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Abstract A field-driven bending method is introduced in

this paper according to the coordinate transformation

between straight and curved coordinates. This novel

method can incorporate with the periodic boundary con-

ditions in analysis along axial, bending, and transverse

directions. For the case of small bending, the bending strain

can be compatible with the beam theory. Consequently, it

can be regarded as a generalized SLLOD algorithm. In this

work, the bulk copper beam under bending is analyzed first

by the novel bending method. The bending stress estimated

here is well consistent to the results predicted by the beam

theory. Moreover, a hollow nanowire is also analyzed. The

zigzag traces of atomic stress and the corresponding 422

common neighbor type can be observed near the inner

surface of the hollow nanowire, which values are increased

with an increase of time. It can be seen that the novel

bending method with periodic boundary condition along

axial direction can provide a more physical significance

than the traditional method with fixed boundary condition.

Keywords Molecular dynamics � Field-driven �
Hollow nanowire � Bending � SLLOD algorithm

Introduction

The nano-scale mechanical properties become important

since the size of electrical components is successively

reduced for the portable convenience [1, 2]. Most of studies

focused on mechanical properties related to the tension and

compression. The problems of bending are actually met

more frequently although it is composed by tension and

compression. The bending tests of nanomaterials by using

atomic simulation were widely applied. Liu et al. [3]

simulated the pure bending of defect-free Al single crystals

to investigate dislocation nucleation from free surfaces.

They found that dislocation nucleation is not well repre-

sented by a critical value of the resolved shear stress but is

reasonably well represented by the critical stress-gradient

criterion. On the other hand, the size effects were also

discussed widely. Miller and Shenoy [4] found that the

surface elastic constant is the same order as the bulk elastic

constant. The surface effect was also discussed in the

bending case.

Unlike the case of tensile or compression tests of

nanowire (NW) or nanofilm (NF) where the periodic

boundary conditions (PBCs) were applied along the axial

direction to remove the size effect, almost all the bending

simulations took the ends of nanowire or nanofilm as fixed

boundary conditions (FxBCs) [3]. The FxBC is essentially

inducing the size effects into the simulated objects. From

the viewpoint of thermodynamics, the fixed atoms are

viewed as zero velocities, and, thus, zero temperature at the

fixed ends. In other words, all thermodynamic variables

involving atom velocities are not well defined at the fixed

boundary.

For the purpose of the computational efficiency, there

are many methods to improve the computational speed.

One of the methods is to use the synthetic system instead of
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real system. For example, Nose–Hoover algorithm [5–7],

the synthetic thermostat variable generates the NVT

ensemble more stably and efficiently than the rescaled

velocity method [8], the latter cannot generate the NVT

ensemble exactly. Moreover, the synthetic system usually

combines the physical response into the equations of

motion, thus can prevent the discontinuous trajectory of

atoms and save the time to do the local equilibrium.

Non-equilibrium molecular dynamics (NEMD) can be

described as two representations [9]. One is the boundary-

driven (BD) representation, the other is the field-driven

(FD) representation. The FD method is belonging to the

synthetic system. The BD method was used to calculate

the thermal transport coefficients while the FD method

was used to calculate the mechanical ones. One can

mathematically transform the non-equilibrium boundary

conditions for a thermal transport process into a

mechanical field. The two representations of the system

are said to be ‘‘congruent’’. Almost all FD methods can

combine with PBC while BD methods usually combine

with FxBCs. In addition, since the non-equilibrium

response is reflected in the equations of motion for FD

method, it is no need to use the stepwise equilibrium-non-

equilibrium cyclic driven that usually used in the BD

method. Thus the FD method can be more efficient than

BD method.

From the above reasons, a novel-bending algorithm is

proposed and investigated in this paper. Based on the

coordinate transformation from flat coordinate to curved

one, the straight material is transformed to the curved one.

The method belongs to FD method, and can be viewed as

the generalized SLLOD algorithm [9]. It also removes the

fixed atoms generally used at FxBCs so that all thermo-

dynamic variables involving atom velocities can be defined

everywhere. The method for the bending algorithm is

introduced in ‘‘Methodology’’ section. ‘‘Numerical Tests’’

section shows some numerical tests for both macroscopic

and microscopic systems. Finally, it is concluded in

‘‘Conclusion’’ section.

Methodology

The Coordinate Transformation

For a tension simulation, one may view the stretch as a

coordinate transformation described as

x0 ¼ x; y0 ¼ y; z0 ¼ 1

a
z: ð1Þ

The Jacobian and inverse Jacobian are
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From Fig. 1, the original straight material that has length

L in the (x,y,z) coordinate transforms to (x0,y0,z0) coordinate.

In the view of (x0,y0,z0) coordinate, the straight material has

a length of aL. The factor 1/a of the transformation can be

viewed as the factor of stretch. One can set the coordinate

of next time (x(t),y(t),z(t)) to be equal to the coordinate

(x0,y0,z0), thus the dynamical, uniform, and field-driven

stretch can be performed.

From the above idea, one can search a coordinate

transformation for the bending purpose. For the simplest

bending case, one may consider the curved axis x0 as a

quadratic curve of the form ~y ¼ a~x2 (see Fig. 2). The slope

at x0 can be obtained by

tan h ¼ d

d~x
~yð~x ¼ x þ dÞ ¼ 2aðx þ dÞ; ð3Þ

where d is a horizontal distance between x and x0.
In order to satisfy the assumption of ‘‘a plane normal to

the axis remains a plane normal to the curved axis after

bending’’ in the beam theory [10], the y0 axis is set to be

normal to the curved axis x0. Thus for an arbitrary point

P(x,y) = P(x0,y0), the coordinate transformation can be

obtained and given by

x0 ¼
Z xþd

0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þð2axÞ2

q
dx

¼1

2
ðxþdÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ½2aðxþdÞ�2

q
þ 1

4a
sinh�1½2aðxþdÞ�; ð4Þ

y0 ¼ y � aðx þ dÞ2

cos h
; ð5Þ

z0 ¼ z: ð6Þ

The distance d can be evaluated by the assumption that

the normal at x0 is orthogonal to the tangent at x0, i.e.,

fððxþdÞ;aðxþdÞ2Þ�ðx;yÞg � ð1;2aðxþdÞÞ¼0

)d3þ3xd2þ 3x2þ 1

2a2
� y

a

� �
dþ x3�xy

a

� �
¼0:

ð7Þ

It is a cubic equation having three roots. The

discriminant D can be used to check the roots [11],

D ¼ 1

16a4
x2 þ 1

27a3

1

2a
� y

� �3

: ð8Þ
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For D \ 0, there are three different real roots; for D = 0,

there are triple or double real roots; and for D [ 0, there is

only one real root and two imaginary roots. The geomet-

rical condition requests that the distance d is a real root,

thus D must be greater than zero. One can see that if we set

y\ 1
2a; then D must be greater than zero. Thus the condition

y\ 1
2a is selected as a limit range of the coordinate

transformation.

For a very small deflection, i.e., a2 ! 0; the Eqs. 3–7

can be reduced as

cos h ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 þ 4a2ðx þ dÞ2

q � 1; ð9Þ

x0 ¼
Z xþd

0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 þ ð2axÞ2

q
dx �

Z xþd

0

dx ¼ x þ d; ð10Þ

y0 ¼ y � aðx þ dÞ2

cos h
� y � aðx þ dÞ2; ð11Þ

z0 ¼ z; ð12Þ

d � 2axy

1 � 2ay
: ð13Þ

Thus the coordinate transformation and inverse

transformation can be obtained,

x0 ¼ x

1 � 2ay

y0 ¼ y � a
x

1 � 2ay

� �2
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8>>>>><
>>>>>:
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ð14Þ

And the corresponding Jacobian and inverse Jacobian

are

J ¼

1
1�2ay

2ax
ð1�2ayÞ2 0

� 2ax
ð1�2ayÞ2 1 � 4a2x2

ð1�2ayÞ3 0

0 0 1

2
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3
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;

ð15Þ

J�1 ¼
1 � 2ay0 � 6a2x02 �2ax0 0

2ax0 1 0

0 0 1

2
64

3
75;

J�1
�� �� ¼ 1 � 2ay0 � 2a2x02:

ð16Þ

It can be seen that Jj j J�1
�� �� ¼ 1:

After constructing the J and J-1, the bending simulation

can be performed as Fig. 3. The coordinate (x,y,z) is

transformed to (x0,y0,z0) with the curvature-related coeffi-

cient a. Thus the simulated system is curved in the view-

point of (x0,y0,z0) coordinate. The (x0,y0,z0) can then be taken

as the coordinate at next time step to perform the bending

dynamic simulation.
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z(t) = z'

x(t) = x', 

y(t) = y' 1 
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aL 

J 
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Fig. 1 Tension/compression by

using coordinate transformation.

The coordinate (x,y,z) is

transformed to (x0,y0,z0) with

scale 1/a along z0-direction.

Thus the length L becomes aL in

the (x0,y0,z0) scale. The (x0,y0,z0)
can then be taken as the

coordinate at next time step to

perform the tension/

compression dynamic

simulation

d
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θ
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Fig. 2 Curved coordinate transformation between coordinates (x,y,z)

and (x0,y0,z0). The point P is located at (x,y) in the flat coordinate while

at (x0,y0) in the curved one. The y0 axis is turned with h refers to the

vertical direction and perpendicular to x0 axis. The distance between x
and x0 in the horizontal plane is d

x(t)=x' x 

x' 

y,y' y(t)=y' 

Fig. 3 Schematic diagram of bending by using coordinate transfor-

mation. The coordinate (x,y,z) is transformed to (x0,y0,z0) with the

curvature-related coefficient a. Thus the simulated system is curved in

the (x0,y0,z0) scale. The (x0,y0,z0) can then be taken as the coordinate at

next time step to perform the bending dynamic simulation
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The Bending Strain

For the curvature, it can be shown that

j ¼ d2~y=d~x2

½1 þ ðd~y=d~xÞ2�3=2

�����
~x¼xþd

¼ 2a

f1 þ ½2aðx þ dÞ�2g3=2
� 2a:

ð17Þ

Note that the curvature is independent of coordinates; it

is convenient to characterize the bending status. For the

displacement ux = x0–x = d and uy = y0–y = –a(x ? d)2,

the strain components can be obtained

exx ¼
oux

ox
¼ 2ay

1 � 2ay
� 2ayð1 þ 2ayÞ � 2ay ¼ jyð� jy0Þ;

ð18Þ

eyy ¼
ouy

oy
¼ � 4a2x2
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� 0; ð19Þ
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1

2
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� �
¼ 0: ð20Þ

And the volume change can be calculated as

DV ¼
Z L=2

�L=2

Z b=2

�b=2

Z c=2

�c=2

ðexx þ eyy þ ezzÞdxdydz

� 1

2
jxy2z

����
L=2;b=2;c=2

�L=2;�b=2;�c=2

¼ 0; ð21Þ

where L, b, and c are the length, width, and depth of the

beam, respectively. Thus the volume of the beam can be

viewed as no change after bending. At y = 0, the axial

strain exx = 0, thus the axis x0 can be considered as centroid

axis or neutral surface. The linear relation between exx and

y is also consistent with the assumption of beam theory

[10]. For exy = 0, it is also conformed to the assumption

that plane sections initially normal to the beam axis remain

plane and normal to that axis after bending. The transverse

strain eyy � 0 also meets the assumption of beam theory.

Thus the model can be used to verify the suitability of

beam theory in the nanoscale model with slight bending.

The SLOOD Algorithm

Let a(t) be a function of time t, the rate of displacement

gradient tensor can be written as

r _uðx; tÞ ¼

2 _aðtÞy
½1�2aðtÞy�2

2 _aðtÞx½1þ2aðtÞy�
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0 0 0

2
64

3
75:

ð22Þ

During the motion of bending, a particle i can

experience a velocity

vbend ¼
Z x

0

dx � r _u

����
x¼xi

¼ du

dt

����
x¼xi

¼ 2 _aðtÞxiyi

½1�2aðtÞyi�2
� _aðtÞx2

i ½1þ2aðtÞyi�
½1�2aðtÞyi�3

0
h i

;

ð23Þ

where xi is the position of particle i. Thus the equations of

motion for the position of atom i can be written as

_xi ¼
pi

mi
þ
Z x

0

dx � r _u

����
x¼xi

: ð24Þ

By using the mean value theorem for vector-valued

functions [12], the above equation can be rewritten as

_xi ¼
pi

mi
þ xi � r _Uðxi; tÞ; ð25Þ

where r _Uðx; tÞ ¼
R 1

0
dkr _uðkx; tÞ:

Assuming the equation of motion for the conjugate

momentum induced by the bending can be written as

_pi ¼ Fi � pi � r _Uðxi; tÞ; ð26Þ

where pi, Fi, and mi are the conjugate momentum, force,

and mass, respectively, of particle i. Equations 25 and 26

are one example of the general NEMD equations of motion

_xi ¼
pi

mi
þ CiFeðtÞ; ð27Þ

_pi ¼ Fi þ DiFeðtÞ; ð28Þ

where Ci and Di are the phase variables coupling of the

field Fe(t) to the system. Equations 25 and 26 can be

reduced to original SLLOD algorithm if the rate of dis-

placement gradient tensor is independent of coordinate [9].

Thus Eqs. 25 and 26 can be viewed as the generalized

SLLOD algorithm. Note that Eqs. 25 and 26 can also be

used in the case with large deformation.

Periodic Boundary Conditions

Since the curved coordinate and flat coordinate can be

transformed to each other at each time step, one can

transform the curved system to rectangular one, and then

the PBCs can be applied (see Fig. 4). After the PBCs are

applied, the atomic positions are restored to the curved

coordinates and do the simulation at next time step.

The minimum image criteria (MIC) can also be imple-

mented. As shown in Fig. 4, the curved cell can be trans-

formed to rectangular one by J-1. After building the image

cells, the neighbor list can be built up [8], and then the

rectangular cell is restored to the curved cell by J. The

forces between any neighbor atoms thus are calculated

according to the neighbor list and the curved positions.

In the mathematical description of the primary cell, one

can consider the position of atom i that is changed due to
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the bending essentially, i.e., the second term of Eq. 25. It is

convenient to use a shape matrix h(x,t) to describe the

primary cell so that xi(t) = si�h(xi,t), where si is the scaled

position of atom i [13]. Thus the position xi is fully

changed by h if the scaled position si is not a function of t,

and the second term of Eq. 25 becomes

_xi;bendðtÞ ¼ si � _hðxi; tÞ ¼ si � hðxi; tÞ � r _Uðxi; tÞ
) _hðx; tÞ ¼ hðx; tÞ � r _Uðx; tÞ:

ð29Þ

Equation 29 then serves the equation of motion for the

primary cell.

Numerical Tests

Bulk Copper Beam

The bulk bending simulation is first tested for verifying

the new bending method. The copper atomic system is

constructed as 20aLattice 9 10aLattice 9 10aLattice (equals

to 72.38 9 36.19 9 36.19 Å3) with 8000 atoms, where

aLattice = 3.619 Å is the lattice constant for copper. The

x-, y-, and z-directions are along to the [100], [110], and

[111] orientations, respectively. The PBCs/MIC are

imposed along the x-, y-, and z-directions, and the Morse

potential is adopted [8]. Verlet neighbor list combined with

cell-link method is used [14]. Gesar fifth-order predictor–

corrector algorithm [8] with time step 1 fs is also applied.

The atomic stress formula for the atomic system is calcu-

lated by [15]

rab
i ¼ � 1

Vi
miv

a
i vb

i �
1

2

X
i 6¼j

ou
orij

ra
ijr

b
ij

rij

" #
; ð30Þ

where rab
i is the atomic stress with component ab for atom

i; mi, va
i ; ra

ij ¼ ra
i � ra

j are the mass for atom i, a component

velocity for atom i, a component distance between atoms i

and j, respectively; and / is the potential energy. The total

stress for the whole system is

rab ¼ 1

V

X
i

Vir
ab
i ; ð31Þ

where the total volume V and atomic volume Vi are related

by

V ¼
X

i

Vi: ð32Þ

The system is equilibrated first in the NrT ensemble

with GGMT thermostat method (with five thermostat

variables) [16] at 300 K and MTK barostat method [17]

at 0 GPa during 0.1 ns. Then the system is bended with

bending rate _j ¼ 2 _a ¼ 5 � 10�8 fs-1 Å-1, which equals to

the bending rate at the beam end of _y0 ¼ 2 _axjx¼36:19 ¼
1:81 rad ns-1, and the temperature is controlled at 300 K

with GGMT method.

The front and isometric views of the bending system

with curvature j = 4.5 9 10-3 Å-1 are shown in Fig. 5.

According to the beam theory [10], the normal stress rxx

can be estimated by

rxx ¼ �Ejy; ð33Þ

where E is the Young’s modulus. For Cu, E = 117.2 GPa

[18], thus the maximum and minimum stresses are

rxx ¼ 117:2 � 4:5 � 10�3 � ð�18:095Þ ¼ �9:54 GPa:

ð34Þ
The simulated values with the bending algorithm are

rmax = 7.81 GPa and rmin = -6.79 GPa which take the

average among the top and bottom atomic layers, respec-

tively. The values of atomic simulation are close to the one

estimated by continuous mechanical beam theory.

If the crystalline effect is considered in the Young’s

modulus which is given by [19]

1

E
¼ C11 þ C12

ðC11 þ 2C12ÞðC11 � C12Þ
þ 1

C44

� 2

C11 � C12

� �
n2

xn2
y þ n2

yn2
z þ n2

z n2
x

� �
; ð35Þ

where C11, C12, and C44 are the elastic moduli, (nx,ny,nz) is

the crystalline orientation. For Cu, the moduli are C11 =

168.4 GPa, C12 = 121.4 GPa, and C44 = 75.4 GPa,

respectively, at 300 K [20]. Thus the Young’s modulus

along [100] orientation is E = 66.69 GPa, and gives

rxx ¼ 66:69 � 4:5 � 10�3 � ð�18:095Þ
¼ �5:43 GPa:

ð36Þ

The values of the axial stress obtained in this work are

distributed just in between. The possible cause is that the

lattice constant is stretched/compressed so that the elastic

i j 
k l 

i j 
k l 

i 

j'

i'l' k'i j l
k l' k'

j'

i'

J-1 J

Fig. 4 PBCs/MIC applied in the bending simulation. The curved

coordinates are first transformed to flat one by J-1, and then the

regular PBCs/MIC are applied. After building the neighbor list, the

forces between primary atoms and image atoms can then be

established. The curved coordinate can be restored by J

Nanoscale Res Lett (2010) 5:315–322 319

123



moduli are no longer the same as reference [20]. Thus the

axial stresses at top and bottom are not symmetric, and

deviate from Eq. 36.

Once the model is compatible with macroscopic bulk, it

is confident to use the bending method to simulate the

microscopic nano-system.

Hollow Copper Nanowire

Nanowires (NWs) exhibit an interesting quantum conduc-

tance behavior even at room temperature. Electron trans-

port properties for NWs have been investigated extensively

due to their significant importance in a variety of appli-

cations [21]. Diao et al. [22] investigated the elastic

properties of Au NWs by molecular statics, and found that

due to the surface effects, the smaller the cross-sectional

area the higher the Young’s modulus in the NWs without

undergoing the phase transformation. Chen and Chen [23]

studied the Au NWs subjected to uniaxial tension at high

strain-rate under different temperatures. They found the

microstructures of NWs were transformed first from FCC

to face-centred-orthorhombic-like crystalline, and then

changed to the amorphous state. Moreover, it was predicted

that the conductance at high strain-rate deformation may be

no longer quantized. Recent research has revealed that

geometry, including surface orientation and the hollowness

of nanomaterials, can also greatly affect their behavior

[24–28].

The works of Jiang and Zheng [27, 28] are referred here

to compare the effect induced by different boundaries. The

system size studied in this paper is same as Zheng’s work

(outer and inner cross-section parameters are 10aLattice and

4alattice, respectively), except the PBC is applied here along

the axial direction instead of FxBC used in Zheng’s work.

Other settings remain the same as previous sub-section.

The system is equilibrated in NVT ensemble with GGMT

method at 10 K before bending.

The axial stress distribution of hollow NW after bending

with j = 2.25 9 10-3 Å-1 at 10 K is shown in Fig. 6. It is

observed that higher tensile stresses are created near the

corner and dislocations. Higher stress at corner is mainly

induced by the surface tension; while the dislocations are

found at (100) surfaces, identical to report in the reference

[28].

The technique of common neighbor analysis (CNA) is

adopted to analyze the local structure distribution [23, 29,

30]. The CNA has three indices, j, k, and l, which denote

the number of common neighbor (CN) particles, the pair

number of CN particles, and the number of CN pairs that

makes up a chain, respectively. A pair is constructed by

two particles whose distance apart is less than a cutoff

radius. The cutoff radius is chosen to be 1.2dNN [23], where

dNN is the nearest-neighbor distance. For the perfect FCC

structure, the probability of 421 CN type is 100%, while

the perfect HCP structure contains 50% 421 CN type and

50% 422 CN type. The structures of 421 and 422 CN types

are shown in Fig. 7 for reference.

Fig. 5 a Front view and b isometric view for the bended bulk-atomic

system with curvature j = 4.5 9 10-3 Å-1. The color indicates the

normal stress along the x-axis with range from -10 to 10 GPa. The

average stress among the top atomic layer is 7.81 GPa while the

bottom one is -6.79 GPa

Fig. 6 Axial stress distribution of hollow NW after bending with

j = 2.25 9 10-3 Å-1 at 10 K. The color indicates the stress value

with the range from -10 to 10 GPa
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Figure 8 shows the distributions of 422 CN type and

stress at cross-section of the hollow NW at different time.

The upper pictures in Fig. 8 show the 422 CN-type dis-

tributions. The lower pictures show the axial stress rxx

distributions with color range from -10 to 10 GPa. The

growing atomic tensile stress can be observed, and the 422

CN-type growths are accompanied with. The stress trace

and 422 CN type initially grow along 110
� �

direction, and

reflected to [110] direction by the inner corner, then form a

zigzag trace. Note that the depth of the stress trace and 422

CN type is only about one or two atomic layers from the

inner surface.

Since the PBC is applied here, the atoms at the boundary

are movable so that the stress trace can grow through the

ends. On the contrary, if the FxBC is applied, the atoms at

the ends will be fixed, and the interface between movable

and fixed atoms will lead to an artificially induced crack,

obviously violating the physical phenomenon.

Conclusion

In this study, the synthetic, field-driven bending method is

introduced by using the coordinate transformation between

straight and curved coordinates. The new method can

incorporate with PBCs along axial, bending, and transverse

directions. For problem with small bending effect, the

bending strains evaluated by this method are well consis-

tent with those predicted by the beam theory. Furthermore,

it can be regarded as the generalized SLLOD algorithm.

The accuracy and reliability of this novel bending method

are verified by two examples, which are the bulk copper

beam and the hollow NW under bending, respectively. The

bending stress of the bulk copper beam estimated here is

quite close to those predicted by the beam theory; while the

atomic stress and the corresponding microstructure of 422

CN type near the inner surface of the hollow NW are

increased with an increase of time. These results are well

consistent with the earlier work. Moreover, the perfor-

mance of this novel bending method can be significantly

enhanced by using PBC along axial direction in the

bending model by eliminating the artificial crack which is

easily created by using traditional method with FxBC.

Fig. 7 The a 421 and b 422 CN types for CNA. Red atoms indicate

any two atoms within a neighbor distance and form a pair. Blue atoms
(#3–#6) are the common neighbor atoms for red atom pair (#1 and

#2). The black line between two atoms indicates these two atoms

form a pair

Fig. 8 Cross-section view for

the hollow NW at different time

slice: a 18.5 ps, b 24.6 ps, c
29.3 ps, and d 32.2 ps. The

upper pictures show the 422

CN-type distributions with no

meaning for the color. The

lower pictures show the axial

stress rxx distributions with

color range from -10 to

10 GPa. The growing atomic

stress traces are monitored with

higher tensile stress, and the 422

CN-type growths are

accompanied with
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