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Abstract Due to the complexity of the multi-arc plasma

spraying process in combination with the harsh ambient

conditions, i.e., extremely high temperatures and velocities,

the use of numerical analysis, such as modern methods

from computational fluid dynamics (CFD), is unavoidable

to gain a better understanding of the coating process.

However, the tradeoff between the accuracy of the

increasingly sophisticated CFD models and their compu-

tation time has always been a concern. This study presents

a novel machine learning approach capable of predicting

the temperatures, velocities, and coordinates of the in-flight

particles in a plasma jet. To this end, two individual

residual neural networks are trained consecutively with

CFD simulation data sets, in a way that the deviations

between the targets and predictions of the first network are

used as additional inputs for the second network. The

results for test data not used during the training of the

networks reveal that the simulated particle trajectories in

the plasma jet can be fully replicated by the developed

machine learning approach. This indicates the potential of

the approach to replace the CFD simulations of the plasma

jet, which reduces the computation time from several hours

to a few seconds.
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Abbreviations

CCD Central composite design

CFD Computational fluid dynamics

DOE Design of experiment

LHS Latin hypercube sampling

MAPE Mean absolute percentage error

ML Machine learning

MSE Mean square error

PD Position-dependent

PDE Partial differential equation

PINN Physics-informed neural network

ResNet Residual neural network

SVM Support vector machine

List of Symbols

bðlÞ Bias vector, ResNet

c Counter variable

Dp Particle size

dTp
Difference betw. target and prediction w.r.t.

temperature Tp

dvp Difference betw. target and prediction w.r.t.

velocity vp
dxp Difference betw. target and prediction w.r.t.

coordinate xp
dzp Difference betw. target and prediction w.r.t.

coordinate zp
dTp;min Minimum absolute difference betw. target and

predictions w.r.t. temp. Tp

dTp;i;j Absolute difference betw. target i and
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eMAPE;PD Position-dependent mean absolute percentage

error

eMSE Mean square error

I Electric current

i Loop variable and index for data point

j Loop variable and index for data point

jbest Index of best prediction within radius r

k Index of yp-position in plasma jet

l Index of hidden layer, ResNet

L Index of output layer, ResNet

_mp Particle feed rate

N Number of data points

N test Number of test data points

Nout Number of targets without prediction within

radius r

p Prediction of ResNet

pTp
Prediction for temperature Tp

pvp Prediction for velocity vp

pxp Prediction for coordinate xp

pzp Prediction for coordinate zp

p!coord Predicted 3D coordinate vector

QAr Primary gas flow (argon)

Qcg Carrier gas flow

Rsq R-squared (coeff. of determination)

Rsq;PD Position-dependent R-squared (coeff. of

determination)

Rsq;PD;1 Numerator in computation of position-

dependent R-squared

Rsq;PD;2 Denominator in computation of position-

dependent R-squared

r Radius for position-dependent accuracy metrics

Tp Particle temperature

t True/target value

tTp
Target value for temperature Tp

tvp Target value for velocity vp
txp Target value for coordinate xp
tzp Target value for coordinate zp
t Mean value of targets

tTp
Mean value of target temperatures

t
!

coord
Target 3D coordinate vector

uyp ResNet input for coordinate yp
vp Particle velocity

W ðlÞ Weights matrix, ResNet

xðlÞ Output of layer l, ResNet

xp Particle x-coordinate in plasma jet

yp Particle y-coordinate in plasma jet

zp Particle z-coordinate in plasma jet

r Activation function, ResNet

Introduction

Plasma spraying involves dozens of factors, which may

influence the final coating quality (Ref 1). These influ-

encing factors include, among others, the plasma torch

geometry and its operating parameters, carrier gas flow

rate, injection direction and velocity, particle size distri-

bution and particle morphology, stand-off distance, tem-

perature, velocity and turbulence profile of the plasma

flow, etc. (Ref 2). With regard to the numerous influencing

factors, plasma spraying process involves many sources of

uncertainty or non-deterministic and random elements (Ref

3). For example, while the temperature and velocity fields

are the governing plasma jet properties for particle heating

and acceleration (Ref 4), individual particles will follow

different trajectories and heating histories due to the effect

of random turbulent fluctuations (Ref 5).

Considering the complex interactions between the var-

ious influencing parameters and the harsh spraying condi-

tions, i.e., extremely high temperatures and velocities, the

optimization of the spraying parameters using a purely

empirical approach is a time-consuming and rather

impractical undertaking. Numerical analysis to investigate

the particle behavior in plasma jet can help understand the

complex interdependencies of the plasma spraying process.

Hence, particle motion in plasma jet has been intensively

researched in the literature by modeling the momentum,

heat, and mass transfer to injected powder particles using

computational fluid dynamics (CFD) (Ref 2, 6). However,

the more sophisticated CFD models have the drawback of

requiring a lot of computation time, even though these

techniques allow to describe very complex systems,

specifically the multi-arc plasma spraying process (Ref 7).

A promising approach for a fast replication of the CFD

simulations in plasma spraying is to combine the simula-

tion models of the process with Machine Learning (ML)

algorithms. There are only few studies in the literature

using simulation data for training ML models in Thermal

Spraying, mostly aimed at providing the user with optimal

process parameters (Ref 8). In a previous work (Ref 9), we

developed fast and precise metamodels to predict the

average particle properties near the substrate by employing

two individual ML methods, namely Support Vector

Machine (SVM) and Residual Neural Network (ResNet),

trained with CFD simulations of the plasma jet. The results

showed that the developed metamodels could predict

average particle properties much more accurately than the

properties of individual particles. This phenomenon is to be

expected because plasma spraying is a stochastic process

with many influencing factors. Therefore, individual par-

ticle behavior is substantially more random than average

particle behavior.
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The objective of the current work is to develop an ML

approach to predict the behavior of the individual particles

and replicate the simulated particle trajectories in the

plasma jet. The behavior of an individual particle in this

study is described by its temperatures, velocities and

coordinates during flight, which are considered as the

predictions of the models. The developed ML approach

contains the supervised training of two consecutive

ResNets, in a way that the differences between the target

values and the predictions of the first ResNet for particle

temperatures, velocities and coordinates are used as addi-

tional inputs for the second one. These differences are

stored in a database. Hence, when a new test case with new

process parameters is to be computed, the additional input

values for the second ResNet can be set up by searching the

database for the best-fitting values with respect to process

parameters and particle sizes. To quantify the prediction

accuracy of the model, we define novel metrics based on

the mean absolute percentage error and the coefficient of

determination (R-squared).

In the following sections, first the preparation of the

simulation data as well as the architecture of the ML

approach are explained in detail. Subsequently, we quali-

tatively and quantitatively investigate three different test

cases and comment on the efficiency of our new approach

in relation to the CFD simulations.

Numerical Modeling

At the Surface Engineering Institute (IOT) at RWTH

Aachen University, a numerical model for the simulation of

the plasma spraying process was developed in previous

studies (Ref 10, 11). The model, implemented using

ANSYS CFX version 20.2 (ANSYS, Inc., Canonsburg,

USA), is divided into two sub-models, one for the plasma

generator and one for the plasma jet. First, the flow in the

plasma generator is simulated. The resulting temperature,

velocity, turbulent kinetic energy and turbulent dissipation

rate profiles at the plasma generator outlet are then used as

boundary conditions at the plasma jet inlet to couple both

sub-models. In the plasma jet, the plasma-particle inter-

action has to be accurately reflected. For this purpose, the

effects of the plasma on the particles and vice versa are

taken into account in a two-way coupled manner in the

plasma jet model (Ref 2). The models were validated by

experiments extensively (Ref 12). Figure 1 shows the

simulated particle trajectories with their temperatures

inside the plasma jet exemplarily for one simulation. Please

note the coordinate system, which in the following is used

to determine the particle positions xp, yp, zp in the plasma

jet.

Process parameters, which are used as input values for

the simulations, are primary gas flow QAr (Ar for argon),

electric current I, carrier gas flow Qcg, particle feed rate _mp,

and distribution of the particle size Dp. The input param-

eters for the simulations are set up using design of exper-

iment (DOE) methods (Ref 13), in particular Latin

Hypercube Sampling (LHS) (Ref 14) or Central Composite

Design (CCD) (Ref 15). More information on the data

preparation for the simulations can be found in (Ref 9).

The objective of this work is to develop a new sub-

model of the plasma jet with a machine learning approach

capable of predicting the particle temperatures Tp and

velocities vp as well as the particle coordinates xp and zp for

a given position yp in the spray direction. This approach

involves two consecutively trained neural networks. The

data preparation for the neural networks is described in the

following section.

Data Preparation for Neural Networks

For the training of neural networks, we use data from 40

simulations initially set up by CCD. The process parame-

ters for these simulations are listed in Table 1. In each

simulation, 2,000 particles are injected into the plasma jet,

and a particular stand-off distance of the substrate (yp) is

prescribed. Only the particles which reach the substrate are

considered in the final simulation data.

To keep the data manageable for the purpose of machine

learning, we fix 16 equidistantly placed positions yp 2
0:12; 0:27½ �m along the jet, cf. Figure 1, and extract all

particle data closest to these positions. With 40 simula-

tions, up to 2,000 particle trajectories per simulation and 16

positions for each particle trajectory, we end up with

approximately 1.28 million data points for the neural net-

work training. For testing the trained neural networks, we

use the data of three further simulations, which are not

involved in the training. The process parameters of these

test cases are given in Table 2. The same approach as

described above is used for the data extraction at 16 yp-

positions such that we have up to 32,000 data points per

test case.

Machine Learning Approach with Two Residual
Neural Networks

In (Ref 9), we presented two ML approaches for the pre-

diction of particle properties in plasma spraying on a

substrate, namely an SVM and a ResNet. The inputs to

these ML methods were the same process parameters as

described above, i.e., primary gas flow QAr, electric current
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I, carrier gas flow Qcg, particle feed rate _mp, and distribu-

tion of the particle size Dp. The objective was to predict the

particle properties on the substrate at a given stand-off

distance. Hence, the stand-off distance was the sixth input.

In plasma spraying, individual particles collide substan-

tially with the injector wall, thus there is a random initial

distribution of the particles. The collisions of the particles

with the injector wall cause the final particle properties to

be very sensitive to the initial position, i.e., small differ-

ences in the initial position can have a large influence on

the final particle positions, velocities, and temperatures on

the substrate. Hence, it is possible that two particles of

nearly the same size and for the same process parameters

exhibit different temperatures or velocities. As a conse-

quence, with the two approaches in (Ref 9) it is only

possible to predict the average particle behavior.

In this work, we extend the ResNet approach to a

method containing two individual, consecutively trained

ResNets with the aim of predicting the behavior of indi-

vidual particles. The ResNets we use are fully connected

without skip connections. Their forward propagation for-

mula is given by

xðlÞ ¼
x l�1ð Þ þ r W ðlÞT xðl�1Þ þ bðlÞ

� �
; l ¼ 2; . . .; L� 1;

r W ðlÞT xðl�1Þ þ bðlÞ
� �

; l ¼ f1; Lg:

8<
:

ðEq 1Þ

In this formula, xðlÞ denotes the output of layer l of the

ResNet, r is the activation function, W ðlÞ and b lð Þ are the

weights and biases of layer l, respectively, and the L th

layer is the output layer (i.e., the network has L� 1 hidden

layers). The only difference compared with a classical

artificial neural network is the addition of the output xðl�1Þ

of the respective previous layer l� 1 to the output of layer

l. This is done to improve the training of deep networks

(Ref 16). More information on our ResNets, in particular

regarding the backpropagation formula, can be found in

(Ref 9). The structure of the two ResNets of our new

approach is illustrated in Fig. 2. The last four inputs and

their corresponding connections that are colored red only

appear in the second ResNet, i.e., the first ResNet has the

first six inputs and the second one has all the ten inputs. As

shown in the illustration, we use ten hidden layers with six

neurons each. This choice is discussed in Sect. ‘‘ResNet

Setup’’.

The whole procedure of training and testing the two

ResNets of our new approach is illustrated in Fig. 3. First,

we replace the sixth input quantity (stand-off distance of

the substrate) used in (Ref 9) by the y-coordinate of the

particles in the plasma jet yp. This allows for predicting the

particle properties in the whole plasma jet instead of only

on the substrate. The four outputs of the ResNet are the

same as in (Ref 9): particle temperature Tp, particle

velocity vp and particle coordinates xp and zp. The ResNets

are trained with data from 40 simulations as described in

Sect. ‘‘Data Preparation for Neural Networks’’ and sum-

marized in Table 1.

The training of the first ResNet with six inputs and four

outputs results in a neural network which is capable of

predicting the average particle behavior as explained

above. Hence, the difference between the target values

(i.e., the simulation data) and the ResNet outputs for the

training data regarding particle temperatures, velocities and

coordinates for an individual particle can be significant.

These differences are stored in a database for each particle

and for each of the four output quantities together with the

corresponding process parameters. In the following, we

denote these differences by

Fig. 1 Exemplary illustration of

the plasma jet simulation
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Table 1 Process parameter inputs for training the neural networks from 40 simulations

Sim Primary gas flow, QAr

[SLPM]

Electric current, I
[A]

Carrier gas flow, Qcg

[SLPM]

Particle feed rate, _mp [g/

min]

Distribution of particle size, Dp

[lm]

1 40 470 5 20 - 55 ? 35

2 46 441 4 16 - 35 ? 15

3 46 441 4 16 - 75 ? 55

4 46 441 4 24 - 35 ? 15

5 46 441 4 24 - 55 ? 35

6 46 441 6 16 - 35 ? 15

7 46 441 6 16 - 75 ? 55

8 46 441 6 24 - 35 ? 15

9 46 441 6 24 - 75 ? 55

10 46 499 4 16 - 35 ? 15

11 46 499 4 16 - 75 ? 55

12 46 499 4 24 - 35 ? 15

13 46 499 4 24 - 75 ? 55

14 46 499 6 16 - 35 ? 15

15 46 499 6 24 - 35 ? 15

16 46 499 6 24 - 75 ? 55

17 50 400 5 20 - 55 ? 35

18 50 470 3 20 - 55 ? 35

19 50 470 5 10 - 35 ? 15

20 50 470 5 20 - 35 ? 15

21 50 470 5 20 - 75 ? 55

22 50 470 5 30 - 55 ? 35

23 50 470 7 20 - 55 ? 35

24 50 540 5 20 - 55 ? 35

25 54 441 4 16 - 35 ? 15

26 54 441 4 16 - 75 ? 55

27 54 441 4 24 - 35 ? 15

28 54 441 4 24 - 75 ? 55

29 54 441 6 16 - 35 ? 15

30 54 441 6 16 - 75 ? 55

31 54 441 6 24 - 75 ? 55

32 54 499 4 16 - 35 ? 15

33 54 499 4 16 - 75 ? 55

34 54 499 4 24 - 35 ? 15

35 54 499 4 24 - 75 ? 55

36 54 499 6 16 - 35 ? 15

37 54 499 6 16 - 75 ? 55

38 54 499 6 24 - 35 ? 15

39 54 499 6 24 - 75 ? 55

40 60 470 5 20 - 55 ? 35
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dTp;i ¼ ti � pið ÞTp
; dvp;i ¼ ti � pið Þvp ;

dxp;i ¼ ti � pið Þxp ; dzp;i ¼ ti � pið Þzp ;
ðEq 2Þ

where ti and pi are the target and prediction, respectively,

of data point i. The four differences describe the absolute

deviation of the properties of a particle i of size Dp;i at

position yp;i for a fixed process (regarding QAr, I, Qcg, and

_mp) from the predicted average behavior of that particle.

With the information from the database, we set up a

second ResNet with ten input quantities, see Fig. 2 and 3.

The first six quantities are the same as the ones of the first

ResNet, and the last four quantities are the differences dTp
,

dvp , dxp , and dzp . The second ResNet is then trained with the

same training data as the first ResNet, complemented by

the differences stored in the database. This leads to pre-

dictions of the second ResNet replicating the training data

with a high accuracy.

The main results of the procedure explained above are

the trained second ResNet and the differences stored in the

database. The latter can be thought of as a substitute for the

Table 2 Process parameter inputs for testing the neural networks

Test

case

Primary gas flow, QAr

[SLPM]

Electric current, I
[A]

Carrier gas flow, Qcg

[SLPM]

Particle feed rate, _mp [g/

min]

Distribution of particle size,

Dp [lm]

1 46 499 6 16 - 75 ? 55

2 50 470 5 20 - 55 ? 35

3 54 441 6 24 - 35 ? 15

Fig. 2 Structure of the two ResNets (inputs and connections in red only appear in the second ResNet) and their forward propagation procedure

with comparison to a classical artificial neural network
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missing information regarding the random collisions of the

particles with the injector wall and consequently the ran-

dom initial particle distribution, which allows to predict the

behavior of individual particles. The second ResNet can be

used for a new process, which has not been included in the

training, in the following manner: Imagine one wants to

predict the particle properties for the process parameters

QAr ¼ 46 SLPM, I ¼ 499 A, Qcg ¼ 6 SLPM, _mp ¼ 16 g/

min and Dp 2 ½55; 75� lm, which is our test case 1, see

Table 2. This case is close to simulation 16 in Table 1 but

differs in the particle feed rate _mp, which for simulation 16

is _mp ¼ 24 g/min. However, we use the differences

regarding simulation 16 stored in the database to set up the

inputs 7 to 10 of the second ResNet for the test case. For

each particle of the test case, the input values for the four

additional input quantities are determined by searching the

database for the particle ðiÞ which is close to the current

particle of the test case regarding its yp-position with a

small tolerance and ðiiÞ whose size Dp is closest to the size

of the current particle. The differences stored in the data-

base for the found particle are then used as the four addi-

tional input values. For each particle, they can be

understood as the expected deviations regarding Tp, vp, xp,

and zp of that particle from the average behavior. Of

course, this can only be an approximation since the process

parameters are similar but not exactly the same ( _mp ¼ 16 g/

min instead of _mp ¼ 24 g/min, see above). To summarize,

setting up the input values for the difference inputs 7 to 10

from the database is a two-fold process: first, the best-

fitting simulation regarding the process parameters has to

be found. Second, from the found simulation the best-fit-

ting particles regarding the position yp and the particle size

Dp have to be found. Obviously, building up a large

database covering a wide range of process parameters is

crucial for a good prediction accuracy of the second

ResNet regarding the individual particle behavior. Of

course, the first ResNet for predicting the average particle

behavior can also be used for the test cases. This is only

done for comparison with the second ResNet in the fol-

lowing, indicated by the dashed arrows in Fig. 3.

ResNet Setup

For the training of the two ResNets, we have to fix some

hyperparameters. As mentioned above and shown in Fig. 2,

the ResNets have ten hidden layers (i.e., L ¼ 11), and each

layer has six neurons. This choice has turned out to provide

ResNets within a moderate training time being deep and

wide enough to accurately predict the average (first

ResNet) and the individual particle behavior (second

ResNet). The learning rate for the backpropagation is

0.005, and for the activation function r we use the

hyperbolic tangent. For the initialization of the weights and

biases of the ResNets, the Glorot initialization (Ref 17) is

applied. All input and target data are standardized by the

Fig. 3 Illustration of the training and testing procedure for the machine learning approach with two ResNets
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z-score method, and the values of the mean and standard

deviation used for standardization are stored in a file. When

later applying the trained ResNet to a new data set, the

values are loaded from that file to guarantee a consistent

scaling of the new data set.

As explained in Sect. ‘‘Data Preparation for Neural

Networks’’, we use the data from 43 simulations and,

consequently, we have 43 different data sets. Hence, a

classical splitting into a training and a test data set, as

usually done for the training of a neural network, is not

necessary in our setting. We use the data of 40 simulations

for training the ResNets, see Table 1, and the data of the

other three simulations for testing the ResNets, see Table 2.

The training is conducted with full batching such that all

input data are forward propagated at once in each training

iteration. The training of the first and the second ResNet is

done for 1,000 and 3,000 iterations, respectively. Since the

first ResNet is only capable of predicting the average

particle behavior, the training converges quickly. In con-

trast, the second ResNet is trained to predict individual

particle behavior with a high accuracy, requiring a signif-

icantly larger number of iterations. Please note that a full

hyperparameter study varying the numbers of hidden layers

and neurons per layer, the learning rate and the activation

function or techniques such as hyperparameter tuning

might slightly improve the results of the ResNets. How-

ever, with the setup described above, predictions with high

accuracy are obtained as demonstrated in Sect. ‘‘Results

and Discussion’’.

Accuracy Metrics

Typical accuracy metrics used to evaluate the quality of the

predictions of a neural network for regression problems are

the mean absolute percentage error (MAPE)

eMAPE ¼ 1

N

XN
i¼1

ti � pi
ti

����
����; ðEq 3Þ

where ti and pi again are the targets and predictions,

respectively, for the ith of the overall N data points, and the

coefficient of determination (also called R-squared)

Rsq ¼ 1�
PN

i¼1 ti � pið Þ2PN
i¼1 ti � tð Þ2

; ðEq 4Þ

where t is the mean of all target values. The MAPE sums

up the absolute values of the relative errors of the predic-

tions and should be close to zero. In contrast, the R-squared

value for a perfect prediction is one, whereas a model

always predicting the mean value leads to an R-squared

value of zero. If the predictions are worse than predicting

the mean value, R-squared becomes negative.

We want to investigate the quality of our new ML

approach with two ResNets based on the above metrics.

Both formulas rely on the comparison of predictions and

targets per data point. However, our objective is to predict

the whole plasma jet, which not only involves the particle

properties (temperature Tp and velocity vp) but also their

position in the jet, i.e., their coordinates xp and zp. Hence,

an accurate prediction of the properties and the position at

the same time is crucial, whereas the data-point-wise cor-

relation is not important. In other words, a good prediction

for a particular target particle has to have temperature and

velocity values being similar to the values of the target

particle and to be close to the target particle regarding the

coordinates. Hence, we introduce position-dependent (PD)

alternatives for eMAPE and Rsq and call them eMAPE;PD and

Rsq;PD. Since we cannot expect a perfect prediction of the

coordinates xp and zp based on which the position-depen-

dent metrics for Tp and vp have to be calculated, the new

metrics include a tolerance regarding the predicted coor-

dinates. The algorithm for the computation of the new

metrics is given below in Algorithm 1. The setting for an

exemplary target particle is schematically illustrated in

Fig. 4.

Fig. 4 Schematic illustration of the setting for computing the

position-dependent accuracy metrics according to Algorithm 1
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Please note that the algorithm is given for computing the

metrics with respect to the particle temperature Tp. The

procedure for the particle velocity vp is analogous.

The algorithm proceeds as described in the following.

For each data point i of the test data set (line 3), a target

coordinate vector t
!

coord;i is set up (line 4) containing the

target coordinates txp;i and tzp;i and the input coordinate

uyp;i. Then, within a radius r defined by the user (line 1)

around t
!

coord;i, the best prediction for the current target i is

searched for (lines 5–17). This requires an inner for-loop,

which for the ease of representation here again iterates over

all test data points. If the test data points are sorted

according to their yp-position, in a more efficient version,

the second for-loop can be restricted to a small fraction of

the test data points dependent on the current input value

uyp;i of the target i. For each prediction j of the inner loop,

the coordinate vector p!coord;j is set up (line 8) containing

the predicted coordinates pxp;j and pzp;j and the input

coordinate uyp;j. If the Euclidean distance di;j between tar-

get and predicted coordinate vector computed in line 9 is

smaller than the prescribed radius r (line 10), the absolute

temperature difference dTp;i;j between target i and predic-

tion j is computed (line 11). If this difference is smaller
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than any temperature difference previously determined for

the current target i (line 12), the minimum temperature

difference dTp;min is updated (line 13) and the index of the

current prediction j is stored in jbest (line 14). If no pre-

diction is found within the given radius r, i.e., all predic-

tions are too far away from the current target regarding

their position, jbest still contains its initial value zero. Note

that this assumes the point indexing starting at one and not

at zero, which depends on the used programming language.

If a prediction was found within the radius r (line 18), the

position-dependent MAPE eMAPE;PD and the numerator

Rsq;PD;1 and denominator Rsq;PD;2 needed for the position-

dependent R-squared Rsq;PD are updated (lines 19–21). In

addition, the counter c is incremented (line 22). The final

values for eMAPE;PD and Rsq;PD are computed in lines 25–26.

The number of targets for which no prediction of Tp lies

within radius r is stored in Nout in line 27.

For an exemplary target i with coordinate vector

t
!

coord;i, the setting is illustrated in Fig. 4. Several predic-

tions lie within the circle with radius r around that target.

One of them is prediction j with coordinate vector p!coord;j

and distance di;j to target i. The colors of the particles

represent the magnitude of the values of the considered

property (temperature Tp or velocity vp), where blue rep-

resents a low value and red a large value. Obviously, the

best prediction for target i with respect to the considered

property and within the radius r is the one marked as

prediction jbest because both target i and prediction jbest are

yellow.

The position-dependent accuracy metrics defined above

can be interpreted as measuring how accurate the particle

properties Tp and vp can be predicted dependent on the

accuracy of the prediction of the particle coordinates xp and

zp. An increasing radius r leads to an increasing accuracy

for Tp and vp, a decreasing accuracy for xp and zp and a

smaller number of targets Nout for which no prediction is

close enough. Therefore, in this study we investigate the

effect of the pre-defined radius on the accuracy metrics by

considering two different radii, namely r ¼ 0:5mm and

r ¼ 0:8mm, and compare the results, see Sect. ‘‘Results for

the Three Test Cases’’.

Results and Discussion

In the following, we first present the results of the training

of the first and the second ResNet. Subsequently, the sec-

ond ResNet is tested for three different test cases not

included in the training. This is done qualitatively as well

as quantitatively and in comparison with results of the first

ResNet. In addition, computation times of the ResNets are

compared with those of the CFD simulations.

Training Results

The loss function we use for the training of the ResNets is

the mean square error (MSE)

eMSE ¼ 1

N

XN
i¼1

ðti � piÞ2Tp
þ ðti � piÞ2vp þ ðti � piÞ2xp þ ðti � piÞ2zp

h i
:

ðEq 5Þ

The indices denote the quantity for which the individual

squared error is computed. The training with 1,000 (first

ResNet) and 3,000 iterations (second ResNet) leads to the

loss depicted in Fig. 5. Since the first ResNet can only

predict the average particle behavior due to the missing

information regarding the random initial particle distribu-

tion inside the injector, the loss cannot be further reduced.

Figure 6 compares the predictions of the first ResNet

with the target values for the particle temperatures Tp for a

part of the approximately 1.28 million training data points,

precisely for the first 17 of the 40 simulations used for

training. In addition, the mean values for each of the 17

simulations contained in the training data are depicted. The

figure is intended to give an impression of the overall

particle temperature distribution. The partition into the

different simulations is clearly visible. It is evident that the

behavior of individual particles cannot be predicted accu-

rately by the first ResNet. For instance, for the first simu-

lation (particles 1–32,000) the target temperatures (red) are

between approximately 300 and 3,725 K, while the pre-

dictions of the first ResNet (blue) only range from 2,385 to

3,175 K. However, the mean values of the predictions

show a good agreement with the mean values of the targets.

On the basis of these results, the differences dTp;i, dvp;i, dxp;i,

and dzp;i for each data point i are stored in a database

together with the corresponding process parameters

according to the 40 different simulations as explained in

Sect. ‘‘Machine Learning Approach with Two Residual

Neural Networks’’.

The difference data contain individual information for

each particle and, hence, comprise all effects which lead to

a deviation of a particle from the average behavior, espe-

cially induced by the random collisions of the particles

with the injector wall. Consequently, using the stored dif-

ferences as additional inputs for the second ResNet and

training the second ResNet with the same training data as

the first one, results in an accurate predictability of indi-

vidual particle behavior, see Fig. 7. This figure again

shows the target temperatures of the first 17 simulations

(red) and the corresponding predictions (blue). The spread

of the predictions of the second ResNet is much wider than

the spread of the predictions of the first ResNet in Fig. 6

and much closer to the spread of the target temperatures.

The high accuracy of the second ResNet in prediction of
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Fig. 5 Training loss eMSE of the

two ResNets on a logarithmic

scale

Fig. 6 Particle temperatures

predicted by the first ResNet for

the training data compared with

target values

Fig. 7 Particle temperatures

predicted by the second ResNet

for the training data compared

with target values
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individual particle behavior for the training data is due to

the exact differences being known from the first ResNet.

This is also reflected in the accuracy metrics MAPE and R-

squared according to Eq 3 and 4, respectively, which are

listed in Table 3 for the training data. While the first

ResNet leads to MAPEs between 18 and 20%, the second

ResNet reduces these values to about 2%. The R-squared

values increase from 0.521 for temperature Tp and 0.77 for

velocity vp to nearly one. The quality of the second ResNet

when applied to unknown data with a prior search for the

best-fitting differences in the database has still to be

investigated. This is done in the following section.

Results for the Three Test Cases

The ResNet results for the three test cases according to

Table 2 are shown in Fig. 8, 9, and 10, on the left for the

temperatures Tp and on the right for the velocities vp. The

plots compare the predictions of the second ResNet with

those of the first one and the target values. Note that for the

purpose of a clear visualization not all particles are dis-

played. Furthermore, regarding the predictions, the left half

of each plot only shows those of the second ResNet (blue),

while the right half only shows those of the first ResNet

(green). The particles are sorted with respect to the input

particle coordinate yp, also plotted in Fig. 8, 9, and 10. This

explains the steplike behavior of predictions and targets

occurring whenever yp is significantly increased, which is

especially visible in Fig. 10 for test case 3. For all three test

cases, the second ResNet predicts a considerably wider

range of temperatures and velocities than the first ResNet,

almost covering the whole spread of the targets. However,

the close-up for 150 particles of test case 1 in Fig. 11

reveals that the predictions of individual values of the

temperatures or velocities may still be inaccurate when

sorted per data point. However, this is not a problem as our

objective is to predict the particle properties Tp and vp and

the particle coordinates xp and zp at the same time. Hence,

the accurate prediction of Tp and vp dependent on the

particle position is crucial, while the correlation with the

corresponding data points is not important in terms of the

process development, see also the explanation in Sect.

‘‘Accuracy Metrics’’.

The whole plasma jets, i.e., the particles for the 16 yp-

positions, for test cases 1 and 3 are depicted in Fig. 12 and

13, respectively. The plasma jet of test case 2 is similar to

that of test case 1. In both figures, the targets are shown on

the left-hand side and the predictions of the second ResNet

on the right-hand side. Both the temperature Tp (Fig. 12)

and the velocity vp (Fig. 13) as well as the coordinates xp
and zp can be well predicted with the second ResNet. The

form of the free jets can be explained with the combination

of the parameter sets from DOE listed in Table 2. The test

cases 1 and 2 have larger particle size distributions than test

case 3. Since the larger powder particles possess greater

momentum, the carrier gas flow should be lower for larger

particle size distributions to obtain an ideally shaped free

jet, which is not the case here according to Table 2. This

leads to an unconventional arc-shaped free jet for test

case 1 and an ideal disk-shaped free jet for test case 3,

allowing us to investigate the applicability of our new ML

approach to different kinds of free jets.

While Fig. 12 and 13 shows the whole free jet, the

results of a particular spray distance for the first and second

ResNet are also investigated in the following. For this

purpose, approximately 2,000 particles at yp ¼ 0:22 m,

which corresponds to a stand-off distance of about

130 mm, are considered. Figure 14 shows the target values

at that position, where this time we use the velocities vp for

test case 1 (left-hand side) and the temperatures Tp for test

case 3 (right-hand side). The two black circles in Fig. 14

(left) illustrate the chosen radii r according to Algorithm 1

used for the computation of the position-dependent accu-

racy metrics that will be explained below. The predictions

of the first ResNet and the second ResNet are presented in

Fig. 15 and 16, respectively. We again emphasize that not

only Tp and vp are predicted but also the coordinates xp and

zp, i.e., in Fig. 14 the particles are plotted according to the

target values for the coordinates, whereas in Fig. 15 and 16

they are plotted according to the predicted coordinate

values.

Since the first ResNet is only able to predict average

values, which also concerns the particle coordinates xp and

zp, all particles are concentrated to a small region in Fig. 15

for both test cases. These results indicate that a prediction

of individual particle behavior is not possible by only using

the first ResNet. In contrast, the results of the second

ResNet in Fig. 16 are in good agreement with the targets in

Fig. 14 for both test cases, demonstrating the capability of

the second ResNet to predict individual particle behavior.

Table 3 Accuracy for

predicting the training data with

the first and the second ResNet

1st ResNet 2nd ResNet

Temperature, Tp Velocity, vp Temperature, Tp Velocity, vp

eMAPE 18.09% 19.59% 1.37% 2.21%

Rsq 0.521 0.770 0.996 0.994
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Of course, the spread of the particles is not exactly the

same and there are visible differences in the temperatures

and velocities concerning some particles, but the overall

prediction of the jet is reasonable.

For a quantitative investigation of the ResNets, we study

the position-dependent accuracy metrics introduced in

Sect. ‘‘Accuracy Metrics’’. We present results for two

different radii r to assess the influence of r. Tables 4 and 5

list the results for r ¼ 0:5mm and r ¼ 0:8mm for all three

test cases. As mentioned above, the circles corresponding

to these two radii are illustrated in Fig. 14 (left) to give a

visual impression of the search radii of a particular target

particle. The small circle corresponds to r ¼ 0:5mm and

the large one to r ¼ 0:8mm. Within the circles, the most

accurate prediction with respect to the target particle is

sought. Table 4 lists the fraction Nout=N test of the targets for

which no prediction of Tp or vp lies within the particular

radius r regarding the particle coordinates, while Table 5

summarizes the position-dependent MAPE eMAPE;PD and

the position-dependent R-squared Rsq;PD. The values

Nout=N test only depend on the coordinates and not on the

different properties, i.e., temperature Tp and velocity vp.

Directly noticeable in Table 4 are the high values for the

numbers of targets for which no prediction can be found

within radius r in case of the first ResNet. Considering

Fig. 15, this is not surprising since the predicted particles

all lie in a small region only reflecting the average posi-

tions. Since the position-dependent accuracy metrics are

only calculated with those targets for which a prediction is

found within radius r, the meaningfulness of the accuracy

Fig. 8 Test case 1: Particle temperatures (left) and velocities (right) predicted by the first and the second ResNet compared with target values

Fig. 9 Test case 2: Particle temperatures (left) and velocities (right) predicted by the first and the second ResNet compared with target values
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Fig. 10 Test case 3: Particle temperatures (left) and velocities (right) predicted by the first and the second ResNet compared with target values

Fig. 11 Test case 1: Close-up of the particle temperatures (left) and velocities (right) for 150 particles predicted by the second ResNet compared

with target values

Fig. 12 Test case 1: Targets (left) and predictions of the second ResNet (right) for the particle temperatures in the whole plasma jet consisting of

16 yp-positions
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results should necessarily be interpreted by considering the

Nout=N test values. For test case 1 with r ¼ 0:5mm, there is

actually no target with a prediction close enough

(Nout=N test = 100%) to even compute the position-depen-

dent accuracy metrics. In contrast, for the second ResNet

the highest value for Nout=N test is 11.9% for test case 1 with

r ¼ 0:5mm. In general, the arc-shaped free jet leads to

lower numbers of predictions within the radius than the

disk-shaped free jet, because the particles are less con-

centrated in case of the arc-shaped free jet.

Table 5 shows that, compared with the first ResNet, all

values of both accuracy metrics are significantly better for

the second ResNet. For the latter, the worst values of the

accuracy metrics are only eMAPE;PD ¼ 3:88% (test case 1,

r ¼ 0:5mm, Tp) and Rsq;PD ¼ 0:723 (test case 3,

r ¼ 0:5mm, Tp), indicating an accurate prediction.

Increasing the radius to r ¼ 0:8mm, i.e., allowing a larger

tolerance for the position of the particles, these values are

improved to eMAPE;PD ¼ 2:76% and Rsq;PD ¼ 0:877. In

general, it turns out that the velocity vp can be predicted

with a higher accuracy than the temperature Tp. For vp,

especially the position-dependent R-squared is always

close to one with the worst value being Rsq;PD ¼ 0:987 (test

cases 1 and 3, r ¼ 0:5mm). This can be explained by the

strong correlation of the particle velocity with the particle

size distribution and its drag force. As stated in (Ref 18), in

general and for a constant drag coefficient, the particle

velocity is proportional to the square root of the ratio of the

distance traveled, divided by the particle diameter. On the

other hand, the influencing factors on the particle temper-

atures are much more complicated, as radiation, heat

transfer, particle vaporization, and other physicochemical

Fig. 13 Test case 3: Targets (left) and predictions of the second ResNet (right) for the particle velocities in the whole plasma jet consisting of 16

yp-positions

Fig. 14 Velocity targets of test case 1 (left) and temperature targets of test case 3 (right) at spray distance of y � 130 mm
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mechanisms play a dominant role. Hence, considering the

particle size distribution as one of the inputs of the ResNet

model, it is expected to have a better prediction accuracy

for particle velocities.

Comments on Computational Efficiency

In the following, we comment on the computational effi-

ciency of our new machine learning approach and relate it

to the CFD simulations. This allows to assess in which

cases the application of the two-ResNet model is beneficial.

An extensive study of computation times and speed-ups,

however, is out of the scope of this work.

To evaluate the computational efficiency of our new ML

approach, we have to split the computation times into two

parts: first, the time needed for the training of the two

ResNets and second, the time needed for the later appli-

cation, which only involves using the database and evalu-

ating the second ResNet. Our two-ResNet model is

implemented in Matlab and uses multithreading.

Fig. 15 Predictions of the 1st ResNet for the particle velocities of test case 1 (left) and for the particle temperatures of test case 3 (right) at spray

distance of y � 130 mm

Fig. 16 Predictions of the 2nd ResNet for the particle velocities of test case 1 (left) and for the particle temperatures of test case 3 (right) at spray

distance of y � 130 mm

Table 4 Percentage of target particles for which no prediction is

found within tolerance radius r ¼ 0:5mm or r ¼ 0:8mm when com-

puting the position-dependent accuracy metrics (tc = test case)

1st ResNet 2nd ResNet

Tol. radius r 0.5 mm 0.8 mm 0.5 mm 0.8 mm

Nout=N test tc1 100% 99.5% 11.9% 4.7%

Nout=N test tc2 93.7% 89.4% 6.3% 2.7%

Nout=N test tc3 91.3% 86.4% 0.8% 0.08%

1462 J Therm Spray Tech (2023) 32:1447–1464

123



The training of the two ResNets has to be done once in the

beginning or, as a retraining, whenever the database is to be

extended by new simulation data. The training time depends

on the number of process parameter sets to be covered by the

database and, hence, on the overall number of particles.

Usually, it amounts to a few minutes on a cluster using 24

cores running at 2.25 GHz clock speed, where the training of

the second ResNet takes longer than the training of the first

one since more iterations are required, see Fig. 5.

Applying the second ResNet to a new process first

requires a search of the database to set up the values for the

four additional inputs. This is done in a few seconds. The

evaluation of the second ResNet to compute the predictions

then takes less than a second.

Of course, building up a large database covering a wide

range of process parameters is crucial for the accuracy of the

predictions of the second ResNet. This requires a large num-

ber ofCFDsimulationswhich take about three hours each on a

cluster using 24 cores running at 2.1 GHz clock speed.

However, once this is done, the second ResNet provides

results within a few seconds. Compared with three hours, this

is an enormous speed-up which in most cases will justify the

loss of accuracy resulting from using the ML approach.

To summarize, the two-ResNet approach is particularly

beneficial if the database covers the test case to be com-

puted adequately, i.e., if a process with process parameters

close to the ones of the new test case is available in the

database. Otherwise, a CFD simulation should be con-

ducted which then in turn can be used to extend the data-

base for the second ResNet. In the long term, i.e., after a

large database has been built up, the second ResNet can

replace the CFD simulations, reducing computation times

from hours to seconds.

Conclusions and Outlook

The objective of this study was to predict the behavior of

individual particles in the plasma jet with two consecutive

residual neural networks (ResNets), trained with CFD

simulations of a multi-arc plasma spraying system. For this

purpose, first the simulation data sets, including the input

process parameters in combination with their in-flight

particle temperatures, velocities and coordinates, were

prepared by a design matrix based on the Central Com-

posite Design (CCD) method. The two aforementioned

ResNets were then trained consecutively with the prepared

simulation data, in a way that the differences between the

targets and predictions of the first ResNet were used as

additional inputs for the second one. These differences can

be thought of as a substitute for the missing information

regarding the random initial particle distribution due to

particle collisions with the injector wall, which allows to

predict the behavior of individual particles. The differences

were stored in a database to be able to set up the additional

inputs for the second ResNet if a new test case has to be

computed. To quantify the accuracy of the model in terms

of replication of the simulated particle trajectories in the

plasma jet, position-dependent accuracy metrics for tem-

peratures and velocities were defined. The following con-

clusions can be drawn from the presented results:

• The developed ML approach with two consecutive

ResNets allows accurate prediction of individual par-

ticle properties with respect to the particle positions

and, therefore, replication of the simulated particle

trajectories in the plasma jet. An accurate data-point-

wise prediction cannot be guaranteed.

• The results of the newly defined position-dependent

accuracy metrics for the test cases reveal a significantly

better accuracy for the second ResNet compared with

the first one.

• The particle velocities can be predicted with a higher

accuracy than the temperatures. This can be explained

with the strong correlations of particle velocity with

particle size distribution and its drag force.

• The whole profile of the simulated plasma jets can be

replicated with sufficient accuracy, indicating the

capability of the developed model to substitute the

CFD simulations.

Table 5 Position-dependent

accuracy metrics with tolerance

radius r ¼ 0:5mm or r ¼ 0:8
mm for predicting the test data

with the first and the second

ResNet (tc = test case)

1st ResNet 2nd ResNet

Temperature Tp Velocity vp Temperature Tp Velocity vp

Tol. radius r 0.5 mm 0.8 mm 0.5 mm 0.8 mm 0.5 mm 0.8 mm 0.5 mm 0.8 mm

eMAPE;PD tc1 … 7.59% … 6.87% 3.88% 2.76% 2.04% 1.28%

eMAPE;PD tc2 8.70% 8.15% 3.18% 2.67% 1.47% 1.06% 0.78% 0.45%

eMAPE;PD tc3 5.43% 5.45% 3.68% 3.09% 3.06% 1.83% 0.73% 0.39%

Rsq;PD tc1 … 0.492 … 0.859 0.893 0.948 0.987 0.994

Rsq;PD tc2 0.669 0.703 0.926 0.940 0.943 0.966 0.994 0.998

Rsq;PD tc3 0.574 0.572 0.775 0.819 0.723 0.877 0.987 0.995
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• With the developed ML approach, the particle trajec-

tories can be replicated dramatically faster than with

the computationally expensive CFD simulations.

To guarantee accurate predictions for a wide range of

process parameters, building up a large database of dif-

ferences is desirable. Each extension of the database

requires a retraining of the two ResNets. This is a classical

transfer learning task and should be done by applying

efficient retraining algorithms such as ensemble Kalman

filtering (Ref 19, 20).

Future studies may deal with the concept of physics-

informed neural networks (PINNs) (Ref 21) to enhance the

prediction accuracy of individual particle behavior. This

incorporates physical laws into the learning process by

adding the residuals of a system of partial differential

equations (PDEs), governing the simulations, to the loss

function of the applied neural network.
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