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With the aim of achieving a better understanding of the nitriding process of iron-based components (steels),
as applied in engineering practice, the theoretical background and experimental observations currently
available on the crystallographic, morphological, and compositional properties of the nitride precipitates in
nitrided model binary and ternary, ferritic Fe-based alloys are summarily presented. Thermodynamic and
kinetic considerations are employed in order to highlight their importance for the nitriding reaction and the
resulting properties of the nitrided zone, thereby providing a more fundamental understanding of the
nitriding process.
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1. Introduction

Nitriding is a thermochemical surface treatment, by which
nitrogen is introduced from an outer gas atmosphere, plasma, or
salt bath into the surface adjacent regions of a component
(Ref 1-3). The nitrogen absorbed at the surface will diffuse
inwardly leading to the development of the so-called diffusion
zone. At sufficiently high chemical potential of nitrogen in the
nitrogen-donating medium (the ‘‘nitriding atmosphere’’), iron may
react directly with nitrogen leading to the development of a layer
of iron nitride(s) on the specimen surface, the so-called compound
layer, on top of the diffusion zone. This layer is generally
composed of grains of c¢-Fe4N1�x and e-Fe3N1+x (Ref 2).

In pure iron and in plain carbon steels, upon slow cooling
(from the nitriding temperature) or prolonged aging at lower
temperatures, precipitation of c¢ nitride from the nitrogen-
supersaturated ferrite matrix can occur in the diffusion zone
with a characteristic needle shape (Ref 4). Also, at temperatures
smaller than say 150 �C, the formation of an intermediate
precipitate a¢¢-Fe16N2 can occur (Ref 5, 6).

Phase transformations can also occur in the compound layer
upon cooling after nitriding. Thus, c¢ may precipitate in e
(giving rise to the typical ‘‘staircase microstructure’’) (Ref 7)
and a-Fe may precipitate (as needles) in c¢ (Ref 8).

If the nitrided iron-based material contains alloying ele-
ments (Me) with an affinity for nitrogen stronger than that of
iron for nitrogen, the nitrogen in the diffusion zone will interact
with the alloying element. In the case of ferritic materials
(nitriding temperatures in the range 510-580 �C), this usually
means the precipitation of more or less fine alloying element
nitrides. Examples of such papers (with Me as indicated): Ti
(Ref 9-11), V (Ref 12-16), Cr (Ref 17-24), Mo (Ref 9, 25-27),
Al (Ref 28-33), Si (Ref 34-37), and Mn (Ref 38-42). In the case
of austenitic materials, a strongly nitrogen-supersaturated (up to
25 at.%) solid solution may develop at sufficiently low
temperatures (say 450 �C) to suppress the mobility of the
alloying element Me and thus the precipitation of alloying
element nitride particles (pp. 169-170 in Ref 43 and Ch. 14 in
Ref 3).

In the present paper, the focus lies on the development of
alloying element nitrides in the ferritic diffusion zone during
the nitriding process.

2. Strength of the Alloying Element (Me)-Nitrogen
(N) Interaction

In order to determine the nitriding response that can be
expected for Me, with nitrogen, N, in iron-based materials
containing the nitride forming alloying element, knowledge of
the strength of interaction of the alloying elements present in
the system is helpful. Alloying elements having a strong
nitrogen affinity are likely to form very stable compounds with
nitrogen, i.e., the nitrides of these alloying elements will have a
strongly negative Gibbs energy of formation from the elements.
Alloying elements commonly present in steel and which can
form nitrides in the matrix are Ti, V, Al, Si, Cr, and Mo (see
Table 7.1 in Ref 3). Alloying elements as Ni, Co, or Cu can
only form nitrides at chemical potentials of nitrogen even
higher than those required for the development of iron nitrides
(at the surface) and are therefore not considered here.

If the MeNx particle forms within a grain of the ferrite
matrix, it is constrained by the surrounding matrix and strains
arise due to the volumetric mismatch of the nitride precipitate
and the ferrite matrix (see Table 1) and the crystallographic
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constraints as exposed at the precipitate/matrix interface. The
total volumetric mismatch can be considered by comparing the
molar volumes of the alloying element nitride, mMeNX , and the
molar volume of Fe in the ferritic matrix, vFe, according to:

Dm
m

¼ mMeNX � mFe
mFe

� 100% ðEq 1Þ

recognizing that upon precipitation one mole MeNx develops
from one mole Me atoms originally dissolved in the nitrogen-
less, parent ferrite lattice.

The strain energy, which arises during precipitation, may
slow the nitride-precipitation process considerably. A striking
case occurs for Me = Si: although the precipitation of Si3N4 is
accompanied by the release of a large amount of chemical
Gibbs energy [210 kJ mol�1 per mole N2 (Ref 3)], its
development occurs at the expense of an even larger amount
of strain energy, if full elastic accommodation of the misfit
would occur [523 kJ mol�1 per mole N2 (Ref 3)]. This leads to
silicon reacting only extremely slowly with the inwardly
diffusing nitrogen (Ref 36).

In order to characterize this interplay of release of chemical
Gibbs energy, DGchem, and expense of strain energy, DGstrain,
an interaction parameter I was proposed, defined as (Ref 3, 44):

I ¼ �DGchem

DGstrain
: ðEq 2Þ

It allows to arrange the reactivities of various Me with N in
binary ferritic alloys in roughly this order: Ti>V>Al>
Cr> Si>Mo. Note that in binary Fe-Mn alloys, complex
phase transformation reactions take place (Ref 38-42), which
has led to its exclusion from this series.

3. Crystal Structures of MeNx

The most common composition and crystal structure of the
alloying element nitride (as it (can) occur(s) for Me = Ti, V, Al,
and Cr) are described by the stoichiometry MeN and the rock
salt (NaCl) crystal structure. Yet, a large variety of crystal
structures occurs for phases in the binary Me-N systems; an

overview of nitride phases that can form in steels is presented in
Ref 45. That listing is not exhaustive: for example, the d-MoN
phase that develops by discontinuous precipitation (DP) in
binary Fe-Mo alloys (Ref 27) has a complex hexagonal crystal
structure, amorphous Si3N4 is found to precipitate in Fe-Si
alloys (Ref 35, 36), and a ternary, layered hexagonal CrMoN2

nitride forms by DP upon prolonged nitriding of ternary Fe-Cr-
Mo alloys (Ref 46), etc.

4. Precipitation Morphology and Microstructure

The crystal structures of the nitride precipitates determine
their shape and crystallographic orientation in the ferrite matrix.
The most widely encountered crystal structure is the NaCl-type
crystal structure. TiN, VN, cubic AlN, CrN, and Mo2N (with
50% vacancies on the N sublattice) all precipitate in this
modification. The good matching of the NaCl-type crystal
structure to the bcc ferrite matrix crystal structure in the Baker-
Nutting orientation relationship (OR) (Ref 47) at the {100}a-Fe
habit planes determines the shape of the precipitates: they
develop as finely distributed, usually nano-sized platelets on the
{100}a-Fe planes of the ferrite matrix, (see Fig. 1). As they form
largely homogeneously throughout the ferrite matrix, this
microstructure is commonly referred to as continuously pre-
cipitated (CP) (Ref 3, 43). The fine distribution of nitride
precipitates, their large volume mismatch and coherent nature
of the platelet faces are the main origins of the high hardness
and large residual microstresses that develop in the diffusion
zone upon nitriding.

In binary Fe-Cr (Ref 18-20, 22), Fe-V (Ref 15) and Fe-Mo
(Ref 27) alloys, as well as in ternary Fe-Cr-Mo (Ref 46, 48) and
quaternary Fe-Cr-Mo-V (Ref 49) alloys, prolonged aging may
lead to the development of a much coarser lamellar microstruc-
ture consisting of alternating ferrite and nitride lamellae, (see
Fig. 2). This microstructure forms by a discontinuous, moving
grain boundary-mediated mechanism (Ref 50, 51).

In Fe-Cr and Fe-V alloys, a discontinuous coarsening (DC)
reaction occurs, which is driven by the reduction of precipi-
tate—matrix interfacial area, loss of nitrogen supersaturation of
the matrix and (misfit) stress relaxation (Ref 18). The DC
reaction can be expressed in the following way:

Table 1 Lattice parameters (a, c), number of Me atoms per unit cell (z), and volume misfit Dm
m

� �
between the nitride and

the pure ferrite matrix, for various alloying element nitride phases

Nitride Crystal lattice Lattice parameters, Å z Dm
m , % Reference

TiN Cubic a = 4.2417 4 62 91
VN Cubic a = 4.139 4 51 91
AlN Hexagonal a = 3.11 4 77 92

c = 4.979
Mo2N Cubic a = 4.163 4 53 91
CrN Cubic a = 4.14 4 51 91
Cr2N Hexagonal a = 4.795 6 26 93

c = 4.469
Si3N4 Hexagonal a = 7.71 6 112 94

c = 2.908
d3-MoN Hexagonal a = 5.63 8 67 95

c = 5.736
CrMoN2 Hexagonal a = 2.85 6 56 46

c = 15.63
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a0 þ b0 ! aþ b; ðEq 3Þ

where a¢ denotes the supersaturated, strained ferrite matrix, b¢
denotes the fine, (semi-)coherent CP nitride particles, a the
relaxed ferrite matrix, and b the coarsened nitride phase.

In binary Fe-Mo and ternary Fe-Cr-Mo alloys, a discontinuous
precipitation (DP) reaction occurs, in which not only coarsening (as
forDC)occurs, butwhich also involves aphase transformationof the

initially precipitated, intermediate CP nitride phase to the thermo-
dynamically more stable nitride phase of different composition and
crystal structure:d-MoNforms fromc-Mo2N inbinaryFe-Moalloys
and CrMoN2 forms from (CrzMo1�z)N(1+z)/2 in low Cr/Mo-ratio Fe-
Cr-Mo alloys (Ref 46, 48). The additional contribution of the
chemical energy released by formation of the more stable nitride
phase accelerates the DP reaction as compared to the DC reaction
(Ref 48). The reaction DP can be expressed in the following way:

Fig. 1 TEM bright field (left), dark field (right) micrographs, and corresponding selected area diffraction pattern (SADP), of an Fe-2.0 at.%Cr
alloy specimen nitrided at 580 �C for 385 h with a nitriding potential of 0.1 atm�½: The aperture for dark field imaging, employing the intersec-
tion of the streaked diffraction spots of CrN of two orientation variants, is indicated by the white circle; white arrows indicate the positions of
intensity maxima along the streaks pertaining to 200CrN-type spots. From Ref 83

Fig. 2 SEM micrographs recorded from the cross-sections of (a) a DC region in Fe-1.81 s at%Cr-0.25 at.%Mo alloy after nitriding at 580 �C
for 72 h with a nitriding potential of 0.1 atm�½. (b) DP regions in Fe-1.04 at%Cr-1.01 at.%Mo alloy after nitriding at 580 �C for 72 h with a
nitriding potential of 0.1 atm�½. From Ref 48
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a0 þ b ! aþ d; ðEq 4Þ

where a¢ denotes the supersaturated, strained ferrite matrix, b
denotes the intermediate CP nitride particles, a the relaxed
ferrite matrix, and d the thermodynamically stable DP nitride
phase.

The consequence of the formation of the coarsened
microstructure by both types of discontinuous reactions is a
considerable loss of hardness and residual stresses in these
regions, see e.g., Ref 24, 27, 48.

5. Development of Nitrogen Content Depth
Profiles

The strength of the Me-N interaction also has predictive
power for the shape of the nitrogen content depth profiles: the

stronger the interaction, the more immediate the dissolved
alloying element will react with the inwardly diffusing
nitrogen. Two extreme cases can be identified (Ref 29) (see
Fig. 3): (i) The nitrogen content depth profiles of strong nitride
forming elements have a rectangular shape of high (saturation-
level) nitrogen content near the surface and (after an abrupt
transition) nil at depths larger than the nitrided region, as the
alloying element reacts practically instantaneously with nitro-
gen upon its arrival at a certain depth in the specimen; only if
all alloying element at the depth considered has precipitated,
the inwardly diffusing nitrogen can reach larger depths. This
behavior is, to good approximation, observed, for example, for
the precipitation of TiN (Ref 9-11), VN (Ref 12-16), and CrN
(Ref 17-24) at not too high nitriding temperatures. (ii) In case of
weak nitride formers, the nitrogen content is of practically
constant level throughout the depth of the specimen (of finite
thickness), and this nitrogen level rises only slowly with
proceeding precipitation (as a bucket that becomes filled with
liquid). This behavior is, to good approximation, for example
observed for the precipitation of Mo2N (Ref 27), hexagonal
AlN (Ref 52), and especially Si3N4 (Ref 36). In practice, for
cases of non-extreme Me-N interaction, nitrogen content depth
profiles with more or less shallow nitrided case/unnitrided core
transitions occur.

Upon comparing the nitriding behaviors of Fe-Mo and Fe-Si
alloys, an interesting observation can be made: although the Si-
N interaction parameter [�0.4, (Ref 3)] is higher than that of
Mo-N (�0.2) (Si3N4 is a chemically very stable nitride but with
a large volume misfit, whereas Mo2N is a chemically relatively
less stable nitride but with a moderate volume misfit), the
nitrogen content depth profiles of nitride Fe-Si alloys are more
shallow than those of Fe-Mo alloys, indicating that in fact Si is
the weaker nitride forming element. The origin of this effect
likely lies in the crystallography of the respective nitrides: on
the one hand, Mo2N has the NaCl-type crystal structure (with,
as a special feature, only 50% of the octahedral interstices of
the Mo lattice occupied by N) and can thus adopt the favorable
Baker-Nutting OR with the ferrite matrix allowing its compar-
atively easy nucleation. On the other hand, Si3N4, with its
complex hexagonal crystal structure, can precipitate in the bcc

Fig. 3 Schematic temporal evolution of the nitrogen content depth
profiles of strong (left) and weak (right) nitride forming elements.
From Ref 29

Fig. 4 (a) HRTEM micrograph showing an amorphous Si-nitride particle (bottom right) in the ferrite matrix (near 100 zone axis) of an Fe-
1.6 at.%Si alloy specimen nitrided at 550 �C for 112 h with a nitriding potential of 0.078 atm�½. From Ref 35; (b) SEM micrograph recorded
from the cross-section of an Fe-4.5 at.%Si alloy specimen nitrided at 650 �C for 48 h with a nitriding potential of 0.02 atm�½ showing amor-
phous, octapod-shaped Si3N4 precipitates (right) and finer, crystalline a-Si3N4 precipitates, from Ref 37

2094—Volume 25(6) June 2016 Journal of Materials Engineering and Performance



matrix only with great difficulty, and surprisingly its precipi-
tation occurs by initially forming an amorphous (this is highly
unusual for precipitation of a solid second phase in a solid,
supersaturated matrix) metastable (Ref 35) precipitate which
can later, or at more elevated temperature, crystallize (Ref 36,
37, 53) (see Fig. 4).

6. Ternary Alloys

In steels, often more than one (dissolved) alloying element is
present that can interact with nitrogen such that nitride
precipitation can occur. To date, the nitriding behavior of a
number of ternary model alloys has been investigated system-
atically: Fe-Cr-Al (Ref 54-57), Fe-Cr-Ti (Ref 58), Fe-Cr-V (Ref
59), Fe-Cr-Mo (Ref 46, 48), Fe-Cr-Si (Ref 60), Fe-V-Si (Ref
60, 61), Fe-Ti-Si (Ref 60), Fe-V-Al (Ref 59), Fe-Ti-Al (Ref 59),
and Fe-Ti-Mo (Ref 62), and of one quaternary Fe-Cr-Mo-V
alloy (Ref 49). A focus of interest here is the question: how do
the alloying elements Me1 and Me2, if present together, interact
with N: do mixed (Me1,Me2)Nx nitrides occur, and if not, how
are the separate precipitation processes of Me1Nx and Me2Nx

affected?
In many cases, the precipitation of mixed (Me1,Me2)Nx

nitrides was found to occur: thus (Cr,Al)N (Ref 54-57),
(Cr,Ti)N (Ref 58), (Cr,V)N (Ref 59), and (Cr,Mo)Nx (Ref 46,
48) were detected.

However, the mixed nitrides are metastable with respect to
decomposition into Me1N and Me2N: as a consequence of
kinetic constraints the system accepts a less than maximal gain
(i.e., release) of (total) Gibbs energy by allowing the more
slowly precipitating element to be taken up in the initially
precipitating nitride particles. The change of the precipitate/ma-
trix volume misfit for the mixed nitride as compared to the
binary nitride can but need not play a dominant role here: in the
case of TiN, the uptake of Cr, of smaller atomic size, leads to a
favorable, i.e., decreased, volume misfit; in the case of CrN, the
uptake of Mo, of larger atomic size, leads to an unfavorable,
i.e., increased, volume misfit; for the development of (Cr,Al)N,
see Ref 54-57. In all these cases, mixed nitrides are formed.

In those systems where in principle, a stable ternary nitride
phase can develop that, from a crystallographic point of view,
does not occur in the binary boundary systems, such as
CrMoN2 (Ref 46), MnSiN2 (Ref 63), and CrTaN (Ref 64), also
such nitrides may occur in practice.

If the precipitation kinetics of the two nitride forming
elements are, separately, (very) largely different, as e.g., V and
Al (Ref 59), Ti and Al (Ref 59), and Ti and Mo (Ref 62), the
initially forming nitride precipitates so fast that then separate
precipitation of binary nitrides is observed. The slower nitride
forming element may not be incorporated (in significant
amounts) in time or the Me1-Me2 interaction is unfavorable.
Such behavior may especially occur if the crystal structures of
the binary, boundary nitrides of the nitride forming elements are
very different. This for example holds for Fe-Ti/V/Cr-Si alloys
(Ref 60, 61). In this case, the sequential precipitation of the
binary nitrides is observed. Then the presence of the nitride
particles of the faster forming element may have an accelerating
(TiN), or decelerating (VN) effect on the subsequent precip-
itation of the more slowly reacting alloying element, due to a
faster or slower, respectively, coherent fi incoherent transi-
tion for the Me1(Ti,V,Cr)N/a-Fe interface. The subsequent

precipitation of amorphous Si3N4 particles occurs preferentially
at the incoherent Me1N/a-Fe interface (Ref 60) (see Fig. 5).

Considering the various studies on nitrided ternary Fe-based
alloys, three categories of ternary systems can now be
distinguished on the basis of the similarity of the crystal
structures of the binary boundary nitrides and the difference of
the (separate) interaction parameters of the nitride forming
elements (Ref 48):

(i) Systems where the crystal structures of the binary bound-
ary nitrides are similar and the interaction parameter dif-
ference of the nitride forming elements is moderate. This
is the case in the ternary Fe-Cr-Al, Fe-Cr-Ti, Fe-Cr-Mo,
and Fe-Cr-V systems; mixed ternary nitrides develop in
these systems.

(ii) Systems where the crystal structures of the binary
boundary nitrides are similar but the interaction parame-
ter difference of the nitride forming elements is large.
This is the case in the ternary Fe-Ti-Al, Fe-Ti-Mo, and
Fe-V-Al systems; separate binary nitrides develop in
these systems.

(iii) Systems where the crystal structures of the binary
boundary systems are dissimilar. This is the case in the
Fe-Ti-Si, Fe-Cr-Si, and Fe-V-Si systems; separate bi-
nary nitrides develop in these systems.

7. Excess Nitrogen and Nitride Composition

7.1 Types of Absorbed Nitrogen

In ferritic, nitrided Fe-based alloys, the nitrogen content of
the nitrided zone is often distinctly larger than what is expected
for (i) the precipitation of all alloying element as nitride of the
expected, equilibrium composition (e.g., MeN or (Me1,Me2)N,
see sections 3 and 6), and (ii) the equilibrium amount of
nitrogen dissolved in the ferrite matrix (under the given
nitriding conditions). The nitrogen additionally present is
referred to as ‘‘excess nitrogen’’ (Ref 3, 10, 28, 44).

Fig. 5 TEM bright field of an Fe-2.0 at.%Cr-2.0 at.%Si alloy spec-
imen nitrided at 580 �C for 648 h with a nitriding potential of
0.1 atm�½ Amorphous Si3N4 particles grow along the faces of CrN
platelets. From Ref 60
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In the CP microstructure, excess nitrogen can be present (see
Fig. 6) either (i) adsorbed at the precipitate/matrix interfaces or
(ii) dissolved in the strained ferrite matrix. Due to the very fine
size and consequently large precipitate/matrix interfacial area of
the nitride precipitates and the large misfit strains associated
with the coherent nature of the nitride-platelet/matrix interface,
the amount of excess N can be very large: in nitrided Fe-Ti
alloys, the total nitrogen content can be three times as high as
the Ti content of the alloy (Ref 10), although Ti is known to
precipitate as TiN. In general, the stronger the Me-N interac-
tion, the more excess nitrogen can be taken up by the alloy.
Note that when the precipitation morphology changes, espe-
cially if drastic coarsening occurs as e.g., by DC, then the
capacity for excess nitrogen uptake changes (strongly reduces)
(Ref 65, 66). See Fig. 6 for a schematic representation of the
various types of nitrogen absorbed in Fe-Me alloys.

The various types of nitrogen can be determined by
recording so-called ‘‘nitrogen-absorption isotherms’’ (Ref 28,
31, 44, 65) as follows. Initially, a specimen is homogeneously
(through) nitrided in order to precipitate all alloying element,
Me, as nitride in a morphology that is stable at the (lower)
temperature where the absorption isotherm is recorded. Subse-

quently, the specimen is annealed at lower temperature (usually
in the range of 400-480 �C), in a reducing atmosphere. This
removes from the specimen all nitrogen dissolved in the matrix
and, with the exception of Me = Al (Ref 31), also the nitrogen
adsorbed at the nitride-platelet/matrix interfaces; the nitrogen
strongly bound in the alloying element nitrides remains. This
treatment may be performed in flowing H2 atmosphere or an
atmosphere of minimal nitrogen activity to avoid, especially
upon long-time treatment, the (partial) dissolution of even
relatively stable alloying element nitrides (Ref 67).

The nitrogen strongly bound in the alloying element nitrides
can be determined from the nitrogen content of the specimen in
the denitrided state (i.e., from weight measurements before and
after denitriding (level ‘‘A’’ in Fig. 7). Subsequently, the
specimen is nitrided with increasing nitriding potential (Ref 2);
the nitrogen content (determined from the weight change)
shows a linear dependency on the nitriding potential [as
prescribed by thermodynamics (Ref 2, 44)]. The interface
adsorbed excess nitrogen is determined from the intercept of
this straight line with the ordinate (at a nitriding potential of 0,
difference of levels ‘‘B’’ and ‘‘A’’ in Fig. 7), and the dissolved
excess nitrogen is given by the difference of the linear parts of

Fig. 7 (a) Schematic absorption isotherm of a nitrided Fe-Me alloy; (b) experimental absorption isotherm of Fe-2.23 at.%V alloy, (pre-)nitrided
at 550 �C for 26 h with a nitriding potential of 0.103 atm�½, subsequently denitrided at 470 �C for 42 h in pure, flowing H2. Absorption iso-
therms were then recorded at 510 �C and 540 �C. From Ref 65

Fig. 6 Schematic representation of the types of absorbed nitrogen in nitrided Fe-Me alloys: strongly bound in the alloyng element nitrides (type
I), adsorbed at the nitride/matrix interface (type II), and dissolved in the ferrite matrix (type III). From Ref 3
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the absorption isotherms of the alloy specimen and that of pure
Fe (Ref 68). Such analyses have been performed, e.g., in Ref 23,
28, 31, 65, 66, 69. The various amounts of nitrogen in the
specimen need to be known to develop a physically based model
of the nitriding process (Ref 70, 71); the presence of excess
nitrogen influences hugely the nitriding kinetics (Ref 70, 71).

7.2 Nitride Composition; Fe in Me-Nitrides?

Due to the very small size of the alloying element nitride
precipitates, a direct, local determination of the composition of
a nitride particle in the iron-based matrix is associated with a
number of difficulties (Ref 46, 57, 72).

Local elemental analysis by an atom probe (AP) method (as
atom probe tomography; APT) and (scanning) transmission
electron microscopy ((S)TEM) coupled with either energy-
dispersive x-ray spectroscopy (EDX) or electron energy loss
spectroscopy (EELS) has been performed on a number of
nitrided Fe-based alloys (Ref 25, 46, 55, 57, 59, 72-74). These
methods would in principle be able, for example, to show
whether or not co-enrichment of nitride forming alloying
elements occurs, e.g., to demonstrate the occurrence of ternary
alloying element nitrides in nitrided Fe-Me1-Me2-alloys.

Two major limitations are associated with the application of
the above described methods to iron-based specimens (tips for
APT; foils for (S)TEM): (i) the methods are of very limited
accuracy for quantification of the nitrogen content of a single-
nitride particle (Ref 46, 57, 72); and (ii) a considerable amount
of matrix atoms/element (in this case Fe) is erroneously
detected as inside the precipitates (see discussions in Ref 46, 57
for APT and in Ref 75 for electron microscopy).

This has led to a discussion in the literature, raging till today,
whether Fe is present or not to a significant amount in the
nitride precipitates [e.g., see (Ref 65, 72, 73, 76)]. Previous AP
analysis suggested that especially the nitrides in nitrided Fe-Mo
alloys would contain large amounts of Fe (Ref 45, 77).
However, such presence of Fe was made highly doubtful
already by Mössbauer spectroscopy (Ref 9) of nitrided Fe-Mo
and Fe-Ti alloys, and especially the comparative (APT, TEM,
extraction replicas, and absorption isotherms) work and con-
siderations in Ref 46, 57 appear to rule out that Fe is taken up to
a significant amount in the alloying element nitrides. Denitrid-

ing experiments, as performed in the course of a nitrogen-
absorption isotherm analysis described in section 7.1, provide
the most accurate (although indirect) route at present to
determine the nitride composition (Ref 23, 28, 31, 46, 65-67, 69).

8. Macro- and Microstresses/Strains in the
Nitrided Microstructure

The fine size and (semi-)coherent nature of the alloying
element nitride precipitates in the ferrite matrix is chiefly
responsible for the improvement of the mechanical (e.g.,
fatigue) properties of the nitrided component. The large
volumetric misfit of nitride precipitates and ferrite matrix (see
Table 1) leads to a considerable tendency for the nitrided zone
to expand. However, as the nitride zone is constrained by its
adherence to the (rigid) unnitrided core, high compressive
(residual) macrostress is present parallel to the surface in the
surface adjacent region (Ref 24, 48, 78, 79). Upon relaxation of
the nitrided zone, e.g., by DC (Ref 24), the compressive
macrostress at the surface relaxes, and may even turn to a
tensile macrostress, if the relaxed region is ‘‘on top’’ of a
‘‘freshly nitrided’’ region [see Fig. 8; (Ref 24, 79, 80)].

Apart from the macrostress induced by the macroscopic
misfit of nitrided case and unnitrided core, discussed in the
preceding paragraph, the strongly varying state of stress around
the individual nitride platelets leads to a variation of microstrain
on an atomic scale (see further below).

Residual macrostresses can be determined conveniently by
(x-ray) diffraction methods utilizing the position of the
maximum of the diffraction profiles/diffraction peaks (Ref 79,
81, 82). The complex evolution of the shape and position of the
(ferrite matrix) diffraction peaks upon nitriding was observed
and discussed in Ref 83 and 84, respectively. To facilitate the
interpretation in these experiments, and pertaining to the
discussion below, the specimens were through, i.e., homoge-
neously nitrided, so that a contribution to macrostress due to a
nitrided case/unnitrided core misfit (as discussed in the
beginning of this section) does not occur.

Initially (Fig. 9b), the precipitate/matrix misfit is accommo-
dated fully elastically leading to the homogeneous expansion of

Fig. 8 (a) residual stress depth profile and (b) corresponding optical micrograph of the nitrided zone of an Fe-8 wt.%Cr alloy, nitrided at
580 �C for 6 h with a nitriding potential of 0.1 atm�½. From Ref 24
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the ferrite matrix due to the hydrostatic tensile component of
the nitride/matrix misfit stress field. Correspondingly, the
diffraction peaks shift toward lower diffraction angles. This
peak shift can be predicted quantitatively employing a misfit-
ting inclusion model and considering that matrix and precip-
itates diffract coherently, i.e., as one assembly (see also Ref 85).
The presence of severely distorted regions in the immediate
vicinity of the nitride platelets leads to the emergence of an
intensity tail of the diffraction peaks toward higher diffraction
angles (Ref 84).

Upon continued nitriding (=aging of the nitrided microstruc-
ture) coarsening occurs and the nitride-precipitate particles lose
their coherency with the ferrite matrix: the precipitate/matrix
assembly no longer diffracts coherently. Then separate matrix
and precipitate reflections can be observed, provided a
sufficiently high volume fraction of precipitates is present in
the diffracting volume (Ref 83, 85). The coarsening process can
occur in a continuous manner (CC) and, possibly, in alloys with
a larger alloying element/precipitate content, also in a discon-
tinuous manner (cf. section 4) (Ref 83). Both processes can be

Fig. 9 Schematic evolution of the diffraction peaks of nitrided Fe-based alloys. From Ref 83
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tracked from changes in the diffraction-peak position and the
diffraction-peak shape: in the case of continuous coarsening,
which occurs by the slow growth of the nitride platelets under
gradual loss of the coherency with the matrix, the relaxation
proceeds locally leading to a heterogeneous degree of stress
relaxation throughout the whole nitrided microstructure. This is
accompanied by a gradual decrease of the ferrite matrix
expansion and the emergence of a separate, still considerably
broadened ferrite diffraction peak corresponding to the relaxed
regions (Fig. 9c); thus split ferrite diffraction peaks occur. In
the case of discontinuous coarsening, the immediate and full
relaxation at the (moving) CP/DC interface leads (already from
the onset of discontinuous coarsening) to the emergence of a
separate, sharp (DC-)ferrite peak at the position of the fully
relaxed ferrite matrix, while the (CP-)ferrite peak only margin-
ally relaxes by the much slower continuous coarsening process
(Fig. 9d); thus also in this case, split ferrite diffraction peaks
occur. The processes can be well distinguished due to the
different evolutions of the diffraction peaks (as a function of
time) during coarsening.

8.1 Macrostress as Origin of Anisotropic Nitriding Rate

Very recently dedicated experiments have shown that the
nitrided zone depth depends on the crystallographic orientation
of individual ferrite matrix grains in the surface adjacent region
with respect to the specimen surface (Ref 86). It was found that
the compressive macrostress parallel to the surface in the surface
adjacent region (developing as a consequence of the nitrided
case/unnitrided core misfit [see begin of section 8]) depends on
the crystallographic orientation of the grain as consequence of
the intrinsic elastic anisotropy of the matrix grains. The variation
of compressive macrostress parallel to the surface from grain to
grain implies that the hydrostatic component of stress equivalent
to this compressive stress varies from grain to grain. As a
consequence, the nitrogen solubility varies from grain to grain
(i.e., depends on the crystallographic orientation of the grain
with respect to the surface) and, consequently, so does the
nitrided depth (see Fig. 10a and b). Indeed, grains with an
elastically stiff direction perpendicular to the surface (as grains
with a {111} plane parallel to the surface) show a smaller

nitrogen solubility and smaller nitrided depth than grains with an
elastically soft direction perpendicular to the surface (as grains
with a {100} plane parallel to the surface). Note that once the
nitrided depth becomes (much) larger than the grain size, these
differences disappear as the stress level decreases because the
specimen gradually approaches a state of homogeneous
(through) nitriding. Finally, it is noted that for pure ferrite (no
alloying elements), the compressive nature of the macrostress
parallel to the surface and also of the equivalent hydrostatic
stress in general leads to a nitrogen solubility smaller than in the
absence of stress, but this solubility likely will be different for
each grain at the surface as long as the specimen has not been
nitrided homogeneously.

9. The Role of Carbon

Despite the obvious practical significance and the vast
number of studies on the nitriding behavior of technical steels,
only very few fundamental studies have been devoted to
understanding the role of carbon in the diffusion zone (Ref 87,
88). The major consequences for the microstructure of the
nitrogen diffusion zone of the presence of carbon are known,
but the operating mechanisms are only crudely understood.

In general, as follows from their Gibbs energies of formation,
carbides are less stable than nitrides. For example, at 773 K
(500 �C), the Gibbs energy of formation of DGf =
�268 kJ mol�1 per mole Ti for TiN and it is �174 kJ mol-1

permole Ti for TiC (Ref 89). It indicates that carbides, whichmay
be present as a result of a previous tempering treatment, are
replaced, i.e., dissolved and reprecipitated or transformed
directly, to nitrides during the nitriding treatment. This is
observed indeed (Ref 87, 88, 90), see also (Ref 73).

The thereby released carbon now is free to diffuse in the
specimen. If a compound layer can form on the specimen
surface (cf. section 1), i.e., at sufficiently high chemical
potentials of nitrogen (and carbon) in the surrounding atmo-
sphere, it may become incorporated into the compound layer. If
no compound layer can form on the specimen surface, carbon
may escape into the atmosphere. In a constantly renewed purely

Fig. 10 Dependence of (a) the surface nitrogen content and (b) the nitrided depth on the grain orientation of a nitrided Fe-4.5 at.%Cr alloy
specimen nitrided at 450 �C for 3 h with a nitriding potential of 0.1 atm�½.The solubility and the nitriding depth of grains with an orientation
(close to one) with {111} lattice planes parallel to the surface are relatively small. From Ref 86
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nitriding atmosphere (involving a chemical potential of carbon
equal to nil), thermodynamics dictate that all carbon should
leave the specimen.

Especially at larger depths in the specimen, the carbon
released by the nitride formation may lead to local supersat-
uration of carbon such that carbon precipitates as cementite,
Fe3C, at easy nucleation sites, such as prior austenite-grain
boundaries. The compressive macrostress developing upon
nitriding in the diffusion zone parallel to the surface (cf. begin
of section 8) imposes a preferred development of the cementite
on grain boundaries more or less parallel to the surface, as this
allows to (partially) accommodate this macrostress state (see
Fig. 11).

10. Conclusion

Control of the properties of nitrided, iron-based components
requires understanding of, at least, the parameters governing the
alloying element (Me) nitride (MeNx) particle constitution,
crystal structure, and morphology, the nitrogen content depth
profile and the nitriding kinetics.

The strength of the interaction of Me and N, at the
background of the observed phenomena, can be crudely
characterized by [(the negative of) the ratio of] the chemical
Gibbs energy driving the precipitation of MeNx and the
counteracting misfit-strain energy. The (strived for) crystal

structure of the nitride may be largely incompatible with that of
the ferrite matrix, leading to precipitation of metastable nitrides
of non-equilibrium crystal structure or even of amorphous
nature.

The development of residual macro- and microstresses/
strains reflects the macroscopic nitrided case/unnitrided core
misfit, and the microscopic variation of strain around the
misfitting, nano-sized nitride precipitates. The microstructural
development (precipitation followed by coarsening) expresses
itself by changes in the state of stress, which can be traced by
dedicated diffraction analysis.

The variation of the state of macrostress from grain to grain
at the surface induces (local) differences of the nitrogen
solubility and thus differences of the nitrided depth for grains
with different crystallographic orientation with respect to the
surface.

The kinetics of nitride precipitation can be drastically
influenced by the developing misfit-strain fields and the rate of
their relaxation by the coherent fi incoherent transition of the
Me-nitride/a-Fe interfaces.

It is nowadays possible to precisely determine the various
types of (excess) nitrogen present in the nitrided microstructure.
With this knowledge, physically based models are being
developed that can describe the nitriding behavior (see Ref 71).

In the past, fundamental research focused on the nitriding
behavior of binary iron-based alloys. Only in recent years,
attention has been devoted to the nitriding of ternary (in one
case even quaternary) iron-based alloys. Evidently, the nitriding
response of the latter alloys is not a simple extrapolation of that
of the binary alloys. Thus, the road to full control of the
nitriding process has not at all been trod till the end and it can
be expected that scientific discoveries and challenges ahead of
us will lead to new, fascinating technological possibilities of the
nitriding process.
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Mo and Fe-Ti Alloys, Acta Metall., 1975, 23(11), p 1367–1379

10. D.S. Rickerby, S. Henderson, A. Hendry, and K.H. Jack, Overview No.
51 Structure and Thermochemistry of Nitrided Iron-Titanium Alloys,
Acta Metall., 1986, 34(9), p 1687–1699

11. D.S. Rickerby, A. Hendry, and K.H. Jack, Low-Temperature Aging of
Nitrided Fe-Ti Alloys, Acta Metall., 1986, 34(10), p 1925–1932

12. M. Pope, P. Grieveson, and K.H. Jack, Nitride Precipitation in Ferritic
Iron-Vanadium Alloys, Scand. J. Metall., 1973, 2, p 29–34
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