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Abstract Water-soluble L-arginine-capped Fe3O4 nano-

particles were synthesized using a one-pot and green

method. Nontoxic, renewable and inexpensive reagents

including FeCl3, L-arginine, glycerol and water were cho-

sen as raw materials. Fe3O4 nanoparticles show different

dispersive states in acidic and alkaline solutions for the two

distinct forms of surface binding L-arginine. Powder X-ray

diffraction and X-ray photoelectron spectroscopy were

used to identify the structure of Fe3O4 nanocrystals. The

products behave like superparamagnetism at room tem-

perature with saturation magnetization of 49.9 emu g-1

and negligible remanence or coercivity. In the presence of

1-ethyl-3-(dimethylaminopropyl) carbodiimide hydrochlo-

ride, the anti-chloramphenicol monoclonal antibodies were

connected to the L-arginine-capped magnetite nanoparti-

cles. The as-prepared conjugates could be used in immu-

nomagnetic assay.

Keywords Magnetite � Superparamagnetic �
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Introduction

In the last decade, inherently safer nanomaterials and

nanostructured devices were widely fabricated with the

‘‘green chemistry’’ principles [1–13]. It is important to

design synthetic methodologies that possess the minimi-

zation or even total elimination toxicity to the environment

and human health in green chemistry [1, 14]. The nontoxic,

renewable raw materials and environmentally benign sol-

vents are generally considered in a green synthetic strategy

[1]. As society and environment can benefit from the

products, green chemistry can convey a responsible attitude

to public toward the development of nanoscience and

nanotechnology [14].

Magnetite (Fe3O4) nanoparticles have attracted intensive

interests for a wide range of fields, including magnetic

fluids, immobilization of proteins, peptides and enzymes,

immunoassays, drug or gene delivery magnetic resonance

imaging, data storage, environmental remediation [15–25].

The Fe3O4 nanoparticles perform best in most of biome-

dicinal applications when the size of the nanoparticles is

around 10–20 nm. In this range, an individual nanoparticle

becomes a single magnetic domain and shows superpara-

magnetic behavior above blocking temperature [26, 27].

Large numbers of methods have been developed for the

synthesis of high-quality Fe3O4 nanoparticles of various

surface modifier based on the thermal decomposition of

iron organometallic compounds in a high-boiling point

organic solvent [28–37]. When those magnetite nanopar-

ticles are applied in biomedical fields, surface post-treat-

ments are usually needed.

In the present work, we described a facile and green

approach toward synthesis and stabilization of Fe3O4

nanoparticles. Water and glycerol were used as environ-

mentally benign solvents in the synthesis. Inartificial amino
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acid L-arginine was chosen as the nontoxic, renewable

stabilizing agent.

Experimental Section

Materials

Chloramphenicol (CAP) and 1-ethyl-3-(dimethylamino-

propyl) carbodiimide hydrochloride (EDC) were purchased

from Sigma–Aldrich. o-Phenylenediamine (OPD) was

purchased from Xinjingke Biotechnology. Hydrogen per-

oxide (30%) was supplied by Guangmang Chemical Co.

The anti-CAP monoclonal antibody and HRP-CAP conju-

gates were produced by our lab. Other analytical grade

chemicals were purchased from Shanghai Chemical

Reagents Company. All of the chemicals were used as

received without further purification.

Buffers and solutions used were listed below:

a. Phosphate-buffered saline (PBS): 138 mM NaCl,

1.5 mM KH2PO4, 8 mM Na2HPO4�H2O and 2.7 mM

KCl, pH = 7.4.

b. Washing buffer (PBST): PBS containing 0.05 (v/v)

Tween 20.

c. Citrate buffer: 19 mM citric acid, 33.5 mM Na2H-

PO4�H2O, pH = 5.0

d. Substrate solution: 5 mg OPD, 12.5 mL citrate buffer,

2.5 lL H2O2 (30%).

e. Stopping solution: 2 N HCl.

Synthesis of L-Arginine-Capped Fe3O4 Nanoparticles

L-Arginine (3.0 g) and FeCl3 (0.5 g) were added to a

component solvent containing glycerol (10 mL) and water

(10 mL). A transparent solution formed through sonication

of this mixture. This solution was transferred into a Teflon-

lined stainless steel autoclave with a capacity of 50 mL and

maintained at 200�C for 6 h. Then, the autoclave was

cooled to room temperature naturally. The product was

washed with distilled water to remove residue of solvent

and unbound L-arginine, finally dried by vacuum freeze-

desiccation technology before characterization. During

each step, the product was separated from the suspension

by magnetic force.

Preparation of Magnetic Nanoparticles Conjugates

A solution was formed by mixing 250 lL Fe3O4 nano-

particles suspension and 1 mL phosphate-buffered saline

(PBS). Then, 10 lL of anti-CAP monoclonal antibody and

1 mg of 1-ethyl-3-(dimethylaminopropyl) carbodiimide

hydrochloride (EDC) were added. Afterward, the mixture

was incubated overnight with light shaking at room tem-

perature. Excess EDC and the supernatant were removed

by magnetic separation, and the precipitate was washed

three times with PBS. Antibody-labeled magnetic nano-

particles were redispersed in PBS (1 mL) and stored at 4�C
for use.

Immunomagnetic Assay

The above store suspension (100 lL) was added to a tube

and rinsed three times with washing buffer (PBST) in a

magnetic field. Then, 100 lL conjugates of chloramphen-

icol and horseradish peroxidase (CAP-HRP) were injected.

The incubation was performed for 2 h at room temperature

with constant shaking. The sample was washed three times

with PBST as earlier. Substrate solution (100 lL) was

added, and the reaction was kept for 15 min. Finally,

stopping solution (2 N HCl) was used to stop the reaction,

and the absorbance was determined at 492 nm. A com-

parative experiment was performed just replaced mag-

netic nanoparticles conjugates with unlabeled magnetic

nanoparticles.

Characterization

XRD patterns were recorded on the X-ray diffractometer

(Bruker D8) with a graphite monochromator and Cu Ka
radiation (k = 1.5418 Å) in the range of 10–80� at room

temperature. The morphology of the products was deter-

mined with transmission electron microscopy (JEM-

100CXII) with an accelerating voltage of 80 kV. The

nanocrystals dispersed in water were cast onto a carbon-

coated copper grid. Magnetization measurements of the

nanocomposites were performed with a Micromag 2900 at

room temperature under ambient atmosphere. X-ray pho-

toelectron spectra (XPS) were measured with X-Ray pho-

toelectron spectroscopy XPS (ESCALAB 250). Enzyme

immunoassay (ELISA) was performed with an automatic

microplate reader KHB ST-360 from Shanghai Zhihua

Medical Instrument Ltd.

Results and Discussion

Black products were prepared via a one-step solvothermal

method. L-Arginine, an alkaline amino acid with guanidino

group, was served as capped reagent in this reaction. The

crystallinity and phase purity were determined by powder

X-ray diffraction (XRD) as shown in supporting informa-

tion. All diffraction peaks could be assigned to inverse

spinel Fe3O4 phase (JCPDS card 19-0629). No other crys-

talline impurity was detected. The lattice constant calcu-

lated from this pattern was 8.389 Å, which is very close to
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the reported value. A representative TEM image of L-argi-

nine-capped Fe3O4 nanoparticles dispersed in acidic solu-

tion is shown in Fig. 1a, which indicates that Fe3O4

nanoparticles have an average diameter of 13 nm. The high-

resolution transmission electron microscopy (HRTEM)

image (Fig. 1b) suggests the crystalline nature of Fe3O4

nanoparticles with a clearly resolved lattice spacing of

around 0.483 nm, corresponding to that of (111) of inverse

spinel Fe3O4 crystal. All the spots of Fourier transformed

pattern (Fig. 1c) obtained from the HRTEM image in

Fig. 1b can be indexed as those peculiar to the 01�1½ � zone

axis of face centered cubic Fe3O4.

X-ray photoelectron spectroscopy (XPS) was used to

further confirm the products. From spectra in Fig. 2a, the

peaks of the C 1 s, O 2p, N 1 s, Fe 3p and Fe 2p indicate

the L-arginine molecules are located on the surface of

Fe3O4 nanoparticles. In Fig. 2b, Fe 2p3/2 and Fe 2p1/2

double peaks correspond to binding energies of 710.55 and

723.70 eV, respectively. The double peaks are broadened

due to the appearance of Fe2? (2p3/2) and Fe2? (2p1/2), in

agreement with the literature that the peaks broaden for

Fe3O4 on the appearance of Fe2? (2p3/2) and Fe2? (2p1/2)

[38, 39]. This phenomenon confirms the product is Fe3O4

rather than c-Fe2O3. As is shown in the magnetic hysteresis

loop of L-arginine-capped Fe3O4 nanoparticles (Fig. 3), the

nanocrystals behave with superparamagnetism at room

temperature with saturation magnetization of 49.9 emu g-1

and negligible remanence or coercivity.

The different dispersing state of Fe3O4 nanoparticles in

acidic and alkaline solutions can be clearly observed by

naked eye, as shown by the supporting information Fig. S2.

Fe3O4 nanoparticles dispersed in an alkaline solution

completely precipitated in a few minutes, while they are

stable in an acidic solution for at least 1 month and could be

moved by a magnet just like ferrofluid. When the suspen-

sions were filtrated with 0.45 lm filtration membrane, we

got colorless and transparent liquid as Fe3O4 nanoparticles

could not pass filtration membrane in alkaline solution. On

the other hand, black and homogeneous solution was col-

lected in acidic solution. L-Arginine is an inartificial amino

acid. The amino group and the acid group could exist in the

form of ammonium ions and carboxylate ions, respectively,

under certain conditions [40]. It has been reported that both

amine and acid groups are able to attach onto iron oxide

surface [17, 25]. When the guanidino group of L-arginine

attaches onto the surface of iron oxide, the nanoparticles are

expected to have distinct states in solutions with differ-

ent pH value. Although the isoelectric point (pI) of pure

L-arginine is 10.76 [40], the isoelectric point is expected

to change for the attachment of the guanidino group in L-

_arginine to Fe3O4 nanoparticles. The new isoelectric point
Fig. 1 a TEM image of the Fe3O4 nanocrystal. b HRTEM image of

single Fe3O4 nanoparticle c FFT of HRTEM image in (b)
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will be the average of the pKa of the carboxylic acid group

and the pKb of the amine group [40] and therefore, ca. 5.61.

As illustrated in Scheme 1, in an acidic solution, the

L-arginine molecules exist in the cationic form due to the

formation of ammonium ions. These ammonium ions may

prevent formation of hydrogen bonds between Fe3O4

nanoparticles. In an alkaline solution, surface-bound

L-arginine molecules are negatively charged due to the

formation of carboxylate ions which readily form hydrogen

bonds with surface-bound amine groups of neighboring

Fe3O4 nanoparticles. This phenomenon is similar to the case

of lysine-capped gold nanoparticles [41].

To demonstrate potential biomedical applications of

L-arginine-capped Fe3O4 nanoparticles, magnetite nano-

particles were bioconjugated with anti-CAP monoclonal

antibody to form the immunomagnetic beads (IMB) via the

classical EDC activation [42, 43]. Then, they are used in

the immunological test. The result showed that the mixture

containing anti-CAP monoclonal antibody-labeled mag-

netic nanoparticles had a deep yellow color (Fig. 4 right)

after color development, and the absorbance was 2.113,

while the comparative one had no obvious color change
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Fig. 2 a The XPS of the L-arginine-capped Fe3O4 nanoparticles.

Evidence for the existence of L-arginine coating can be found. b The

details of the Fe 2p1/2 and Fe 2p3/2 peaks
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Fig. 3 Magnetic hysteresis loop measured at room temperature for

the L-arginine-capped Fe3O4 nanoparticles. The NPs show superpara-

magnetic properties at room temperature, and the Ms is about

49.9 emu g-1
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Scheme 1 Illustration of the assembly of dispersed L-arginine-

capped Fe3O4 nanoparticles in water at different pH values. The

inset is the structure of L-arginine

Fig. 4 Photographs of color development of unlabeled (left) and

antibody-labeled (right) magnetic nanoparticles
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(Fig. 4 left) at the same time and the absorbance was 0.065.

It was suggested that L-arginine-capped Fe3O4 nanoparti-

cles were successfully attached to the anti-CAP monoclo-

nal antibody.

Conclusions

We have synthesized L-arginine-capped superparamagnetic

Fe3O4 nanoparticles via a simple and green method in

water and glycerol component solvent. The synthesized

Fe3O4 nanoparticles have an average diameter of 13 nm

and the saturation magnetization reaches to 49.9 emu g-1

with negligible remanence or coercivity. With superpara-

magnetic properties and the active groups on the surface of

the nanoparticles, their application for magnetic separation

and concentration in immunoassays were further demon-

strated. These products are expected to have more exten-

sive applications in biomedical fields.
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