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Abstract We model the response of nanoscale Ag prolate

spheroids to an external uniform static electric field using

simulations based on the discrete dipole approximation, in

which the spheroid is represented as a collection of polar-

izable subunits. We compare the results of simulations that

employ subunit polarizabilities derived from the Clausius–

Mossotti relation with those of simulations that employ

polarizabilities that include a local environmental correc-

tion for subunits near the spheroid’s surface [Rahmani et al.

Opt Lett 27: 2118 (2002)]. The simulations that employ

corrected polarizabilities give predictions in very good

agreement with exact results obtained by solving Laplace’s

equation. In contrast, simulations that employ uncorrected

Clausius–Mossotti polarizabilities substantially underesti-

mate the extent of the electric field ‘‘hot spot’’ near the

spheroid’s sharp tip, and give predictions for the field

enhancement factor near the tip that are 30 to 50% too small.
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The electrical and optical properties of noble metal nano-

particles have attracted considerable scientific interest for

many decades. Over a century ago, for example, Mie [1]—

building on even earlier work by Lorenz [2] and possibly

others—attributed the colors of colloidal suspensions of Au

nanoparticles [3] to the nanoparticles’ visible-wavelength

optical scattering properties. Interest in the optical prop-

erties of noble metal nanoparticles has risen dramatically in

recent years with the recognition that these properties, if

understood in sufficient detail, can be harnessed to create

nanoscale photonic devices and sensors.

The discrete dipole approximation [4, 5] (also called the

coupled dipole approximation) is one of several numerical

methods that have been developed to simulate the response

of a small particle to an incident electromagnetic (EM)

field. In simulations based on the discrete dipole approxi-

mation (DDA), a nanoparticle is modeled as a regular

(typically cubic) lattice of polarizable subunits. The inci-

dent EM field induces dipole moments in each subunit;

these dipole moments in turn generate local fields that

further polarize nearby subunits. Once the subunits’

induced dipole moments are mutually self-consistent, the

electromagnetic and optical properties of the dipole lattice

are taken to mimic those of the real nanoparticle. The

assumption that only dipolar interactions among subunits

and between the subunits and the external field need be

considered, an assumption that is implicit in DDA-based

simulations, is generally thought to be a reasonable one

provided that the subunits are small enough so that the

electric field is nearly constant across an individual sub-

unit; this assumption is frequently tested by comparing the

results obtained from simulations at two or more levels of

discretization.

The connection between the lattice of dipoles and the

real nanoparticle is made through the choice of the polar-

izability tensor a of the polarizable subunits. In the original

formulation [4] of the DDA approach, a was assumed to be

an isotropic, diagonal tensor defined by the Clausius–

Mossotti (CM) relation
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a ¼ 3

4pq
e � 1

e þ 2
ð1Þ

where q is the number density of the polarizable subunits

and e is the nanoparticle’s dielectric constant; this relation

is exact for an infinite cubic lattice of subunits in a zero-

frequency external electric field [6]. For finite (nonzero)

frequency external EM fields, a radiative reaction [6] cor-

rection to the zero-frequency polarizability tensor defined

by Eq. 1 ensures that the optical theorem holds for the

dipole lattice [5]. Other finite frequency corrections to the

static polarizability given by Eq. 1 can be derived from an

analysis of the dispersion relation for electromagnetic

waves propagating along a lattice of polarizable points [7].

Real nanoparticles, of course, have surfaces, and hence

cannot be represented as infinite lattices; consequently, the

use of polarizabilities defined by Eq. 1 in DDA-based

simulations of nanoparticles represents an additional

approximation [8], one which persists even when the sub-

units are very small, which is not remediated by radiative

reaction corrections or other finite frequency corrections,

and which seems to be especially severe for materials

whose dielectric constant has a large imaginary component

[9]. Recent work [9, 10] suggests that the use of subunit

polarizabilities that properly account for the anisotropic

local environment of DDA subunits near surfaces can

increase substantially the accuracy with which highly

averaged far-field quantities, such as absorption and scat-

tering cross-sections, can be computed using DDA-based

methods. In this letter, we employ these corrected polar-

izabilities in DDA-based simulations of nanoscale Ag

prolate spheroids in homogeneous static electric fields; we

find that the new polarizabilities, which include a local

environmental correction (LEC) to the CM polarizabilities,

also substantially improve the description of spatially

resolved near-field quantities, such as localized electric

field enhancement factors, computed in these simulations.

We begin by summarizing some exact results obtained

by solving Laplace’s equation for a homogeneous prolate

spheroid in a uniform static external field [11, 12]; these

are the benchmarks against which we assess the DDA-

based simulations. We consider a prolate spheroid with

major semiaxis c (henceforth assumed to coincide with the

space-fixed z axis) and minor semiaxis a. The surface of the

spheroid is one member of a family of confocal surfaces

defined by the parameter n. These surfaces satisfy the

equation

x2 þ y2

a2 þ n
þ z2

c2 þ n
¼ 1; ð2Þ

the surface of the spheroid corresponds to n = 0. If such a

spheroid, with dielectric constant e, is immersed in a medium

with dielectric constant em and exposed to a uniform static

electric field Eext ¼ E0ẑ parallel to the space-fixed z axis,

the electrical potential at any point outside the spheroid is

given by

Uout ¼ �E0z 1 � sLzðnÞ
1 þ sLzð0Þ

� �
ð3Þ

where s = (e - em)/em and Lz(n) is the dimensionless

integral

LzðnÞ ¼
a2c

2

Z1

n

du

ðu þ a2Þðu þ c2Þ3=2
: ð4Þ

The integral Lz(0) can be computed analytically:

Lzð0Þ ¼
1 � e2

e2
�1 þ 1

2e
ln

1 þ e

1 � e

� �
ð5Þ

where the spheroid’s eccentricity e ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 � ða=cÞ2

q
: The

potential inside the spheroid is given by

Uin ¼ � E0z

1 þ sLzð0Þ
: ð6Þ

It is clear from this equation that the field inside the

spheroid is uniform and parallel to the external field. In

addition, the polarization P (dipole moment per unit

volume) inside the spheroid is uniform and is given by

P ¼ e0ðe � 1Þ
1 þ sLzð0Þ

E0ẑ ð7Þ

where e0 is the absolute permittivity of free space.

The electric field outside the spheroid is E ¼ �rUout;
for points on the z axis,

E ¼ 1 þ s

1 þ sLzð0Þ
a2c

zðz2 þ a2 � c2Þ � LzðnÞ
� �� �

E0ẑ:

ð8Þ

The quantity in square brackets in this equation is the

on-axis electric field enhancement factor, which we

henceforth denote as F. It has the value Ftip = (1 ? s)/

[1 ? sLz(0)] at the spheroid’s tip (x, y, z) = (0, 0, c), and

approaches F = 1 as z ? ?. Large Ftip values can be

achieved when the quantity 1 ? sLz(0), which is controlled

by the spheroid’s aspect ratio c/a and dielectric constant, is

small in magnitude.

We now turn to our DDA-based simulations. The tech-

nical aspects of these simulations have been extensively

reviewed [5, 13]; we therefore report only those computa-

tional details that are specific to the simulations presented

here. We model a spheroid as a collection of N contiguous

cubic subunits, with edges of length d, centered at the

positions (x, y, z) = (nxd, nyd, nzd); here, (nx, ny, nz) is an

integer triple that satisfies c2ðn2
x þ n2

yÞ=a2 þ n2
z � n2

max;

where nmax is an integer that determines the discretization

level of the spheroid. The edge length d is chosen so that the

Nanoscale Res Lett (2010) 5:592–596 593

123



volume enclosed by the collection of cubic subunits is equal

to the spheroid volume. The linear algebraic equations that

determine the dipole moments mj of the individual subunits

(here j is an index that distinguishes individual subunits) are

solved using the complex-arithmetic implementation of the

GMRES algorithm described by Frayssé et al. [14]; we ter-

minate the algorithm and record the dipole moments mj

once the normwise backward error drops below 10-6. We

obtain the wavelength-dependent dielectric function of Ag

via linear interpolation of the data points compiled by

Lynch and Hunter [15]; as our main goal in the present work

is not to provide results for comparison with experiment,

but to compare the accuracy of the results obtained in

simulations with and without the local environmental cor-

rection to the polarizabilities, we neglect finite-size cor-

rections to the dielectric constant that arise from electronic

scattering from the spheroid surface [16]. Henceforth, we

set em = 1 (corresponding to vacuum as the medium sur-

rounding the spheroid) and E0 = 1 au; all of the results we

report are scaled by 1/E0, so the numerical value of E0 is

ultimately irrelevant.

First, we examine the polarization P induced in a

metallic nanoparticle by a uniform static external electric

field. We consider a prolate spheroid with a = 10 nm,

c = 40 nm, and dielectric constant e = 12.26 ? 0.84i

(corresponding to an excitation wavelength of k & 570

nm). For this aspect ratio and dielectric constant, the

quantity 1 ? sLz(0) is purely imaginary and small in

magnitude: 1 ? sLz(0) & 0.0633i. We use the DDA to

simulate this spheroid at several levels of discretization,

ranging from N = 6041 subunits (d = 1.405 nm) to

N = 24679 subunits (d = 0.879 nm). We divide the dipole

moment mj of each subunit by the subunit volume d3 to

obtain the polarization Pj for each subunit; we then divide

the magnitude of this vector by the magnitude of the exact

polarization vector defined in Eq. 7 to obtain a dimen-

sionless relative polarization ~Pj for each subunit. This

quantity has the value ~Pj ¼ 1 when the magnitude of a

subunit’s dipole moment mj is consistent with the exact

uniform polarization given by Eq. 7.

For DDA-based simulations employing CM polariz-

abilities, Fig. 1 shows how the mean and standard devia-

tion of ~Pj; evaluated over the N subunits in a given

spheroid, depend on the subunit edge length d. We see that

for all of the spheroids considered here, the mean ~Pj value

differs considerably from the value ~Pj ¼ 1. For each

spheroid, the standard deviation of the ~Pj values is about

0.2, indicating that the polarization within the spheroid is

rather nonuniform—in contrast to the exact result given by

Eq. 7—and does not become more uniform as the subunits

become smaller; for two of the spheroids, Fig. 2 depicts

graphically the large subunit-to-subunit variations in ~Pj that

are observed using CM polarizabilities. By comparison,

when we use the subunit polarizabilities of [8] that include

the LEC, our DDA-based simulations produce subunit

dipole moments that give ~Pj ¼ 1 for each subunit in the

spheroid, indicating that the magnitudes of the dipole

moments are in exact agreement with Eq. 7. This is not

much of a surprise, because the corrected polarizabilities

given by Rahmani et al. [8] are defined so that, when used

in DDA-based simulations, they reproduce exactly the
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Fig. 1 Mean (boxes) and SD (circles) of the relative subunit

polarizations ~Pj; as a function of subunit edge length d, for DDA-

based simulations of a prolate Ag spheroid with semiaxes a = 10 nm

and c = 40 nm; the simulations employ uncorrected CM polariz-

abilities

Fig. 2 Relative polarizations ~Pj derived from DDA-based simula-

tions of a prolate Ag spheroid with semiaxes a = 10 nm and

c = 40 nm; the simulations employ uncorrected CM polarizabilities.

Each subunit is represented by a square colored according to the

relative polarization scale shown at the bottom of the figure. The

upper panel gives the results for a spheroid modeled using N = 6041

subunits of edge length d = 1.405 nm; the lower panel gives the

results for N = 24679 subunits of edge length d = 0.879 nm. Only

subunits with x = 0, y C 0, and z C 0 are shown
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position-dependent polarization inside an object immersed

in a static external electric field [8, 9]. What Figs. 1 and 2

show is that DDA-based simulations that use CM polar-

izabilities may fail in this regard, and that this failure is not

simply a result of the discretization that necessarily

accompanies the DDA.

We now examine the near-field properties of the Ag

nanoparticle, focusing on the localized enhancement of the

applied electric field near the nanoparticle’s surface. Fig-

ure 3a compares the magnitude |F| of the exact on-axis

electric field enhancement factor F [which is a complex

quantity because e is complex; see Eq. 8] near the spher-

oid’s sharp tip with the DDA-based results obtained for

N = 24679 subunits using both CM and LEC polarizabil-

ities. The enhancement factor computed using LEC po-

larizabilities is in good agreement with the exact result,

even at points within 0.4 nm (which is less than one-half of

the subunit separation d) of the spheroid’s surface (the

electric field varies discontinuously across the spheroid’s

surface, and no DDA-based simulation will be able to

model this discontinuous change; it is therefore unreason-

able to expect these simulations to give accurate |F| values

just outside the spheroid’s surface). By contrast, the sim-

ulation that employs CM polarizabilities substantially

underestimates |F|. In Fig. 3b, we show how the values of

|F| computed at z = 41 nm (1 nm away from the sharp tip)

vary with d over the range of discretizations considered

here; although the |F| values computed using CM polariz-

abilities vary slightly as d decreases, it appears that very

small subunits will be needed before the CM result

approaches the exact one. On the other hand, the |F| values

computed using LEC polarizabilities are within a few

percent of the exact result at all levels of discretization.

To gain more insight into the relative performance of

DDA-based simulations employing CM and LEC polariz-

abilities, we use the simulations to compute the electric

field enhancement factor in the vicinity of the spheroid’s

sharp tip, and compare these enhancement factors to ref-

erence results obtained by numerically differentiating the

exact electrical potential Uout defined in Eq. 3. To partially

mitigate the discretization effects that are inherent in DDA-

based simulations, we rotationally average the field

enhancement factor obtained from these simulations by

computing it on ten evenly spaced dihedral planes con-

taining the space-fixed z axis and then averaging the

enhancement factors obtained for each dihedral plane.

Fig. 4 shows, for N = 24679 subunits, how the magni-

tudes of the enhancement factors computed using DDA-

based simulations compare with the reference results

derived from Eq. 3. Although neither of the DDA-based

simulations can predict accurately the field enhancement

factors at the surface of the spheroid (because the electric

field varies discontinuously across the spheroid’s surface,

as previously noted), the shape, size, and internal structure

of the spheroid’s near-field hot spot are modeled fairly well

by the simulations that employ LEC polarizabilities. The

DDA-based simulations that employ CM polarizabilities,

by contrast, yield a hot spot that is too small and whose

peak intensity is too low.

In summary, we have modeled the response of a nano-

scale Ag prolate spheroid to an external electric field using

DDA-based simulations that employ subunit polarizabili-

ties that either include or omit a local environmental cor-

rection. We invoke the electrostatic approximation, in

which the incident field is assumed to be spatially uniform

and static, but the spheroid’s dielectric constants is taken

from the wavelength-dependent dielectric function of bulk

Ag; this allows us to compare the predictions of the DDA-

based simulations to exact results obtained by solving

Laplace’s equation for prolate spheroids in a uniform static

external field. We have chosen a dielectric constant for the
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Fig. 3 Magnitude of F, the on-axis electric field enhancement factor,

for a prolate Ag spheroid with semiaxes a = 10 nm and c = 40 nm.

a Dependence of |F| on position z; the point z = 40 nm is at the

spheroid’s sharp tip. Solid line gives the exact result of Eq. 8; boxes
and circles give the results of DDA-based simulations with

N = 24679 subunits employing LEC and CM polarizabilities,

respectively. b Dependence of |F| at z = 41 nm on the edge length

d of the DDA subunits. The dotted line at |F| = 102.7 gives the exact

result of Eq. 8; boxes and circles give the results of DDA-based

simulations employing LEC and CM polarizabilities, respectively
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spheroid that maximizes the electric field enhancement

factor at the spheroid’s sharp tip. The predictions of DDA-

based simulations that employ LEC polarizabilities are

much closer to the exact results than are those of DDA-

based simulations that employ CM polarizabilities; simu-

lations using CM polarizabilities yield a near-field hot spot

that is too small and field enhancement factors that are too

low. We therefore conclude that DDA-based simulations of

metallic nanoparticles that employ uncorrected CM polar-

izabilities may give inaccurate predictions of the particle’s

spatially resolved near-field properties, even at locations

some distance away from the particle’s surface.
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