Skip to main content
Log in

Monte Carlo Simulations on the Thermoelectric Transport Properties of Width-Modulated Nanowires

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

We performed Monte Carlo simulations on the electron and phonon transport properties of Si nanowires with constant widths and of nanowires modulated by a constriction. We discuss and compare the transport properties and the thermoelectric efficiency in the nanowires. An overall figure of merit (ZT) enhancement is predicted compared to the corresponding non-modulated nanowires. The ZT enhancement in thick, modulated nanowires has been found comparable to that in thin, non-modulated nanowires.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A.I. Boukai, Y. Bunimovich, J. Tahir-Kheli, J.K. Yu, W.A. Goddard, and J.R. Heath, Nature 451, 168 (2008).

    Article  Google Scholar 

  2. A.I. Hochbaum, R.K. Chen, R.D. Delgado, W.J. Liang, E.C. Garnett, M. Najarian, A. Majumdar, and P.D. Yang, Nature 451, 163 (2008).

    Article  Google Scholar 

  3. X. Zianni, Appl. Phys. Lett. 97, 233106 (2010).

    Article  Google Scholar 

  4. J.D. Christensen, C.W. Pinion, E.M. Grumstrup, J.M. Papanikolas, and J.F. Cahoon, Nano Letters 13, 6281 (2013).

    Article  Google Scholar 

  5. X. Zianni, Nanoscale Res. Lett. 6, 286 (2011).

    Article  Google Scholar 

  6. X. Zianni, J. Electron. Mater. (2014). doi:10.1007/s11664-014-3125-2.

    Google Scholar 

  7. A.A. Balandin and O.L. Lazarenkova, Appl. Phys. Lett. 82, 415 (2003).

    Article  Google Scholar 

  8. J.-H. Bahk, R.B. Sadeghian, Z. Bian, and A. Shakouri, J. Electron. Mater. 41, 1498 (2012).

    Article  Google Scholar 

  9. X. Zianni, J. Solid State Chem. 193, 53 (2012).

    Article  Google Scholar 

  10. D.L. Nika, A.L. Cocemasov, C.I. Isacova, A.A. Balandin, V.M. Fomin, and O.G. Schmidt, Phys. Rev. B 85, 205439 (2012).

    Article  Google Scholar 

  11. K. Termentzidis, T. Barreteau, Y. Ni, S. Merabia, X. Zianni, Y. Chalopin, P. Chantrenne, and S. Volz, Phys. Rev. B 87, 125410 (2013).

    Article  Google Scholar 

  12. X. Zianni and P. Chantrenne, J. Electron. Mater. 42, 1509 (2013).

    Article  Google Scholar 

  13. C. Jacoboni and L. Reggiani, Rev. Mod. Phys. 55, 645 (1983).

    Article  Google Scholar 

  14. B. Fischer and K.R. Hofmann, Appl. Phys. Lett. 76, 583 (2000).

    Article  Google Scholar 

  15. E. Pop, Self-Heating and Scaling of Thin Body Transistors, PhD dissertation, Stanford University, 2004.

  16. E. Pop, R.W. Dutton, and K.E. Goodson, J. App. Phys. 96, 4998 (2004).

    Article  Google Scholar 

  17. E. Pop, R.W. Dutton, and K.E. Goodson, Appl. Phys. Lett. 86, 082101 (2005).

    Article  Google Scholar 

  18. F. Carosella, J. Saint-Martin, A. Bournel, S. Galdin-Retailleau, and P. Dollfus, phys. stat. sol. (c) 5, 98 (2008).

    Article  Google Scholar 

  19. V. Jean, S. Fumeron, K. Termentzidis, S. Tutashkonko, and D. Lacroix, J. App. Phys. 115, 024304 (2014).

    Article  Google Scholar 

  20. D. Lacroix, K. Joulain, and D. Lemonnier, Phys. Rev. B 72, 064305 (2005).

    Article  Google Scholar 

  21. J.-P.M. Peraud and N.G. Hadjiconstantinou, Phys. Rev. B 84, 205331 (2011).

    Article  Google Scholar 

  22. M.G. Holland, Phys. Rev. 132, 2461 (1963).

    Article  Google Scholar 

  23. N. Neophytou and H. Kosina, Phys. Rev. B 83, 245305 (2011).

    Article  Google Scholar 

  24. http://www.ioffe.ru/SVA/NSM/Semicond/Si/electric.html

  25. A. Stranz, J. Kähler, A. Waag, and E. Peiner, J. Electron. Mater. 42, 2381 (2013).

    Article  Google Scholar 

  26. D. Li, Y. Wu, P. Kim, L. Shi, P. Yang, and A. Majumdar, App. Phys. Lett. 83, 2934 (2003).

    Article  Google Scholar 

  27. J. Zou and A. Balandin, J. App. Phys. 89, 2932 (2001).

    Article  Google Scholar 

  28. X. Zianni, V. Jean, K. Termentzidis, and D. Lacroix, Nanotechnology 25, 465402 (2014).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to X. Zianni.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zianni, X. Monte Carlo Simulations on the Thermoelectric Transport Properties of Width-Modulated Nanowires. J. Electron. Mater. 45, 1779–1785 (2016). https://doi.org/10.1007/s11664-015-4217-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-015-4217-3

Keywords

Navigation