Skip to main content
Log in

Phase Formation and Thermoelectric Properties of Doped Higher Manganese Silicides (Mn15Si26)

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

We herein report substitutional doping effects on the electronic and thermal transport properties of higher manganese silicides (HMS) Mn15Si26. Polycrystalline bulks of Mn0.972A0.028Si1.80 and MnSi1.75B0.028 (A = V, Cr, Mo/B = Al, Ge) were fabricated by a solid-state reaction combined with the spark plasma sintering technique, and their thermoelectric properties were evaluated. We found that thermoelectric performance of Mn15Si26 was significantly enhanced due to the simultaneous improvement in electronic transport and phonon scattering via partial substitution of foreign atoms at Mn- and/or Si-sites. Through the small amount of Cr doping at the Mn-site and Al and Ge doping at the Si-site, the power factor was improved due to enhancement in density of the state's effective mass. Thermal transport properties could be also manipulated due to the point defect phonon scattering effect, and reduced lattice thermal conductivity was obtained with Ge-doped HMS. As a consequence, the maximum dimensionless figure␣of merit ZT of 0.64 at 773 K (increased 50% compared to undoped Mn15Si26) was obtained in Ge-doped Mn15Si26.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. I. Nishida, J. Mater. Sci. 7, 435 (1972).

    Article  Google Scholar 

  2. M.I. Fedorov and V.K. Zaitsev, Thermoelectrics Handbook: Macro to Nano, ed. D.M. Rowe (Boca Raton: CRC Press, 2006), p. 31.

    Google Scholar 

  3. X. Chen, A. Weathers, J. Carrete, S. Mukhopadhyay, O. Delaire, D.A. Stewart, N. Mingo, S.N. Girard, J. Ma, D.L. Abernathy, J. Yan, R. Sheshka, D.P. Sellan, F. Meng, S. Jin, J. Zhou, and L. Shi, Nat. Commun. 6, 6723 (2015).

    Article  Google Scholar 

  4. A.J. Zhou, T.J. Zhu, X.B. Zhao, S.H. Yang, T. Dasgupta, C. Stiewe, R. Hassdorf, and E. Mueller, J. Electron. Mater. 39, 2002 (2010).

    Article  Google Scholar 

  5. X. She, X. Su, H. Du, T. Liang, G. Zheng, Y. Yan, R. Akram, C. Uher, and X. Tang, J. Mater. Chem. C 3, 12116 (2015).

    Article  Google Scholar 

  6. G. Bernard-Granger, M. Souler, H. Ihou-Mouko, C. Navone, M. Boidot, J. Leforestier, and J. Simon, J. Alloys Compd. 618, 403 (2015).

    Article  Google Scholar 

  7. V. Ponnambalam, D.T. Morelli, S. Bhattacharya, and T.M. Tritt, J. Alloys Compd. 580, 598 (2013).

    Article  Google Scholar 

  8. X. Chen, S.N. Girard, F. Meng, E. Lara-Curzio, S. Jin, J.B. Goodenough, J. Zhou, and L. Shi, Adv. Energy Mater. 4, 1400452 (2014).

    Article  Google Scholar 

  9. X. Chen, J. Zhou, J.B. Goodenough, and L. Shi, J. Mater. Chem. C 3, 10500 (2015).

    Article  Google Scholar 

  10. I. Aoyama, M.I. Fedorov, V.K. Zaitsev, F.Y. Solomkin, I.S. Eremin, A.Y. Samunin, M. Mukoujima, S. Sano, and T. Tsuji, Jpn. J. Appl. Phys. 44, 8562 (2005).

    Article  Google Scholar 

  11. W. Luo, H. Li, W. Hao, and X. Tang, J. Electron. Mater. 40, 1233 (2011).

    Article  Google Scholar 

  12. X. Chen, A. Weathers, D. Salta, L. Zhang, J. Zhou, J.B. Goodenough, and L. Shi, J. Appl. Phys. 114, 173705 (2013).

    Article  Google Scholar 

  13. W. Luo, H. Li, Y. Yan, Z. Lin, X. Tang, Q. Zhang, and C. Uher, Intermetallics 19, 404 (2011).

    Article  Google Scholar 

  14. T. Itoh and M. Yamada, J. Electron. Mater. 38, 925 (2009).

    Article  Google Scholar 

  15. P. Norouzzadeh, Z. Zamanipour, J.S. Krasinski, and D. Vashaee, J. Appl. Phys. 112, 124308 (2012).

    Article  Google Scholar 

  16. A. Pokhrel, Z.P. Degregorio, J.M. Higgins, S.N. Girard, and S. Jin, Chem. Mater. 25, 632 (2013).

    Article  Google Scholar 

  17. G.J. Snyder and E.S. Toberer, Nat. Mater. 7, 105 (2008).

    Article  Google Scholar 

  18. D.Y. Nhi Trung, D. Berthebaud, F. Gascoin, and H. Kleinke, J. Electron. Mater. 44, 3603 (2015).

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the Korea government (MSIP) (2014R1A2A1A10053869), the Priority Research Centers Program (2009-0093823) through the National Research Foundation of Korea (NRF), and the Industrial Fundamental Technology Development Program (10052977) funded by the Ministry of Trade, Industry and Energy (MOTIE) of Korea.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wooyoung Lee.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lee, H., Kim, G., Lee, B. et al. Phase Formation and Thermoelectric Properties of Doped Higher Manganese Silicides (Mn15Si26). J. Electron. Mater. 46, 3242–3248 (2017). https://doi.org/10.1007/s11664-016-5035-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-016-5035-y

Keywords

Navigation