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Phase equilibria in the Mg-rich region of the Mg-Sn-Ag ternary system were determined by
quenching experiments, differential scanning calorimetry, electron probe micro-analysis, and X-
ray diffraction techniques. No ternary compounds were found in the studied isothermal sections.
A critical evaluation of the available experimental data and a thermodynamic optimization of
the Mg-Sn-Ag-In quaternary system were carried out using the calculation of phase diagrams
method. The modified quasichemical model in the pair approximation was used for the liquid
solution, which exhibits a high degree of short-range order. The solid phases were modeled with
the compound energy formalism. All available and reliable experimental data were reproduced
within experimental error limits. A self-consistent thermodynamic database was constructed for
the Mg-Sn-Ag-In quaternary system, which can be used as a guide for Mg-based alloys devel-
opment.

Keywords electron probe micro analyzer, Mg-based alloys, phase
diagram, thermodynamic modeling

1. Introduction

Magnesium alloys, with a density around 1.74 g/cm3

which is nearly 1.6 and 4.5 times less dense than aluminum
alloys and steel, is an exceptionally lightweight structural
materials. The low density of magnesium alloys is a strong
driving force for their applications in the transportation
industry with the associated reductions in weight of vehicles
and fuel consumption. Magnesium and its alloys have some
advantageous properties as high thermal conductivity, high
dimensional stability, high damping characteristics, high
machinability, and they are also completely recyclable,[1]

which makes them suitable for automobile and computer
parts, aerospace components, and household equipment
parts. Up to now, several series of magnesium alloys have
been developed for different applications, such as Mg-Al
based, Mg-Zn based, Mg-RE based alloys. Unfortunately,
most of these series have a number of undesirable properties
(especially at elevated temperatures) including poor corro-
sion resistance, poor creep resistance, and low wear
resistance, which restricts their applications. The current

trend, instead, is to improve Mg-based alloys for high
temperature applications. To this end, Mg-Sn based alloys
are good candidates because they have stable microstruc-
tures and good mechanical properties at high temperatures
due to the high solubility of Sn in hcp Mg and to the
possibility to precipitate a cubic second phase (Mg2Sn) in
the magnesium-rich matrix.[2,3] Previous investigations[2-4]

also indicate that Mg-Sn alloys with additional alloying
elements have comparable or even better creep properties
than AE42 alloys. Moreover, it is known that Sn can
improve the corrosion resistance.[5,6] Unfortunately, the
behavior of Mg-Sn alloys after quenching require quite long
time to reach the peak hardness, which is not practical for
industrial applications.[7] Hence, it is necessary to improve
the age hardening response and creep resistance behavior.
Adding microalloying elements such as In, Ag, Ca, Li, Na,
Zn, Sr and rare-earth elements can potentially achieve this
goal.[8-10] Among these, In and Ag are of interest. Mendis
et al.[8,9] for example, proposed a qualitative thermo-kinetic
criteria for choosing microalloying elements that can be
applied to precipitation hardenable alloys. Indium was one
of these elements and the authors[8,9] were able to show that
additions of In + Li to Mg-Sn alloys increase the number
density of precipitates by approximately one order of
magnitude, resulting in 150% hardening increment.[9] In
the case of Ag, its addition to Mg-Sn alloys can improve the
mechanical properties,[11,12] greatly affects the grain refine-
ment and corrosion resistance,[13,14] and bias the age
hardening response which enhances the mechanical proper-
ties. Recently, Son et al.[15] also found that the addition of
Ag leads to the formation of fine submicron-sized Mg-Ag
particles, grain refinement, and weaker basal texture. The
addition of In and Ag to Mg-Sn based alloys is thus quite
beneficial.

In order to design new Mg-Sn-based alloys and to
understand the relationships between their microstructures
and mechanical properties, a better knowledge of the phase
relations in Mg-Sn-based alloys is imperative. Obtaining
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such information by the sole mean of experimental tech-
niques is cumbersome and costly. Fortunately, thermody-
namic modeling of multi-component systems by the
calculation of phase diagrams (CALPHAD)[16] approach is
a very efficient way to investigate phase equilibria.[17]

Coupled phase-field calculations, ab initio calculations, and
physical properties modeling permit one to estimate material
properties.[18] In the present work, phase relations in the
Mg-rich portion of the Mg-Sn-Ag ternary system were
determined and the thermodynamic optimization of Mg-Sn-
Ag-In quaternary system was carried out as part of a wider
thermodynamic database development project for the Mg-X
(X: Ag, Ca, In, Li, Na, Sn, Sr and Zn) multi-component
system.

2. Literature Review

2.1 The Ag-Mg System

The Ag-Mg system was critically reviewed by Nayeb-
Hashemi and Clark.[19] There are five solid phases: fcc (Ag),
hcp (Mg), bcc_B2, Ag3Mg and AgMg3 in the Ag-Mg
system. The liquidus was first determined by
Zemczuznyj[20] using thermal analysis; four invariant reac-
tions: LMAgMg3 + hcp (Mg), LM bcc_B2 + fcc (Ag),
LM bcc_B2, and L + bcc_B2MAgMg3 were reported at
472, 759, 820 and 492 �C, respectively. Andrews and
Hume-Rothery,[21] Payne and Haughton,[22] and Hume-
Rothery and Butchers[23] determined the liquidus by thermal
analysis and results are all in good agreement with each
other. The AgMg3 phase was first reported by Ageew and
Kuznezow[24] by studying several alloys using metallo-
graphic methods and the structure was found to be
hexagonal with 8 atoms per unit cell. However, results
from later investigators[25-27] suggest that Mg3Ag has a
more complex structure. An X-ray diffraction analysis
performed by Prokofev et al.[28] demonstrated that AgMg3
appear to be constituted of ε (bct) at high temperature and
ε
0 ðfcc)at low temperature. Later, Kolesnichenko et al.[29]

rather found that the phase AgMg4 must be the one
described earlier as AgMg3; according to them, its structure
is hexagonal. Kolesnichenko et al.[29] also pointed out that
the structural formula of ε

0 ðfcc)is Ag17Mg54. Recently,
phase equilibria in the Ag-Mg system were studied by Lim
et al.[30] using DSC, XRD, and scanning electron micros-
copy (SEM); the existence of AgMg4 and Ag17Mg54 was
then confirmed. The phase relations and the polymorphic
transition temperature of the ordering phase Ag3Mg
(fcc_L12) were determined by Gangulee and Bever.[31]

The enthalpy of formation of the liquid phase at 1050 �C
was measured by Kawakami[32] using calorimetric mea-
surement method. The activity of Mg in the Ag-Mg liquid
phase was determined by Gran et al.[33] by measuring the
vapor pressure at 1300 and 1400 �C and with a gas
equilibration technique at 1500 and 1600 �C. The enthalpies
of formation of the bcc_B2 and fcc phases over the
temperature range of 350 to 500 �C were measured by
Kachi[34,35] by performing emf measurements. The enthalpy

of formation of the bcc_B2 phase between 39 and 54.8 Mg
(at.%) at 0 �C was measured by Robinson and Bever[36] by
tin-solution calorimetry. Later, Jena and Bever[37] measured
the enthalpy of formation of the bcc_B2 phase at 78, 195
and 273 K with the same equipment. The partial molar
enthalpy, entropy and free Gibbs energy changes of the
bcc_B2 phase were derived by Trzebiatowski and Terpi-
lowski[38] based on their emf results. The enthalpies of
formation of the fcc and Ag3Mg phases at 0 �C were
determined by Gangulee et al.[31] by solution calorimeter.
All the reported results of the enthalpy of formation of solid
phases are in good agreement.

2.2 The Ag-In System

Weibke and Eggers[39] investigated the phase relations in
the whole Ag-In binary system by means of thermal
analysis, X-ray analysis, and photomicrography. According
to their experimental results, the Ag-In phase diagram is
constituted of six solid phases: fcc, bcc, c (hcp), d (Ag5In2),
and e and u (AgIn3). The bcc phase is only stable in the
temperature range of 660 to 667 �C and possesses a narrow
solid solubility field, from 25 to 29 at.% In. Hume-Rothery
et al.[40] studied the solubility limit of indium in the terminal
phase of fcc (Ag) with temperature. Owen and Roberts[41]

determined carefully the fcc phase boundaries below the
melting point and their results are in good agreement with
the ones reported by Weibke and Eggers[39] and Hume-
Rothery.[40] Hellner[42] studied the crystal structure and the
solubility range of the intermetallic phases with X-ray
analysis and pointed out that an ordered phase, c¢ (MgCd3-
type), exists in Ag3In below 187 �C. The u (AgIn3) phase
reported by Weibke and Eggers[39] was confirmed as AgIn2
(with a CuAl2-type crystal structure) by Hellner.[42] Camp-
bell and Wagemann[43] re-investigated the phase equilibra in
the whole composition range of the Ag-In system by DTA,
XRD, photomicrography and EPMA. The existence of the
bcc phase was confirmed between 660 and 695 �C and the
hcp phase was found to decompose at 670 �C following the
peritectoid reaction fcc + bcc M hcp. In the Ag-rich area
below 300 �C, a primitive cubic phase,a¢, was reported to
exist below about 73.8 at.% Ag. The homogeneity region of
the e phase was reported to lie between 67 and 70 at.% Ag
by Campbell and Wagemann.[43] Uemura and Satow[44]

investigated the order-disorder transition of Ag3In by using
specific heat capacity measurements, electrical resistivity,
magnetic susceptibility and X-ray analysis. The order-
disorder transition of the hcp phase was observed to occur at
214 �C. Satow et al.[45] studied the phase transition of AgIn2
with the help of the same techniques and found that the
cubic phase transforms to the hcp one at 222 �C. Based on
the experimental results of the time, Barren[46] compiled and
presented a new phase diagram for the Ag-In binary system.
Later, Moser et al.[47] investigated the phase relations in the
Ag-In binary system by using diffusion couple measure-
ments, DSC and metallographic methods. Their experimen-
tal results are in good agreement with previous data.
Recently, Jendrzejczyk and Fitzner[48] determined the
liquidus of the Ag-In binary system over whole composition
range using emf measurements.
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The heat of formation of the solid and liquid alloys of the
Ag-In system at 450 �C were measured by Kleppa[49] using
calorimetric measurements. Prezdziecka-Mycielska et al.[50]

and Nozaki et al.[51] derived the partial and integral values
of excess enthalpy, excess free Gibbs energy and excess
entropy of liquid Ag-In alloys at 727 and 827 �C based on
the emf measurements results. Beja[52] determined the
enthalpy mixing of the liquid phase at 755 �C using
calorimetric measurements method. Itagaki and Yazawa[53]

measured the heat of mixing at 970 �C in Ag-In liquid
alloys by adiabatic calorimetry; the minimum value
recorded was �4.54 kJ/mol-atom at 66 Ag at.%. Alcock
et al.[54] and Qi et al.[55] derived the enthalpy of mixing,
Gibbs energy of mixing and entropy of mixing of liquid Ag-
In alloys at 1027 �C based on the results of vapor pressure
measurements with the Knudsen cell and mass spectrometer.
Their results are in good agreement with previous works.
The activity of In in the liquid phase at 777, 800, and
977 �C were determined by Kameda et al.[56] from emf
measurements. The integral molar enthalpy of liquid Ag-In
at 470 and 1007 �C were measured by Castanet et al.[57] by
drop calorimetry. Recently, Jendrzejczyk and Fitzner[48]

derived the activities, Gibbs energy of mixing and enthalpy
of mixing of liquid Ag-In alloys based emf measurements
using solid oxide galvanic cells with zirconia electrolyte.
The heat of formation of the fcc phase at 44 �C was
measured by Orr and Hultgren[58] by means of calorimetric
measurements method. The activity of In in the fcc phase at
727 �C was measured by Masson and Pradhan[59] with
vapor pressure measurement method.

2.3 Ag-Sn System

The liquidus of the Ag-Sn binary system was determined
by Heycock and Neville[60-62] by employing samples
prepared in heavy iron blocks covered by paraffin, to
prevent the oxidation of tin, and by thermal analysis.
Peternko[63] investigated the system with thermal analysis
and metallographic methods and reported the existence of a
new intermetallic compound, Ag3Sn, with a peritectic
melting temperature of 480 �C following the reaction liquid
+ fcc M Ag3Sn. Puschin

[64] studied molten Ag-Sn alloys
with the emf method and observed the existence of a new
phase, named f (Ag6Sn or Ag5Sn), in the Ag-rich region.
Murphy[65] investigated the whole Ag-Sn system with
thermal analysis and metallographic methods and deter-
mined the solid solubility boundaries of the fcc, f and
Ag3Sn phases. Murphy[65] also found that the solid
solubility of Ag in the terminal bct (Sn) phase was less
than 0.1 at.% Ag at 206 �C. Hume-Rothery et al.[66] and
Hume-Rothery and Eutchers[67] determined the liquidus of
the Ag-Sn binary system by thermal analysis; their results
are in good agreement with previous investigations.[60-63]

Hanson et al.[68] employed thermal analysis and carefully
determined the liquidus between 0 to 6 at.% Ag. The
eutectic liquid M Ag3Sn + bct (Sn) was located at 3.5 at.%
Ag and 221 �C. The solid solubility of fcc was determined
by Owen and Roberts[69] with XRD; their results are in good
agreement with the previous work of Murphy.[65]

Umansky[70] re-investigated the whole Ag-Sn system with

XRD and confirmed the existence of the fcc, f and Ag3Sn
phases. The solid solubility range of the fcc phase was also
measured. The solubility of Ag in the terminal phase bct
(Sn) was determined by Vnuk et al.[71] with the help of
hardness measurements on several heat treated alloys, and
the maximum solid solubility of Ag in bct (Sn) was found to
be 0.09 at.% Ag at the eutectic temperature of 221 �C. All
the available experimental phase equilibria data of the Ag-
Sn binary system were compiled by Karakay and
Thompson.[72]

Frantik and McDonald[73] derived the activity, partial
molar Gibbs energy and integral Gibbs energy of molten
Ag-Sn alloys based on their experimental data obtained by
emf measurements method. Yanko et al.[74] studied the
activity of dilute Ag-Sn liquid solutions with the emf
method in the temperature range of 250 to 412 �C. Both of
their results were shown that the Ag-Sn solution is not an
ideal mixing solution. Kleppa[75] measured the enthalpy of
formation of solid and liquid Ag-Sn phases at 450 �C using
calorimetric measurement method. The positive enthalpy of
mixing of Ag-Sn liquid solution was determined in the
composition range from 0 to 40 at.% Ag at 450 �C, which is
in agreement with the derived data by Frantik and McDon-
ald[73] Nozaki et al.[76] derived the partial and integral molar
excess Gibbs energy, excess entropy and excess enthalpy of
molten Ag-Sn alloys based on the experimental data
obtained using emf measurements method, and the activity
of Sn in the liquid phase at 827 �C was reported in their
work. Elliott and Lemons[77] determined the activity of Ag
and Sn in the dilute Ag-Sn liquid solution using emf
measurements method. Itagaki and Yazawa[53] measured the
enthalpy of mixing of the liquid phase in Ag-Sn alloys at
970 �C using adiabatic calorimetry. An ‘‘N’’ type enthalpy
of mixing with the positive value part in the composition
range from 0 to 50 Ag (at.%) and negative part with a
minimum value of �2777 J/mol-atom at 76.4 at.% Ag were
reported in their work, which are in good agreement with
the previous one reported by Kleppa[75] Castanet and
Laffitte[78] reoprted the enthalpy of mixing of Ag-Sn liquid
phase at 1007 �C using calorimetric measurements method,
which are in agreement with the data reported by Itagaki and
Yazawa[53] and Kleppa[75] Chowdhury and Ghosh[79]

derived the activity of Sn and Ag in liquid phase in the
composition range from 20 to 90 Sn (at.%) in the
temperature range of 552 to 838 �C using emf measure-
ments method. The reported activity of Sn in liquid solution
at 627 �C are in good agreement with the data reported by
Frantik and McDonald[73] Okajima and Sakao[80] reported
the activity of Ag in the liquid phase at 500, 560 and 620 �C
using emf measurements method. The activity of Sn in the
liquid phase at 827 and 727 �C were determined by Iwase
et al.[81] using the emf measurements method with two
different solid-oxide galvanic cells. And the derived activity
of Sn in liquid solution in the work of Iwase et al.[81] are
self-consistent, but are not in agreement with the previous
reported results[73,79,80] The activity of Sn in the liquid
phase at 600 and 700 �C were measured by Kameda
et al.[82] using the emf measurements method. The enthalpy
of formation of solid phases were measured by Flandorfer
et al.[83] with calorimetric measurements method.
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Rakotomavo et al.[84] studied the enthalpy of mixing of
liquid phase at 1100 �C with calorimetric measurements
method. Laurie et al.[85] reported the partial enthalpy mixing
of Ag-Sn liquid phase at 554 �C using emf measurement
and calorimetric measurement methods. The activity of Ag
and Sn in liquid phase and partial moral enthalpy of the Ag-
Sn liquid phase were derived by Yamaji and Kato[86] based
on their experimental data obtained by using emf measure-
ments method and mass spectrometer measurements, which
are in agreement with the reported data from Iwase et al.[81]

but are not in agreement with the reported results[73,79,80] All
the reported results of the enthalpy of mixing of Ag-Sn
liquid solution measured by calorimetric measurements
method[53,75,78,84,85] are in a reasonable agreement.

2.4 The Mg-Ag-Sn, Mg-Ag-Sn and Ag-In-Sn Systems

Kolesnichenko et al.[87] measured the isothermal section
of the Mg-Ag-In system at 280 �C and the ternary isopleths
with 50 In, 10 Ag and 30 Mg (wt.%) using XRD and
metallographic methods.

Raynor and Frost[88] determined the isothermal sections
in the Ag-rich area of the Mg-Ag-Sn system at 450 and
550 �C using optical microscopy and XRD. The isothermal
section at 450 �C was also measured by Karonik et al.[89] by
means of thermal analysis, optical microscopy, and XRD.
The solubility of Sn in Mg3Ag was found to be about 7
wt.%. Karonik et al.[89] also determined the ternary
isoplethal sections at constant Sn of 10 and Ag of 10 wt.%.

Phase relations in the Ag-In-Sn system were studied by
Korhonen and Kivilahti[90] with DSC, SEM, and optical
microscopy, but no experimental data are tabulated or
illustrated in their work. Liu et al.[91] reinvestigated phase
equilibria in the system with DSC and metallography and
determined the isothermal sections at 180, 250, 400, and
600 �C as well as ternary isoplethal sections with constant
Ag of 10, 20, 30, and 40, and constant In of 20 and 40
(wt.%). Vassilev et al.[92] measured the isothermal section at

280 �C and a ternary isoplethal section at constant Ag of 2.5
(at.%) using DSC, XRD and SEM. Miki et al.[93] deter-
mined the activity of Ag in the liquid solution using
Knudsen cell with mass spectrometry but none of his data
are tabulated. Gather et al.[94] measured the enthalpy of
mixing of the liquid phase by heat flow calorimetry with
different molar ratios of Sn/In (1/4, 2/3, 3/2 and 4/1).

3. Thermodynamic Modeling

All the thermodynamic assessment status of sub-systems
of Mg-Sn-Ag-In quaternary system are listed in Table 1.
The Mg-Sn phase diagram was critically evaluated and
optimized by Jung et al.[95,96] using the Modified Quasi-
chemical Model in the Pair Approximation (MQMPA) for
the liquid phase. Similarly, the In-Mg and In-Sn binary
systems and the Mg-In-Sn ternary system were critically
evaluated and optimized in our previous work[97] by using
the MQMPA as well for the liquid phase. In order to
construct a self-consistent thermodynamic database of Mg-
base system, the thermodynamic parameters reported for the

Table 1 Thermodynamic optimization status of sub-
systems of Mg-Sn-Ag-In quaternary system

System

Reference

BW for liquid solution MQMPA for liquid solution

Ag-Mg Lim et al.[30] N/A

Ag-In Moser et al.[47], Liu et al.[91] N/A

Ag-Sn Oh et al.[98] N/A

In-Mg N/A Wang et al.[97]

In-Sn Liu et al.[91] Wang et al.[97]

Mg-Sn Meng et al.[99] Jung et al.[95,96]

Mg-Sn-Ag N/A N/A

Mg-Sn-In N/A Wang et al.[97]

Mg-Ag-In N/A N/A

Sn-Ag-In Liu et al.[91] N/A

BW: Bragg-Willams model, MQMPA: Modified quasichemical model in

the pair approximation

Table 2 Phase crystal structure and thermodynamic
model used in present work

Phase
Pearson
symbol

Strukturbericht
designation

Space
group Prototype Model

Liquid ÆÆÆ ÆÆÆ ÆÆÆ ÆÆÆ MQMPA

fcc (Ag) cF4 A1 Fm3m Cu CEF

bct (In) tI4 A5 I41/mmm Sn BW

bcc_A2 (MgAg) cI2 A2 Im3m W BW

hcp (Mg) hP2 A3 P63/mmc Mg BW

tet (Sn) tI2 A6 F4/mmm In BW

Mg2Sn cF12 C1 Fm3m CaF2 ST

Ag3Sn oP8 D0a Pmmm Cu3Ti CEF

bcc_B2 (MgAg) cP2 B2 Pm�3m CsCl CEF

Ag3Mg cP4 L12 Pm�3m AuCu3 CEF

AgMg3 hP8 D018 P63/mmc AsNa3 CEF

AgMg4 hP* ÆÆÆ ÆÆÆ ÆÆÆ ST

Ag17Mg54 ÆÆÆ ÆÆÆ ÆÆÆ ÆÆÆ CEF

b’(MgIn) cP4 L12 Pm3m AuCu3 CEF

b1(MgIn) hR16 ÆÆÆ R3m ÆÆÆ CEF

b2(MgIn) hP9 ÆÆÆ P62m Mg2Tl ST

b3(MgIn) oI28 D8g Ibam Mg5Ga2 ST

b’’(MgIn) tP4 L10 P4/mmm AuCu CEF

c’(MgIn) cP4 L12 Pm3m AuCu3 CEF

b(InSn) tI2 A6 F4/mmm In BW

c(InSn) hP5 ÆÆÆ P6/mmm ÆÆÆ BW

Ag2In cP52 D83 P�43m Cu9Al4 CEF

Ag3In cP* ÆÆÆ Pm�3m ÆÆÆ ST

AgIn2 tI12 C16 I4/mcm Al2Cu ST

MQMPA: Modified Quasichemical Model in the Pair Approximation; CEF:

Compound Energy Formalism; BW: Bragg-Willams model; ST: Stoichi-

ometric compound
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Mg-Sn,[95] In-Mg,[97] In-Sn,[97] and Mg-In-Sn[97] systems
were thus used in the present work for the optimization of
the whole Mg-Sn-Ag-In quaternary system.

The remaining binary systems, the Ag-Mg, Ag-In and
Ag-Sn systems, were previously optimized by Lim et al.,[30]

Moser et al.,[47] and Oh et al.,[98] respectively, using the

Table 3 Equilibrium compositions of the Mg-Sn-Ag ternary system as determined in the present work

T (oC) Alloy Nominal comp. (at. %)

Phase equilibria
Phase Compositions (at. %)

Phase 1/Phase 2/Phase 3

Phase 1 Phase 2 Phase 3

Mg Sn Ag Mg Sn Ag Mg Sn Ag

415 88Mg10Sn2Ag hcp (Mg)/Mg2Sn/Mg3Ag 97.14 1.00 1.86 67.59 32.39 1.86 76.56 2.56 20.88

80Mg10Sn10Ag hcp (Mg)/Mg2Sn/Mg3Ag 96.85 1.02 2.13 67.55 32.43 2.13 75.34 2.31 22.35

70Mg10Sn30Ag bcc_B2/Mg2 Sn/Mg3 Ag 55.13 0.03 44.84 67.86 31.93 44.84 74.28 2.43 23.29

50Mg20Sn30Ag bcc_B2/Mg2 Sn 35.83 11.44 52.73 67.32 32.41 52.73 ÆÆÆ ÆÆÆ ÆÆÆ
45Mg25Sn30Ag bcc_B2/Mg2 Sn/liquid 33.79 13.76 52.45 67.28 32.47 52.45 ÆÆÆ ÆÆÆ ÆÆÆ

350 88Mg10Sn2Ag hcp (Mg)/Mg2Sn/Mg3Ag 98.32 0.58 1.10 67.51 32.42 1.10 75.20 3.41 21.39

80Mg10Sn10Ag hcp (Mg)/Mg2Sn/Mg3Ag 98.34 0.57 1.09 67.86 32.10 1.09 76.02 2.18 21.80

70Mg10Sn30Ag bcc_B2/Mg2 Sn/Mg3 Ag 55.29 0.83 43.88 67.55 32.10 43.88 72.96 3.33 23.71

50Mg20Sn30Ag bcc_B2/Mg2 Sn 35.85 11.21 52.94 67.54 32.20 52.94 ÆÆÆ ÆÆÆ ÆÆÆ

(a) (b) 

(c) (d) 

hcp (Mg)

Mg3Ag

Mg2Sn

hcp (Mg)

Mg3Ag

Mg2Sn

bcc_B2

Mg3Ag

Mg2Sn

bcc_B2

Mg2Sn

Fig. 1 BSE images of typical ternary alloys: (a) Mg88Sn10Ag2 alloy annealed at 415 �C for 25 days; (b) Mg50Sn20Ag30 alloy an-
nealed at 415 �C for 25 days; (c) Mg80Sn10Ag10 alloy annealed at 350 �C for 40 days; (d) Mg60Sn10Ag30 (at. %) alloy annealed at
350 �C for 40 days
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Bragg-Williams Model (BWM)[100] for the liquid phase,
which neglects short-range order. However, these assess-
ments are inconsistent with some experimental data. For
example, in the optimized work of the Ag-Mg system by
Lim et al.,[30] Mg3Ag and Mg54Ag17 are treated as a single
stoichiometric compound, Mg54Ag17. In addition, although
the bcc phase is modeled using two energy contribution
parts, ordered bcc_B2 and disordered bcc_A2, the param-
eters of the ordered bcc_B2 part are given without
considering the symmetry of the crystal structure. Another
example is the Ag-In binary system optimized by Moser
et al.[47]: the bcc and Ag3In phases are missing. Moreover,
no critical review of the experimental data is performed in
the assessments of Lim et al.[30] and Moser et al.[47]

Consequently, in the present work, all available phase
diagram and thermodynamic data of the Ag-Mg, Ag-In and
Ag-Sn binary systems were critically re-evaluated and

optimized using the MQMPA for the liquid phase with the
FactSage thermodynamic software.[101] All phases consid-
ered in the Mg-Sn-Ag-In quaternary system are summarized
in Table 2 along with the model used to describe their
thermodynamic properties.

3.1 Stoichiometric Phases

The molar Gibbs energies of pure elements and stoichi-
ometric phases can be described by:

Go
T ¼ Ho

T � TSoT ðEq 1Þ

Ho
T ¼ DHo

298K þ
ZT

T¼298:15K

CpdT ðEq 2Þ
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Fig. 2 XRD patterns of selected annealed samples: (a) Mg50Sn20Ag30 alloy annealed at 415 �C for 25 days, and (b) Mg80Sn10Ag10
alloy annealed at 350 �C for 40 days
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SoT ¼ So298K þ
ZT

T¼298:15K

ðCp=TÞdT ðEq 3Þ

where DH298.15K
o is the molar enthalpy of formation of a

given species from pure elements (the DH298.15K
o of any

element stable at 298.15 K and 1 atm is assumed as 0 J/mol
at the reference state), S298.15K

o is the molar entropy at
298.15 K, and Cp is the molar heat capacity.

In the present study, the Gibbs energy of pure elements
were taken from the SGTE database.[100] As there are no
experimental heat capacity data for Ag-In, Ag-Sn and Ag-Mg
intermetallic phases, their heat capacities were evaluated
using the Neumann-Kopp rule.[102] The heat capacity curves
of solid In and Sn from the SGTE database show a maximum
just above their melting points (that is in the liquid stable
region). Several intermetallic phases in the studied system
have their melting points substantially higher than the pure
elements from which they are formed. The heat capacity
functions of intermetallic phases obtained with the Neumann-
Kopp rule had also such a maximum, which is little plausible.

In order to resolve this problem,wemodified the heat capacity
functions of solid In and Sn above their melting points, that is
extrapolated into the liquid region, to make sure that the heat
capacity curves of intermetallic phases increase with temper-
ature until their own melting points. This was solely applied
when theNeumann-Kopp rulewas employed for intermetallic
phases and does not influence pure solid In and Snwhich keep
their SGTE Gibbs energy functions.

3.2 Solid Solutions

The Compound Energy Formalism (CEF) was intro-
duced by Hillert[103] to describe the Gibbs energy of solid
solutions. In this model, ideal mixing is assumed on each
sub-lattice. In the present work, the Ag3Mg, Ag3Sn,
AgMg3, Ag17Mg54,b¢,b1,b¢¢,c¢, and Ag2In phases were
modeled with the CEF. The stoichiometry of the sublattices
was based on the crystal structures reported in the literature
(Table 2). The Gibbs energy expression of the Ag2In phase,
for example, based on the CEF, is obtained by mixing In and
Ag on two sublattices with a stoichiometric ratio of 2:1 as
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Fig. 3 The DSC curves of Mg80Sn10Ag10 alloy obtained in the present work

Table 4 Thermal signals obtained from DSC measurements of the Mg-Sn-Ag ternary system

Sample (at.%)

Thermal signal (�C)

Heating Cooling

Mg88Sn10Ag2 568; 527; 462 569; 531; 444; 438

Mg80Sn10Ag10 574; 529; 462 569; 539; 442; 437

Mg60Sn10Ag30 678; 622 681; 625

Mg50Sn20Ag30 602; 562; 413 608; 573; 416

Mg45Sn25Ag30 528;415; 375; 199 533; 420; 191
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(Ag)2 (Ag, In). The Gibbs energy of the Ag2In solution is
then expressed as:

GAg2In ¼ yIAgy
II
InG

o
Ag:In þ yIAgy

II
AgG

o
Ag:Ag þ RTðyIIAg ln yIIAg

þ yIIIn ln y
II
InÞ þ yIAgy

II
Agy

II
In
nLAg:Ag;In ðEq 4Þ

where yIIAg and yIIInare the site fractions of Ag and In on the
second sublattice. GAg:In

o and GAg:Ag
o are the Gibbs energy of

Ag2In and Ag2Ag, respectively.
nLAg:Ag,In is the interaction

energy between Ag and In on the second sublattice.
Similarly, the Gibbs energy functions of all other solid

solutions are described according to the structure of their
sublattice using the CEF.

The sublattice model, developed by Hillert,[103] allows the
description of a variety of solid solutions with mathematical
functions, particularly for the ordered phase. The sublattice
formalism applied to the A2 and B2 phases was introduced by
Dupin and Ansara[104] and the same notations were used in the
present work. The Gibbs energy functions of the bcc_A2 and
bcc_B2 phases were model as single bcc phases with sublattice
structures as disordered (Ag, In, Mg, Sn)(Va)3 and ordered (Ag,
In,Mg, Sn)(Ag, In,Mg, Sn)(Va)3 parts. ThemolarGibbs energy
of these disordered and ordered parts can be expressed as:
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Fig. 4 Calculated phase diagram of Ag-Mg binary system compared with experimental data[20-24,29-31]

Table 5 Calculated invariant reactions in the Ag-Mg system compared with reported experimental values

Reaction Reaction type T (�C) Composition (Mg at. %) Reference

LiquidM fcc + bcc_B2 Eutectic 759 33.4 29.3 35.5 [19]

761 33.5 27.6 36.1 This work

LiquidM bcc_B2 Congruent 820 50.0 50.0 ÆÆÆ [19]

822 49.3 49.3 ÆÆÆ This work

Liquid + bcc_B2MMg54Ag17 Peritectic 494 77.4 65.4 ÆÆÆ [19,29]

494 78.6 61.4 77.2 This work

bcc_B2 + Mg54Ag17MAgMg3 Peritectiod 484 ÆÆÆ ÆÆÆ ÆÆÆ [30]

483 60.6 76.2 77.2 This work

LiquidMMg54Ag17 + hcp Eutectic 472 82.4 ÆÆÆ 96.2 [19,29]

472 83.8 78.0 97.0 This work

Mg54Ag17 + hcpMAgMg4 Peritectoid 465 ÆÆÆ ÆÆÆ ÆÆÆ [29]

469 77.0 96.0 80.0 [30]

467 78.0 96.9 80.0 This work

Mg54Ag17MAgMg4 + AgMg3 Eutectoid 464 77.5 80.0 77.9 This work

fccM fcc_L12 + bcc_B2 Eutectoid 370 25.8 25.8 42.3 This work

fccMAg3Mg Congruent 392 ÆÆÆ ÆÆÆ ÆÆÆ [19]

390 24.4 24.4 ÆÆÆ This work
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Gbcc ¼ disGbcc A2 + ordGbcc B2 ðEq 5Þ

where disGbcc A2 is the Gibbs energy contribution of the bcc
phase from the disordered part (bcc_A2), which can be
expressed as follows:

disGbcc A2 ¼
X

i¼Ag;In;Mg;Sn

xi
oGbcc A2

i þ RTðxAg ln xAg

þ xIn ln xIn þ xMg ln xMg þ xSn ln xSnÞ

þ xixj
Xn
n¼0
ðxi � xjÞnnLdis

i;j þ xixjxk
mLdis

i;j;k
m¼ 0; 1;and2

ðEq 6Þ

In this expression, nLi,j
disandmLi,j,k

dis are the binary and
ternary interaction parameters of the disordered part of the
bcc phase (bcc_A2).

In Eq 5, ordGbcc B2 is the Gibbs energy contribution of
the bcc phase from the ordered part (bcc_B2), which can be
expressed as follows:

ordGbcc B2 ¼
X
i6¼j

yIiy
Ii
j
oGbcc B2

i:j

þ RTðyIi ln yIi þ yIj ln y
I
j þ � � �Þ þ RTðyIIi ln yIIi

þ yIIj ln y
II
j þ � � �Þ þ DordGbcc B2 ðEq 7Þ

where Gi:j
bcc_B2is the Gibbs energy of the hypothetical

compound ij, and DordGbcc_B2 is the excess Gibbs energy
of ordered part (bcc_B2), which is constituted of the binary
and ternary interaction parameters DordGbinary

bcc_B2and Dord

Gternary
bcc_B2, which are expressed as:

DordGbcc B2
binary ¼ yIiy

I
j

Xn
n¼0
ðyIi � yIjÞ

nnLI
i;j:iþyIIi yIIj

Xn
n¼0
ðyIIi � yIIj Þ

nnLII
i:i;j

ðEq 8Þ

DordGbcc B2
ternary ¼ yIiy

I
j

Xn
n¼0
ðyIIi � yIIj Þ

nnPIi;j:k

þyIIi yIIj
Xn
n¼0
ðyIIi � yIIj Þ

nnPIIk:i;ji6¼j6¼k þ ðy
I
iy

I
jy

I
k
nPIi;j;k:l

þyIIi yIIj yIIk nPIIl:i;j;kÞl¼i;j;orkandi 6¼j 6¼k ðEq 9Þ

wherenLi,j:i
I and nLi:i,j

II are the binary interaction parameters of
the ordered part bcc_B2, and nPi,j:k

I ,nPk:i,j
II , nPi,j,k:l

I , and
nPl:i,j,k

II are the ternary interaction parameters of the ordered
part bcc_B2. Due to the crystallographic symmetry of the
bcc_B2 phase, the following relations are introduced:
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Fig. 5 Calculated enthalpy mixing of liquid phase of Ag-Mg
system at 1050 �C compared with experimental data[32]

Table 6 Optimized model binary parameters of the MQM for liquid Mg-Sn-Ag-In alloys

Coordination numbers(a)

Gibbs energies of pair exchange reactions (J/mol) Referencei j Zij
i Zij

j

Mg In 3 6 gMgIn ¼ �9790:6� 2092XInIn � 209:2X2
InIn [97]

Mg Sn 4 8 gMgSn ¼ �15263:2� 0:88� T þ ð3347:2þ 0:42� TÞXMgMg [95]

Mg Ag 7 7 DgMgAg = �11129.4 + 0.089T + (�3933.0 + 0.139T)XAgAg� 2594.1XMgMg This work

Ag In 3 7 DgAgIn = �7112.8� 1.269T + 1255.2XAgAg + (2825.8� 0.849T)XInIn This work

Ag Sn 3 7 DgAgSn = �3723.8� 2.309T + (�3347.2 + 1.269T)XAgAg + (6276� 3.359T)XSnSn This work

Sn In 6 6 DgSnIn = �175.7� 138.1XSnSn� 133.9XInIn [97]

(a) For all pure elements (Mg, Ag, In and Sn), Zii
i = 6
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Fig. 6 Calculated DGMg
xs versus (1-xMg)

2 of liquid phase at the
temperature of 1400 �C along with the experimental data[33]
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Table 7 Optimized model parameters for phases in the quaternary Mg-Sn-Ag-In system

Phase, model and thermodynamic parameters (J/mol or J/mol K) Reference

Liquid phase

qInSn(Mg)
001 = �9204.8, This work

qAgIn(Mg)
001 = qAgMg(In)

001 = qMgIn(Ag)
001 = 251.0� 7.329T This work

qAgIn(Sn)
001 = 2301.2� 2.939T, qAgSn(In)

001 = 2301.2� 0.429T, qInSn(Ag)
001 = 2301.2� 2.519T This work

qAgMg(Sn)
001 = �5020.8, qAgSn(Mg)

001 = �12552.0 This work

hcp_A3(Mg) phase, (Ag, In, Mg, Sn):

GMg =
0GMg

hcp, GAg =
0GAg

fcc + 300� 0.39T

GSn =
*GSn + 3900� 4.49T, GIn =

*GIn + 533� 0.699T, This work
1LMg,Sn = 48116, [95]
0LMg,In = �28451 + 6.099T, 1LMg,In = �10460 + 5.449T [97]
0LAg,Sn = �6024.9 + 10.969T, 1LAg,Sn = 43095.2� 3.569T This work
0LAg,In = �15815.5 + 15.239T, 1LAg,In = 74140.5� 11.849T, 2LAg,In = 46233.2� 6.289T This work
0LAg,Mg = �33472.0� 2.099T, 1LAg,Mg = 15899.2 This work
0LAg,Mg,Sn = �142256.0 + 8.379T, 1LAg,Mg,Sn = �148532.0 + 8.379T, 2LAg,Mg,Sn = 41840.0 This work
0LAg,Mg,In =

1LAg,Mg,In =
2LAg,Mg,In = 29288.0 This work

0LAg,In,Sn =
1LAg,In,Sn =

2LAg,In,Sn = 71128.0� 4.189T This work

fcc_A1 phase, (Ag, In, Mg, Sn):

GMg =
0GMg

hcp + 2600 + 0.909T, GAg =
0GAg

fcc

GIn =
*GIn + 123� 0.309T, GSn =

*GSn + 4150� 5.29T This work
0LIn,Sn = 8368.0; 0LAg,Sn =� 3138.0 + 10.049T, 1LAg,Sn = 42258.4� 7.539T This work
0LIn,Mg = �29915.6� 1.889T, 1LIn,Mg = �13723.5� 1.469T, 2LIn,Mg = �6276.0 [97]
0LAg,In = �18828.0 + 13.229T, 1LIn,Ag = 36819.2� 9.299T This work

0LAg,Mg = �52592.9 + 9.049T, 1LAg,Mg = 29288.0� 10.889T, 2LAg,Mg = 3347.2 + 3.359T This work
0LAg,Mg,Sn = �20920� 16.749T; 1LAg,Mg,Sn = �8368� 8.379T; 0LAg,Mg,Sn = �54392.0� 16.749T This work
0LAg,In,Mg =

1LAg,In,Mg =
2LAg,In,Mg = 41840.0

0LAg,In,Sn =
1LAg,In,Sn =

2LAg,In,Sn = 43932.0 + 4.189T This work

bct(Sn) phase, (Ag, In, Mg, Sn):

GMg =
0GMg

hcp + 15000, GAg =
0GAg

fcc + 4184, This work

GIn:Va =
*GIn + 2092, GSn:Va =

*GSn This work
0LIn,Sn:Va = 460.2, 0LAg,Sn:Va = 18828.0 This work

tet(In) phase, (Ag, In, Mg, Sn):

GIn =
*GIn, GSn =

*GSn + 15000, GMg =
0GMg

hcp + 15000, GAg =
0GAg

hcp + 15000 This work
0LIn,Sn = 836.8� 1.679T, 0LIn,Mg = �26359.2 + 18.839T This work

b¢¢ phase, (Mg, In)(Mg, In):

GMg:Mg =
0GMg

hcp + 2600 + 0.909T, GIn:In =
*GIn + 123� 0.309T, [97]

GMg:In = GIn:Mg =
*GIn +

0GMg
hcp� 9204.8� 0.609T, [97]

0LMg,In:Mg =
0LMg:Mg,In = �21756� 0.639T, 0LMg,In:In =

0LIn:Mg,In = 418.4� 0.429T, [97]

b¢, c¢ phase, (Ag, Mg, In)3(Ag, Mg, In):

GMg:Mg = 490GMg
hcp + 10400 + 3.69T, GIn:In = 49*GIn + 492� 1.209T, [97]

GMg:In =
*GIn + 390GMg

hcp + 7923.09+ 2.4T, GIn:Mg = 39*GIn +
0GMg

hcp� 35540.5� 1.099T [97]
0LIn:Mg,In = �32049.4 + 2.939T, 1LIn:Mg,In = 7949.6, [97]

GAg:Ag =
0GAg

fcc, GMg:Ag =
0GAg

fcc + 390GMg
hcp + 1751.0; GAg:Mg =

0GMg
hcp + 390GAg

fcc� 53568� 0.849T This work

Ag2In phase, (Ag, In, Sn)(Ag)2:

GIn:Ag = 290GAg
fcc + *GIn� 21764.0 + 21.39T, GAg:Ag = 390GAg

fcc, GSn:Ag = 290GAg
fcc + *GSn� 4184.0 This work

0LAg,In:Ag = �4184.0, 0LAg,Sn:Ag = �3347.2� 3.359T This work

AgMg3 phase, (Ag, In, Mg, Sn)(In, Mg, Sn)3:

GAg:Mg =
0GAg

fcc + 390GMg
hcp� 41492.7 + 1.179T, GMg:Mg = 490GMg

hcp + 16317.6; This work

GAg:In =
0GAg

fcc + 39*GIn + 20920.0, GMg:In =
0GMg

hcp + 39*GIn + 418.5, GIn:In = 49*GIn + 418.5 This work

GIn:Mg = 390GAg
fcc + *GIn + 418.5, GSn:Mg = 390GMg

hcp + *GSn, GMg:Sn =
0GMg

hcp + 39*GSn + 4184.5 This work

GIn:Sn =
*GSn + 39*GIn + 4184.8, GSn:In = 39*GSn +

*GIn + 4184.5 This work

GAg:Sn =
0GAg

fcc + 39*GSn + 4184.8, GSn:Sn = 49*GSn + 4184.5 This work
0LAg,Mg:Mg = �17865.7 + 20.92, 0LAg:In,Mg = �119244, 0LAg,In:Mg = �35564 This work
0LAg,Sn:Mg =

0LAg,Mg:Sn =
0LAg:Mg,Sn = �112968.0 + 54.399T This work

Ag17Mg54 phase, (Ag, Mg, Sn)17(Mg)54:

GAg:Mg = 1790GAg
fcc + 5490GMg

hcp� 569664.2� 161.089T; GMg:Mg = 7190GMg
hcp + 891192; This work
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Table 7 continued

Phase, model and thermodynamic parameters (J/mol or J/mol K) Reference

GSn:Mg = 179*GSn + 5490GMg
hcp This work

0LAg,Mg:Mg = �912112 + 209.29T, 0LAg,Sn:Mg = �1317960.0 + 33.479T This work

b1(hR16) phase, (Mg, In)3(Mg, In):

GMg:Mg = 490GMg
hcp + 6694.4, GIn:In = 49*GIn, This work

GMg:In =
*GIn + 390GMg

hcp� 35145.6 + 3.189T, GIn:Mg = 39*GIn +
0GMg

hcp This work

c(InSn) phase, (In, Sn):
GIn =

*GIn + 10292.6� 7.649T, GSn =
*GSn + 924.7 �1.769T, [97]

0LIn,Sn = �15480.8 + 18.749T

b(InSn) phase, (In, Sn):
GIn:Va =

*GIn, GSn:Va =
*GSn + 5015.5� 7.509T, [97]

0LIn,Sn:Va = 292� 3.149T, 1LIn,Sn:Va = 627.6 + 0.299T

Mg2Snphase, (Mg)2(Sn):

G = �102589.8 + 367.59T� 68.3319T ln T� 0.01789869T2 + 3.33829910�79T3 + 95940/T [95]

bcc_B2 phase, (Ag, In, Mg, Sn)(Ag, In, Mg, Sn)

GMg:Ag = GAg:Mg = �22593.6 + 3.829T, GIn:Ag = GAg:In = 8267.6 + 1.369T This work

GMg:In = GIn:Mg = �2092 + 2.099T This work
0LAg,Mg:Ag =

0LAg:Ag,Mg = 37237.6� 0.059T, 0LAg,Mg:Mg =
0LMg:Ag,Mg = 8368� 0.059T This work

1LAg,Mg:Ag =
1LAg,Mg:Mg =

1LMg:Ag,Mg =
1LAg:Ag,Mg = �4811.6 + 1.269T This work

0LAg,In:Ag =
0LAg:Ag,In = 28350.8 + 1.369T, 0LAg,In:In =

0LIn:Ag,In = �11815.6 + 1.369T This work
1LAg,In:Ag =

1LAg,In:In =
1LIn:Ag,In =

1LAg:Ag,In = �6694.4 This work
0LAg,Mg:In =

0LIn:Ag,Mg = �33472� 0.849T This work
0LAg,Mg:Sn =

0LSn:Ag,Mg = �48952.8, 0LMg,Sn:Ag =
0LAg:Mg,Sn = �50626.4 This work

AgMg4phase, (Ag)(In, Mg)4 This work

GAg:Mg = 49GMg
hcp + GAg

fcc� 55980 + 19.079T, GAg:In = 49*GIn + GAg
fcc

Ag3Snphase, (Ag, Mg, Sn)3(Sn) This work

GAg:Sn = 39GAg
fcc + *GSn� 18430.5� 8.919T, GMg:Sn = 39GMg

hcp + *GSn This work

GSn:Sn = 49*GSn + 58576.0

AgIn2phase, (Ag)(In)2:G = GAg
fcc + 29*GIn� 21764 + 21.39T This work

Ag3Inphase, (Ag)3(Ag, In)

GAg:In = 39GAg
fcc + *GIn� 30982.5, GAg:Ag = 49GAg

fcc, 0LAg:Ag,In = �12296.8 + 71.559T This work

Ag2Inphase, (Ag)2(Ag, In, Sn)

GAg:In = 29GAg
fcc + *GIn� 23790.2� 1.339T, GAg:Ag = 39GAg

fcc, GAg:Sn = 29GAg
fcc + *GSn� 4184.0 This work

0LAg:Ag,In = �4184.0, 0LAg:Ag,Sn = �5439.2� 7.959T This work

bcc_B2 phase, (Ag, In, Mg, Sn)(Ag, In, Mg, Sn)

GMg:Ag = GAg:Mg = �22593.6 + 3.829T, GIn:Ag = GAg:In = 8267.6 + 1.369T This work

GMg:In = GIn:Mg = �2092 + 2.099T This work
0LAg,Mg:Ag =

0LAg:Ag,Mg = 37237.6� 0.059T, 0LAg,Mg:Mg =
0LMg:Ag,Mg = 8368� 0.059T This work

1LAg,Mg:Ag =
1LAg,Mg:Mg =

1LMg:Ag,Mg =
1LAg:Ag,Mg = �4811.6 + 1.269T This work

0LAg,In:Ag =
0LAg:Ag,In = 28350.8 + 1.369T, 0LAg,In:In =

0LIn:Ag,In = �11815.6 + 1.369T This work
1LAg,In:Ag =

1LAg,In:In =
1LIn:Ag,In =

1LAg:Ag,In = �6694.4 This work

InMg2phase, (In)(Mg)2:G = 29GMg
hcp + *GIn� 29022.64 + 1.099T This work

In2Mg5phase, (In)2(Mg)5:G = 59GMg
hcp + 29*GIn� 65022.3 + 5.149T This work

fcc_L12 phase, (Ag, Mg)(Ag, Mg)3
GMg:Ag = 4184.0, GAg:Mg = �2092 This work
0LAg:Ag,Mg = �3430.9 + 27.879T, 0LMg:Ag,Mg = 12259.1 + 36.239T, 0LAg,Mg:Ag = 2343.0 + 12.649T This work
0LAg,Mg:Mg = �795.0 + 10.969T, 1LAg:Ag,Mg =

1LMg:Ag,Mg = 43095.2 + 33.899T This work

�GIn ¼
R �CpIndt� T�

R �CpIn
T dt; �GSn ¼

R �CpSndt� T�
R �CpSn

T dt

�CpSn ¼25:858� 0:0010237� T� 36880=T�2 þ 1:9156602� 10�5 � T2 249 K < T < 250K

¼15:961þ 0:0377404� Tþ 123920=T�2 � 1:8727002� 10�5 � T2 251 K < T < 1000 K

¼35:098 506 K < T < 3000 K

�CpðInÞ ¼21:8386þ 0:01145132� Tþ 45812� T�2 þ 1:2721926� 10�5 � T2 298 K<T< 429:78 K

¼ 31:05� 0:0001919� T� 312000� T�2 þ 3:374� 10�8 � T2 429:79 K<T< 3800 K
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oGbcc B2
i:j ¼ oGbcc B2

j:i ; nLI
i;j:i ¼ nLII

i:i;j;
nPIi;j:k

¼ nPIIk:i;j;
nPIi;j;k:l ¼ nPIIl:i;j;k

ðEq 10Þ

Also, relations exist for the parameters between the
ordered and disordered solutions which are used in the
present work and are described in details in the refer-
ence.[104]

The disorder solid solutions hcp (Mg-rich), bct (Sn-
rich), tetatrahedral (In-rich), bcc, b(InSn), and c(InSn)

were modeled with one sublattice as (Ag, Mg, Sn), a sub-
regular solution approximation is used for the excess
Gibbs energy and the configurational entropy if of Bragg-
Williams type.

3.3 Liquid Phase

The thermodynamic properties of the liquid phase were
modeled using the Modified Quasichemical Model in the
Pair Approximation (MQMPA) developed by Pelton
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Fig. 7 Calculated heat formation of solid phases at 25 �C compared with experimental data[31,34-36]

Table 8 Calculated invariant reactions in the Ag-In system compared with experimental data

Reaction Reaction type Temperature (�C) Composition (In at.%) Reference

hcp + fccMAg3In Peritectiod 187 20.0 ÆÆÆ ÆÆÆ [46]

187 21.8 18.0 21.6 This work

Liquid + fccM bcc Peritectic 695 29.5 21 25.0 [46]

697 29.4 18.6 24.0 This work

fcc + bccM hcp Peritectiod 670 20.9 ÆÆÆ 25.0 [46]

667 20.2 25.3 23.6 This work

bccM liquid + hcp Remelting 660 29.0 32.5 ÆÆÆ [46]

660 26.7 33.4 24.6 This work

hcpM liquid + Ag2In Remelting 205 45.9 92.2 33.5 [46]

205 36.1 93.1 33.3 This work

Liquid + Ag2InMAgIn2 Peritectic 166 ÆÆÆ 33.5 ÆÆÆ [46]

163 95.8 33.3 66.7 This work

LiquidMAgIn2 + tet(In) Eutectic 144 96.8 ÆÆÆ ÆÆÆ [46]

144 97.2 66.7 100 This work

hcpMAg2In Congruent 312 ÆÆÆ ÆÆÆ ÆÆÆ [46]

313 33.3 33.3 ÆÆÆ This work
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et al.[105,106] A detailed description of the MQMPA and its
associated notation are given in refs.[105,106]

4. Experimental Procedures

Mg-Sn-Ag ternary alloys were prepared with pure Mg
(99.8 wt.%), Sn (99.9 wt.%), and Ag (99.9 wt.%) from Alfa

Aesar andmelted in a frequency induction furnace under high
purity argon atmosphere. In order to minimize the interaction
of the samples with the crucibles, Ta cubic-shaped crucibles
were made using Ta foil (99.5 wt.% purity, 0.15 mm
thickness). Each alloy was remelted three times in its crucible
in order to obtain a homogeneous alloy; the melting loss was
less than 5 wt.% for each sample. Mg-Sn-Ag samples were
then sealed into quartz capsules under argon atmosphere and
equilibrated at 415 �C for 20 days and at 350 �C for 35 days,
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respectively. These temperatures were chosen because they
correspond to the temperatures at which heat treatment is
usually performed on Mg alloys. Quenching was carried out
in water without breaking the quartz tubes. The alloys
preparation was done at Concordia University

Electron probe microanalysis (EPMA) of the quenched
samples was performed with the JEOL 8900 probe at

McGill University using wavelength-dispersive spectrome-
try (WDS). An accelerating voltage of 15 kV was used with
a 20 nA beam current, a spot size of 2 lm and counting
times of 20 s on peaks and 10 s on backgrounds. Raw data
were reduced with the PRZ correction using pure Mg, Sn,
and Ag metal standards. The experimental error limit of
EPMA measurement is about 0�3 at.%.
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Fig. 10 Calculated activity of In in the liquid phase in the temperature range of 727 to 1027 �C compared with experimental
data[48,50,51,54-56,59]
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Table 9 Calculated invariant reactions in the Ag-Sn system compared with experimental data

Reaction Reaction type Temperature (�C) Composition (Sn at.%) Reference

liquid + fcc M hcp Peritectic 724 19.5 11.5 13.0 [72]

724 20.3 11.3 12.7 This work

liquid + hcp M Ag3Sn Peritectic 480 49.6 22.8 25.0 [72]

480 52.1 25.3 26.0 This work

liquid M Ag3Sn + bct (Sn) Eutectic 221 96.2 25.9 99.91 [72]

221 96.2 25.9 99.93 This work
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Fig. 13 Calculated mixing of enthalpy of liquid phase of Ag-Sn system at 1000 �C compared with experimental data[53,75,78,84,85]
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Liquidus and polymorphic transformation temperatures
were measured by differential scanning calorimetry (DSC)
using the SETARAM instrumentation under a continuous
flow of purified argon at Concordia University. Experiments
were carried out by using sintered Al2O3 crucibles under
flowing argon gas with heating and cooling rates of 5 �C/
min. No reaction was observed between the samples and the
sintered Al2O3 crucibles.

5. Experimental and Thermodynamic
Optimization Results

5.1 Experimental Determination Results of the Mg-Sn-Ag
System

Equilibrium compositions measured at 415 and
350 �C in the Mg-rich area of the Mg-Sn-Ag system are
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Fig. 14 Calculated activity of Sn in liquid Ag-Sn alloys at 827 and 580 �C compared with experimental data[73,76,79-81,85,86]
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summarized in Table 3. Sums of elemental compositions are
always close to 100 wt.% which indicates that Mg loss by
evaporation was small. No ternary compound was found in
the measured sections. The solubility of Ag in Mg2Sn at 415
and 350 �C is very limited (less than 0.1 at.%). The
solubility of Sn in Mg3Ag at 415 and 350 �C is about 2.5 to
3 at.%. With Sn additions, the ternary equilibrium hcp
(Mg) + Mg2Sn + Mg3Ag was observed in both isothermal
sections. On the other hand, in the Mg-Ag system, no binary
equilibrium involving hcp (Mg) + Mg3Ag was detected.
Typical ternary Mg-Sn-Ag alloys are shown in the back-
scattered electron (BSE) images of Fig. 1. The constituted
phases in annealed samples were examined with XRD
technique, and the selected XRD patterns of samples Mg50-
Sn20-Ag30 and Mg80-Sn10-Ag10 are shown in Fig. 2. As
shown in Fig. 1(c), the amount of hcp (Mg) phase is small
in comparison with the Mg2-Sn and Mg3-Ag phases. The
weak diffraction patterns of the hcp (Mg) phase were
observed in the XRD results as shown in the Fig. 2(b).
These results are self-consistent.

The ternary isoplethal sections with the constant Sn of 10
and Ag of 30 (at.%) were measured in the present work by
DSC technique. The DSC curve of the Mg80-Sn10-Ag10
alloy is shown in Fig. 3. Three strong exothermic peaks and
one weak peak were observed in the cooling spectrum,
which were well repeated during heating with two endo-
thermic peaks and one weak liquid peak. All the thermal

signals obtained from DSC measurements are listed in
Table 4.

5.2 Thermodynamic Optimization Results

5.2.1 The Ag-Mg System. The calculated phase dia-
gram of the Ag-Mg binary system is shown in Fig. 4 along
with reported experimental data.[20-24,29-31] Ordering of the
bcc_B2 (AgMg), Ag3Mg and Mg3Ag phases was treated
with two sublattices as (Ag, Mg)m(Ag, Mg)n. Moreover,
based on the results of phase transition and the solid
solubility range of Mg54Ag17 reported by Kolesnichenko
et al.[29] Mg54Ag17 was treated as a high temperature stable
phase with a narrow solid solubility range, using a two
sublattice model, (Ag, Mg)17(Mg)54, in the present work.
The calculated temperature of the eutectic reaction liquid M

Mg54Ag17 + hcp is 471 �C, which is in good agreement
with the temperature of 472 �C measured by Kolesnichenko
et al.[29] All the invariant reactions of the calculated Ag-Mg
phase diagram are listed in Table 5.

The calculated enthalpy of mixing of the liquid phase at
1050 �C is presented in Fig. 5 and compared with the
experimental data of Kawakami,[32] which show a minimum
near xMg = 0.5. Consequently in the present work, the
coordination numbers for short-range ordering in the liquid
solution were fixed asZAgMg

Ag = 7and ZAgMg
Mg = 7(as listed in

Table 6). The calculated DGMg
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phase at 1400 �C, along with the experimental data of Gran
et al.[33] are depicted in Fig. 6. The calculated enthalpy of
formation of the solid phases at 25 �C is shown in Fig. 7
together with the experimental data.[31,34-36]

As shown in the figures, our calculated results are in
good agreement with experimental data. All the thermo-

dynamic parameters used in the present study are listed in
Tables 6 and 7.

5.2.2 The Ag-In System. The calculated phase diagram
of the Ag-In binary system is shown in Fig. 8 along with the
experimental data.[39,43,47,48] The bcc, fcc, hcp, AgIn2,
Ag2In, Ag3In phases were taken into account according to
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Table 10 Calculated invariant reactions in the liquidus projection of the Mg-Ag-In ternary system

Label T (�C) Reaction

Composition of liquid (at. %)

In Mg Ag

E1 145 LM tet(In) + bcc_B2 + In2Ag 1.08 2.84 96.08

U1 377 L + hcpMAgMg3 + fcc 18.97 70.09 10.94

U2 360 L + AgMg3M fcc + bbc_B2 22.36 66.64 11.00

U3 162 L + InAg2M In2Ag + hcp 95.58 0.09 4.33

U4 161 L + hcpM bcc_B2 + In2Ag 95.56 0.20 4.24

U5 156 L + fccM tet(In) + bcc_B2 96.69 2.17 1.14

U6 557 L + bcc_A2M hcp_A3 + bcc_B2 39.70 1.07 56.23

U7 468 L + Ag17Mg54M hcp_A3 + AgMg3 0.86 83.09 16.05

P1 792 L + fccM bcc_A2 + bcc_B2 10.20 12.55 77.25

P2 491 L + Ag17Mg54M hcp_A3 + AgMg3 0.54 78.36 21.10
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the experimental results reported above. The Ag2In phase
was treated with a two sub-lattice model as (Ag, In) (Ag)2 to
reproduce its solid solubility and crystal structure.

The Ag3In phase was calculated to decompose at 187 �C
following the peritectoid reaction hcp + fcc M Ag3In, which
is identical to the temperature measured by Weibke and
Eggers[39] and Campbell and Wagemann[43] All the invari-
ant reactions in the calculated phase diagram of Ag-In
binary system are listed in Table 8.

The calculated enthalpies of mixing of the liquid phase at
470, 755, 970 �C are shown in Fig. 9 along with experi-
mental data.[50-53,57] As shown in the figure, data obtained
by direct calorimetric measurements[52,53,57] are in reason-
able agreement with each other. However, data derived from
emf measurements[50,51] do not agree very well with the data

obtained by direct calorimetric measurements. Therefore,
priority was given to the later during the optimization. The
calculated activities of In in the liquid phase, collected
between 727 and 1027 �C, are shown in Fig. 10 together
with the experimental data discussed above.[48,50,51,54-56,59]

The calculated enthalpies of formation of the solid phases at
25 �C are shown in Fig. 11 along with the experimental data
of Kleppa[49] and Orr and Hultgren.[58]

As we can see from the figures, our calculated results are
in good agreement with experimental data. All the param-
eters of the thermodynamic models are listed in Tables 6
and 7.

5.2.3 The Ag-Sn System. The calculated phase diagram
of the Ag-Sn binary system is shown in Fig. 12 along with
experimental data.[62,63,65,66,68-71,82] According to our
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calculations, the hcp phase is formed from the peritectic
reaction liquid + fcc M hcp at 724 �C, which is identical to
the experimental data reported by Murphy.[65] The Ag3Sn
binary compound was treated as a solid solution with a two
sub-lattice model as (Ag, Sn)3 (Sn). It was calculated to
form at 480 �C from the peritectic reaction liquid + hcp M

Ag3Sn, which is in good agreement with experimental
data.[63,65] All our calculated invariant reactions along with
the compiled experimental data are listed in the Table 9.

The calculated enthalpy of mixing of the liquid phase at
1000 �C, the calculated activity of Sn in the liquid phase,
and the calculated enthalpies of formation of the solid
phases at 25 �C are shown along with experimental data in
Fig. 13, 14, and 15, respectively. As we can see, all the data
are in a reasonable agreement with each other and our
optimization results agree well with the reported experi-
mental data. All the optimized thermodynamic parameters
are listed in Tables 6 and 7.
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Fig. 20 Calculated isoplethal sections of the Mg-Ag-Sn system at (a) 10 Sn and (b) 10 Ag (wt.%) compared with experimental data[89]
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5.2.4 The Mg-Ag-In System. The Mg-In binary system
was optimized in our previous work[97] and the Ag-Mg, and
Ag-In in this one. The liquid phases of the Mg-In, Ag-Mg,
and Ag-In binary systems have totally different thermody-
namic properties; as a result, ternary parameters of the liquid
phase of Mg-Ag-In system were modeled with the sym-
metric Kohler-like[107] approximation in the MQMPA.

The calculated isothermal section at 280 �C and the three
ternary isopleths are shown in Figs. 16 and 17, respectively,
along with experimental data[87] As shown in Fig. 16, the

calculated results are in a reasonable agreement with
experimental data. However, the solubility limits of In and
Ag in the terminal hcp (Mg) phase, as reported by
Kolesnichenko,[87] are different from the compiled data on
the Mg-Ag binary system.[19] Consequently, new experi-
mental data appear to be necessary here to resolve this issue.

The calculated liquidus projection of the Mg-Ag-In
ternary system is shown in Fig. 18 and the calculated
invariant reactions are listed in Table 10. All the optimized
thermodynamic parameters are listed in the Tables 6 and 7.
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5.2.5 The Mg-Ag-Sn System. All the available data
from Raynor and Frost,[88] Karonik et al.[89] and our current
experimental data were taken into account in the present
optimization. Since the liquid phases of the Ag-Mg, Ag-Sn,
and Mg-Sn binary systems have totally different thermody-
namic properties, the symmetric Kohler-like[107] extrapola-
tion method was used for optimizing ternary liquid
parameters of the Mg-Ag-Sn system within the MQMPA.

The calculated isothermal sections of the Mg-Ag-Sn
ternary system are shown in Fig. 19 (a)-(d) along with
experimental data from Raynor and Frost,[88] Karonik
et al.[89] and our new experimental data. The calculated
ternary isoplethal sections with constant Sn of 10 and Ag of
10 (wt.%) are depicted in Fig. 20 together with the
experimental data of Karonik et al.[89] The calculated

ternary isopleths with constant value of 10 Sn and 30 Ag
at.%, in comparison with the current experimental data, are
shown in Fig. 21. As it can be seen, our calculated results
are in reasonable agreement with the experimental values.
The calculated liquidus projection of the Mg-Ag-Sn system
is shown in Fig. 22 and the calculated invariant reactions are
listed in Table 11. All the optimized thermodynamic
parameters are listed in the Tables 6 and 7.

5.2.6 The Ag-In-Sn System. The In-Sn binary system
was optimized in our previous work.[97] Zivkovic et al.[108]

performed a comparative thermodynamic study of the Ag-
In-Sn system and pointed out that the Toop-like model[107]

is the most accurate method to calculate ternary liquid
mixing parameters assuming Ag as an asymmetric compo-
nent; Kohler and Toop[107] extrapolation techniques were
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Fig. 22 Calculated liquidus projection of the Mg-Ag-Sn ternary system

Table 11 Calculated invariant reactions in the liquidus projection of the Mg-Sn-Ag ternary system

Label T (�C) Reaction

Composition of liquid (at.%)

Mg Ag Sn

P1 221 L + hcpM bct + Ag3Sn 0.01 3.85 96.13

E1 200 LM bct + Mg2Sn + hcp 8.66 2.18 89.16

U1 641 L + fccM hcp + bcc_B2 28.39 58.46 13.15

U2 382 L + bcc_B2M hcp + Mg2Sn 30.99 34.34 34.67

U3 503 L + bcc_B2MMg54Ag17 + Mg2Sn 74.87 19.73 5.39

U4 476 LM hcp + Mg54Ag17 + Mg2Sn 83.07 13.06 3.87
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both tested and Toop-like was found to be the best method
to model the ternary liquid phase, which is in agreement
with the suggestion from Zivkovic et al.[108]

The calculated isothermal sections at 180, 250, 400, and
600 �C and isoplethal sections are shown in Fig. 23 and 24,
respectively, along with experimental data.[91] Comparison
of the measured[94] and calculated enthalpy of mixing of the
liquid phase with different In/Sn atomic ratios is presented
in Fig. 25. As it can be seen, the calculated results agree
relatively well with experimental data. All the thermody-
namic parameters used are listed in the Tables 6 and 7.

5.2.7 The Mg-Sn-Ag-In System. Phase equilibria in the
Mg-rich portion of the Mg-Sn-Ag-In quaternary system at
300 and 450 �C were investigated by Kolesnichenko
et al.[109] by electrical conductivity, optical microscopy,
and XRD. In the present optimization, the excess Gibbs

energy contribution from the binary and ternary subsystems
of the Mg-Sn-Ag-In quaternary system was interpolated
using the method introduced by Pelton and Chartrand.[105]

The same method and notation were used in the present
work, and no additional model parameters were added. The
calculated isothermal sections at 300 and 450 �C are shown
in Fig. 26 along with the experimental data reported by
Kolesnichenko et al.[109] As we can see, the current
optimization gives satisfactory results when compared with
experimental data.

Solidification calculations with the Scheil cooling tech-
nique for Mg96Sn3Ag1, Mg95Sn3Ag1In1, Mg93Sn6Ag1,
and Mg92Sn6Ag1In1 (wt.%) alloys are shown in Fig. 27
(a-d). As depicted in Fig. 27 (a) and (c), the secondary
Mg54Ag17 phase will appear in the final solidification
microstructure of Mg-Sn based alloys with addition of 1
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wt.% Ag, which may improve mechanical properties.
Compared to Ag addition alone, the combined addition of
Ag and In (Fig. 27 (b) and (d)) gives some promising
indications, more secondary precipitates, to improve the
mechanical properties of Mg-Sn based alloys.

6. Discussions and Conclusions

Phase relations in the Mg-rich portion of the Mg-Sn-Ag
system at 350 and 415 �C were determined by the
quenching method, XRD, and EPMA. No ternary com-
pound was found in the isothermal sections. The solid
solubility of Ag in Mg2Sn at 350 and 415 �C is very limited,
less than 0.1 at.% (Since these values are within the error
limits of the EPMA measurements, the solubilities are
considered negligible), while the solubility of Sn in Mg3Ag
is quite large as 3±0.5 at.%, which is in good agreement
with the experimental data reported by Karonik et al.[89] The
ternary isoplethal sections with constant value of 10 Sn and
30 Ag at.% for Mg-Sn-Ag ternary system were also
determined by DSC measurements.

A critical evaluation and thermodynamic assessment of
the Ag-Mg, Ag-In and Ag-Sn binary systems, Mg-Ag-In,

Mg-Ag-Sn and Ag-In-Sn ternary systems, and Mg-Sn-Ag-In
quaternary system was carried out by the CALPHAD
method. The Gibbs energy of the liquid phase was
optimized with the Modified Quasichemical Model in pair
approximation (MQMPA) and the solid solutions and
intermetallic compounds were described with the sub-lattice
model.

For the Ag-Mg binary system, ordering of the bcc
(bcc_A2 and bcc_B2) and fcc (fcc_A1 and fcc_L12) phases
was modeled with two sublattices and the symmetry of the
crystal structure was taken in consideration. Moreover, all
the phases and solid solubility limits reported in previous
works were considered. AgMg3 and Mg54Ag17 were also
modeled with distinct sublattices according to their crystal
structures in contrast with Lim et al.,[30] who treated them as
single phases. Our optimized phase diagrams and thermo-
dynamic properties are in better agreement with experimen-
tal data than Lim et al.,[30] especially for the description of
the solidus curve of hcp(Mg) above the eutectic temperature
(see Fig. 28) which is very important for the investigation of
Mg alloys.

Although the thermodynamic optimization of the Ag-In
binary system was carried out numerous times,[49,91] it still
lacks accuracy. For instance, the high temperature stable
phases bcc_A2, and InAg3 were always ignored. In the
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experimental data[91]

308 Journal of Phase Equilibria and Diffusion Vol. 35 No. 3 2014



present work, after a critical evaluation of all the available
experimental data, a strict thermodynamic re-optimization
on the Ag-In binary system was performed using all
experimental data, and all the existing phases were consid-
ered.

Phase relations in theMg-Ag-In,Mg-Sn-Ag andAg-In-Sn
ternary systems were optimized using all available experi-
mental data. As shown in Fig. 16, the solid solubility of In in
AgMg3 and bcc_B2 is quite important. However, due to the
lack of experimental data, the ternary solid solubility of Ag in
Mg-In compounds was not considered in the present work.

Consequently, to obtain better optimization results for the
Mg-Ag-In ternary system, new experimental data are clearly
needed, especially at low Ag concentrations.

The current optimization of the Mg-Sn-Ag ternary
system is in good agreement with the current experimental
data and the previous ones.[88,89] The calculated liquidus
projection (see Fig. 22) indicates the presence of a stable
ternary peritectic reaction with a high Mg component at the
end of the solidification process (see Fig. 27).

In the Ag-Sn-In ternary system, which is part of the lead-
free solder thermodynamic database, experimental and

E
nt

ha
lp

y 
of

 m
ix

in
g,

 k
J·

m
ol

20 40 60 80

Ag / at. % 
0 100

Gather et al. [94], calorimetric measurements method

-1

-6

-4

-2

0

2

Fig. 25 Measured and calculated enthalpy of mixing of the Ag-In-Sn liquid alloys for different In/Sn atomic ratios[94]

10 30 40 50 60 70 80 90Mg90.5Ag9.5 Mg90.5In9.5

Mg90.5Sn9.5

10
20

30
40

50
60

70
80

90

Mg90.5In9.5 / wt. %

M
g9

0.
5S

n9
.5

 / 
w

t. 
%

hcp+Mg  Sn2 

hcp

hcp+Mg  Sn+AgMg2 3 

hcp+AgMg3 

hcp+AgMg4

T=300  Co 

Single phase
Two phases
Three phases

Kolesnichenko et al.  [109]:

10 30 40 50 60 70 80 90Mg90.5Ag9.5 Mg90.5In9.5

Mg90.5In9.5 / wt. %

20

Mg90.5Sn9.5

10
20

30
40

50
60

70
80

90

M
g9

0.
5S

n9
.5

 / 
w

t. 
% hcp+Mg  Sn2 

hcp

T=450  Co 

Single phase
Two phases
Three phases

Kolesnichenko et al.  [109]:

(a) (b)

Fig. 26 Calculated isothermal sections of the Mg-Sn-Ag-In ternary system at (a) 300 �C and (b) 450 �C along with experimental
data[109]

Journal of Phase Equilibria and Diffusion Vol. 35 No. 3 2014 309



hcp

Mg2Sn
Mg54Ag17

hcp

Mg2Sn

Mg54Ag17

hcp

Mg2Sn

Mg54Ag17

AgMg3

fcc

hcp

Mg2Sn

Mg54Ag17

AgMg3

fcc

 Mg95Sn3Ag1In1 (wt. %)

 Mg93Sn6Ag1 (wt. %)  Mg92Sn6Ag1In1 (wt. %)

10

20

30

40

50

60

70

80

90

100

350 450 550 650

1

2

3

4

5

6

7

8

9

10

Temperature /   C

350 400 450 500 550 600 650
o

gr
am

,  
in

 p
er

ce
nt

liquid liquid10

20

30

40

50

60

70

80

90

100

Temperature /   C

350 400 450 500 550 600 650
o

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

gr
am

, i
n 

pe
rc

en
t

350 450 550 650
Temperature /   CoTemperature /   Co

Temperature /   C

350 400 450 500 550 600 650
o

10

20

30

40

50

60

70

80

90

100

liquid
350 450 550 650

1

2

3

4

5

6

7

8

9

10

Temperature /   Co

hcp

hcp

hcp

Temperature /   C

350 400 450 500 550 600 650
o

 Mg96Sn3Ag1 (wt. %)

10

20

30

40

50

60

70

80

90

100

liquid

0

0.8

1.6

2.4

3.2

4

hcp

350 450 550 650
Temperature /   Co

gr
am

, i
n 

pe
rc

en
t

gr
am

,  
in

 p
er

ce
nt

gr
am

,  
in

 p
er

ce
nt

gr
am

, i
n 

pe
rc

en
t

gr
am

, i
n 

pe
rc

en
t

gr
am

, i
n 

pe
rc

en
t

(a) (b)

(c) (d)

Fig. 27 Calculated solidification phase proportions (weight basis) using the Scheil cooling method for Mg-Sn-Ag and Mg-Sn-Ag-In al-
loys: (a) 96Mg3Sn1Ag, (b) 95Mg3Sn1Ag1In, (c) 93Mg6Sn1Ag, (d) 92Mg6Sn1Ag1In

Mg / at. %
20 40 60 80 Mg

1000

Ag

fcc

bcc_B2
hcp

Liquid

4g
Mg

A

Lim et al. [30]

A
gM

g3

Mg54Ag17

900

800

700

600

500

400

300

200

100

T
em

pe
ra

tu
re

,  
Co

fcc_L12

Present work

Fig. 28 Calculated phase diagram of the Ag-Mg system in the present work in comparsion with the previous optimization by Lim
et al.[30]

310 Journal of Phase Equilibria and Diffusion Vol. 35 No. 3 2014



thermodynamic data are quite numerous. In the present
work, all these data are in good agreement with the current
optimization.

By combining all these results with our previous
thermodynamic optimization of the Mg-In-Sn ternary sys-
tem,[97] a self-consistent thermodynamic database for the
Mg-Sn-Ag-In quaternary system was constructed despite the
limited experimental data[109] available. As shown in
Fig. 27, solidification calculations with the Scheil cooling
technique for the Mg-Sn based alloys with Ag and In
additives give interesting indications to improve the
mechanical properties of these alloys. With the combining
addition of Ag and In to Mg-xSn (x = 3 or 6 wt.%) alloys,
the final solidification microstructures become more com-
plex, as they include secondary phases such as Mg54Ag17,
Mg3Ag, and fcc. The appearances of these secondary phases
during the cooling process will improve grain refinement in
Mg2Sn and hcp phases.

A self-consistent thermodynamic database of the Mg-X
(X: Ag, Ca, In, Li, Na, Sn, Sr, and Zn) multi-component
system was constructed with the previously published
results[97,110] and the present thermodynamic optimized
results of the Mg-Sn-Ag-In quaternary system which shall
help in the development of Mg alloys for industrial
applications.
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