Skip to main content
Log in

Die Bonding Performance Using Bimodal Cu Particle Paste Under Different Sintering Atmospheres

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

A one-step polyol method was employed to synthesize bimodal Cu particles with average diameters around 200 nm and 1000 nm, respectively. The bimodal Cu particles were mixed with a reductive solvent of polyethylene glycol (PEG) to form a paste. The Cu paste was used as die bonding material to prepare Cu joints under N2 or vacuum sintering atmosphere. The results showed that the strength of the Cu joints in N2 atmosphere was always higher than that in vacuum. The shear strength of a Cu joint processed at 350°C under only 0.4 MPa bonding pressure in N2 was above 40 MPa, which was far higher than that obtained using single-sized nano-Cu particle paste. It is related to the dense packing of the bimodal Cu particles and slow decomposition behavior of the reductive PEG solvent. The reductive PEG solvent in the Cu paste, which effectively removed oxides on the surface of the Cu particles, was necessary for easy-oxidized Cu pastes. These results suggested that Cu pastes with suitable particle sizes, reducing solvent and sintering atmosphere could be a proper candidate for low-temperature and low-pressure bonding process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. F. Roccaforte, P. Fiorenza, G. Greco, M. Vivona, R.L. Nigro, F. Giannazzo, A. Patti, and M. Saggio, Appl. Surf. Sci. 301, 9 (2014).

    Article  Google Scholar 

  2. K. Suganuma, S. Sakamoto, N. Kagami, D. Wakuda, K.S. Kim, and M. Nogi, Microelectron. Reliab. 52, 375 (2012).

    Article  Google Scholar 

  3. H.S. Chin, K.Y. Cheong, and A.B. Ismail, Metall. Mater. Trans. B 41, 824 (2010).

    Article  Google Scholar 

  4. V.R. Manikam, K.Y. Cheong, and I.E.E.E. Trans, Compon. Packag. Manuf. Technol. 1, 457 (2011).

    Article  Google Scholar 

  5. T. Wang, X. Chen, G.Q. Lu, and G.Y. Lei, J. Electron. Mater. 36, 1333 (2007).

    Article  Google Scholar 

  6. S. Sakamoto, S. Nagao, and K. Suganuma, J. Mater. Sci. Mater. Electron. 24, 2593 (2013).

    Article  Google Scholar 

  7. Y. Morisada, T. Nagaoka, M. Fukusumi, Y. Kashiwagi, M. Yamamoto, M. Nakamoto, H. Kakiuchi, and Y. Yoshida, J. Electron. Mater. 40, 2398 (2011).

    Article  Google Scholar 

  8. R. Khazaka, L. Mendizabal, and D. Henry, J. Electron. Mater. 43, 2459 (2014).

    Article  Google Scholar 

  9. A.R. Rathmell, S.M. Bergin, Y.L. Hua, Z.Y. Li, and B.J. Wiley, Adv. Mater. 22, 3558 (2010).

    Article  Google Scholar 

  10. S. Bhanushali, P. Ghosh, A. Ganesh, and W. Cheng, Small 11, 1232 (2015).

    Article  Google Scholar 

  11. X. Liu and H. Nishikawa, Scrip. Mater. 120, 80 (2016).

    Article  Google Scholar 

  12. H. Nishikawa, T. Hirano, T. Takemoto, and N. Terada, Open Surf. Sci. J. 3, 60 (2011).

    Article  Google Scholar 

  13. T. Ishizaki and R. Watanabe, J. Mater. Chem. 22, 25198 (2012).

    Article  Google Scholar 

  14. S. Jeong, S.H. Lee, Y. Jo, S.S. Lee, Y.H. Seo, B.W. Ahn, G. Kim, G.E. Jang, J.U. Park, and B.H. Ryu, J. Mater. Chem. C 1, 2704 (2014).

    Google Scholar 

  15. S.W. Park, R. Uwataki, S. Nagao, T. Sugahara, Y. Katoh, H. Ishino, K. Sugiura, K. Tsuruta, and K. Suganuma, in Electronic Components and Technology Conference (ECTC), 2014 IEEE 64th, (2014), pp. 1179–1182.

  16. S. Soichi, K. Suganuma, and I.E.E.E. Trans, Compon. Packag. Manuf. Technol. 3, 923 (2013).

    Article  Google Scholar 

  17. J. Jiu, K. Murai, K. Kim, and K. Suganuma, J. Mater. Sci. Mater. Electron. 21, 713 (2010).

    Article  Google Scholar 

  18. J. McCoppin, T.L. Reitz, R. Miller, H. Vijwani, S. Mukhopadhyay, and D. Young, J. Electron. Mater. 43, 3379 (2014).

    Article  Google Scholar 

  19. S.J. Joo, H.J. Hwang, and H.S. Kim, Nanotechnology 25, 265601 (2014).

    Article  Google Scholar 

  20. S.K. Tam, K.Y. Fung, and K.M. Ng, J. Mater. Sci. 51, 1914 (2016).

    Article  Google Scholar 

  21. J. Jiu, H. Zhang, S. Nagao, T. Sugahara, N. Kagami, Y. Suzuki, Y. Akai, and K. Suganuma, J. Mater. Sci. 51, 3422 (2016).

    Article  Google Scholar 

  22. Y. Li, K. Moon, H. Li, and C.P. Wong, in Electronic Components and Technology Conference, 2004. Proceedings. 54th, (2004), pp. 1959–1964.

  23. C.A. Lu, P. Lin, H.C. Lin, and S.F. Wang, Jpn. J. Appl. Phys. 46, 251 (2007).

    Article  Google Scholar 

  24. I. Kim and S. Chun, J. Electron. Mater. 40, 1977 (2011).

    Article  Google Scholar 

  25. T. Ogura, S. Takata, M. Takahashi, and A. Hirose, Mater. Trans. 56, 1030 (2015).

    Article  Google Scholar 

  26. T. Ogura, T. Yagishita, S. Takata, T. Fujimoto, and A. Hirose, Mater. Trans. 54, 860 (2013).

    Article  Google Scholar 

  27. Y. Gao, H. Zhang, J. Jiu, S. Nagao, T. Sugahara, and K. Suganuma, RSC Adv. 5, 90202 (2016).

    Article  Google Scholar 

  28. J.L.C. Huaman, K. Sato, S. Kurita, T. Matsumoto, and B. Jeyadevan, J. Mater. Chem. 21, 7062 (2011).

    Article  Google Scholar 

  29. B.K. Park, S. Jeong, D. Kim, J. Moon, S. Lim, J.S. Kim, and J. Colloid, Interface Sci. 311, 417 (2007).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yue Gao or Jinting Jiu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gao, Y., Zhang, H., Li, W. et al. Die Bonding Performance Using Bimodal Cu Particle Paste Under Different Sintering Atmospheres. J. Electron. Mater. 46, 4575–4581 (2017). https://doi.org/10.1007/s11664-017-5464-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-017-5464-2

Keywords

Navigation