peripheral

areas, vegetation cover increased. The largest area was

located in the southwest corner of the Purple Mountains

(Fig. 11d), which evolved from an architectural area into

the present Meihua Valley scenic spot.

During 2009–2015, the available land (mainly used for

vegetable production) at the foot of the mountains

decreased and coupled with the increase in people’s

awareness of environmental protection and the greening

concept, vegetation coverage in and around the building

area increased (Fig. 12d, e). This occurred because the local

administrative agency of the scenic location dismantled

some illegal buildings or dispersed aboriginal houses and

implemented re-greening projects on those sites to improve

the landscape aesthetics. This was an important reason for

the large increase in the vegetation area (Table 5). During

this period, the vegetation loss in the interior of the

mountains was attributed to the expansion of buildings to

meet tourism needs, such as the west and south of the Dr.

Sun Yat-sen Mausoleum (Fig. 12a, b). This also included

vegetation loss near roads and buildings (Fig. 12c). These

effects should be evaluated by the management agencies

and management guidelines should be developed. These

might include strengthening vegetation protection and

restoration around the ‘‘Wild Road’’ for climbing, improv-

ing vegetation management alongside roads, and reducing

the destruction of vegetation by tourists. These measures
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could prevent additional vegetation losses. In addition,

there may be some violations of regulations regarding the

expansion of buildings and managers should focus on this

problem. Relevant departments should also follow the

ecological priority principle in the forest management

process and appropriately weigh the ecological and eco-

nomic needs of forestry. Management should be guided by

the relationships between forestry development, society,

environment, and nature (Zhang and Du 2007).

We noticed some disadvantages of the proposed

method: (1) The detection methods used in this study can

only detect changes in vegetation and non-vegetation

classes. Changes in specific vegetation types (such as

grassland, shrub, and woodland) need to be determined

based on visual discrimination of the original image or the

use of other classification methods. (2) The determination

of change threshold was achieved by adjusting the initial

threshold and number of iterations based on the reference

data. This method proved to be not only time-consuming

but the results of the threshold setting were often affected

by the selection of the representative change regions.

Therefore, the method for setting the threshold requires

Fig. 11 Vegetation change

areas in the Purple Mountains

during 2004–2009 (left: 2004

image; middle: 2009 image;

right: detection result)

Fig. 12 Vegetation change

areas in the Purple Mountains

during 2009–2015 (left: 2009

image; middle: 2015 image;

right: detection result)
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improvement for obtaining reliable vegetation change

detection results. (3) Current research results do not clearly

indicate the specific reasons for vegetation loss. In order to

provide more reliable data and recommendations for sus-

tainable management of scenic locations, in future

research, we will develop automatic methods to identify

and quantify areas of specific conversion types (e.g., paths,

buildings).

Conclusions

Our accuracy assessment results indicated that the MIICA

was the best suited method for detecting vegetation change

among the four pixel-based direct change detection meth-

ods. The reasons were the combination of the vegetation

indices and other spectral parameters. Furthermore, the

proposed object-oriented MIICA was the best method for

detection of change using high spatial resolution images.

During 2004–2009, the vegetation changes occurred

mainly at the periphery of the Purple Mountains. The

demand for tourism development was an important reason.

During 2009–2015, the greening work around the con-

struction areas increased the area of vegetation cover at the

periphery of the area. However, some vegetated areas

declined in extent near roads and buildings in the central

Purple Mountains.

The subtle vegetation change information derived from

high spatial resolution satellite images informed the local

agencies of management effectiveness and provided data

for use in strengthening tourism management, land use

monitoring, and environmental education to prevent further

vegetation disturbances.
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