Skip to main content
Log in

Evaluation of the Bondability of the Epoxy-Enhanced Sn-58Bi Solder with ENIG and ENEPIG Surface Finishes

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

The effect of different surface finishes, electroless nickel immersion gold (ENIG) and electroless nickel electroless palladium immersion gold (ENEPIG), on the mechanical properties of Sn-58Bi bumps made with solder paste enhanced with epoxy were investigated. The microstructure and fracture surfaces were observed with scanning electron microscopy, and the compositions of the IMC and solder were measured using energy dispersive spectrometry and an electron probe micro-analyzer (EPMA). To evaluate the mechanical properties, low-speed shear tests and board-level drop tests were performed. The result of the shear tests showed that the bonding strength of the epoxy-enhanced Sn-58Bi solder bumps was higher than that of Sn-58Bi solder for all surface finishes, because of the epoxy surrounding the solder, and the fracture surfaces of epoxy-enhanced Sn-58Bi indicated ductile fracture in the solder joint. However, the result of the drop tests showed that samples with the ENIG and ENEPIG surface finishes had lower drop numbers compared to the sample without these surface finishes. The lower performance resulted from insufficient ejection of epoxy from the ENIG and ENEPIG surface finishes during reflow, which reduced the interfacial bonding area.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Directive 2002/95/EC, The Restriction of the Use of Certain Hazardous Substances in Electrical and Electronic Equipment, The European Parliament and of the Council of the European Union, 27 January 2003.

  2. Directive 2002/96/EC, Waste Electrical and Electronic Equipment (WEEE), The European Parliament and of the Council of the European Union, 27 January 2003.

  3. B. Sandy, E. Briggs, and R. Lasky, Indium Corporation Tech Paper No. 1 (2011). http://www.indium.com/techlibrary/ whitepapers/advantages-of-bismuthbased-alloys-for-low-temperature-pbfree-soldering-and-rework.

  4. J.H. Kim, Y.C. Lee, S.M. Lee, and S.B. Jung, Microelectron. Eng. 120, 77 (2014).

    Article  Google Scholar 

  5. X. Hu, X. Yu, Y. Li, Q. Huang, Y. Liu, and Z. Min, J. Mater. Sci. Mater. Electron. 25, 57 (2014).

    Article  Google Scholar 

  6. J.W. Yoon and S.B. Jung, J. Alloys Compd. 359, 202 (2003).

    Article  Google Scholar 

  7. H. Chen, J. Han, J. Li, and M. Li, Microelectron. Reliab. 52, 1112 (2012).

    Article  Google Scholar 

  8. H.X. Xie and N. Chawla, Microelectron. Reliab. 53, 733 (2013).

    Article  Google Scholar 

  9. S.S. Ha, J.Y. Sung, J.W. Yoon, and S.B. Jung, Microelectron. Eng. 88, 709 (2011).

    Article  Google Scholar 

  10. J.W. Yoon, B.I. Noh, and S.B. Jung, J. Electron. Mater. 40, 1950 (2011).

    Article  Google Scholar 

  11. H.W. Miao and J.G. Duh, Mater. Chem. Phys. 71, 255 (2001).

    Article  Google Scholar 

  12. X.F. Li, F.Q. Zu, H.F. Ding, J. Yu, L.J. Liu, and Y. Xi, Phys. Lett. A 354, 325 (2006).

    Article  Google Scholar 

  13. Q.K. Zhang and Z.F. Zhang, Mater. Sci. Eng. A 528, 2686 (2011).

    Article  Google Scholar 

  14. B.L. Young, J.G. Dug, and G.Y. Jang, J. Electron. Mater. 32, 1463 (2003).

    Article  Google Scholar 

  15. M.S. Suh, C.J. Park, and H.S. Kwon, Surf. Coat. Technol. 200, 3527 (2006).

    Article  Google Scholar 

  16. M.S. Suh, C.J. Park, and H.S. Kwon, Mater. Chem. Phys. 110, 95 (2008).

    Article  Google Scholar 

  17. T. Kotake, H. Murai, S. Takanezawa, M. Miyatake, M. Takekoshi, and M. Ose, CPMT Symposium Japan (ICSJ) (Kyoto, Japan, 2013), pp. 1–4.

  18. J.N. Choi, M.K. Ko, S.M. Lee, and S.B. Jung, J. Microelectron. Packag. Soc. 20, 1 (2013).

    Article  Google Scholar 

  19. K. Suganuma, T. Sakai, K.S. Kim, Y. Takagi, J. Sugimoto, and M. Ueshima, IEEE Trans. Electron. Packag. Man. 25, 257 (2002).

    Article  Google Scholar 

  20. W. Dong, Y. Shi, Z. Xia, Y. Lei, and F. Guo, J. Electron. Mater. 37(7), 982 (2008).

    Article  Google Scholar 

  21. J.S. Hwang, Environment-Friendly Electronics: Lead-Free Technology, Electrochemical Publications, LTD, Isle of Man, Great Britain, 31 Chapters, 2001 (ISBN-0-90-115040-1).

  22. C. Wu, J. Shen, and C. Peng, J. Mater. Sci. Mater. Electron. 23, 14 (2012).

    Article  Google Scholar 

  23. C. Fuchs, T. Schreck, and M. Kaloudis, J. Mater. Sci. 47, 4036 (2012).

    Article  Google Scholar 

  24. S.T. Oh and J.H. Lee, Electron. Mater. Lett. 10(2), 473 (2014).

    Article  Google Scholar 

  25. W.R. Myung, Y. Kim, and S.B. Jung, J. Alloys Compd. 615, S411 (2014).

    Article  Google Scholar 

  26. R. Darveaux and C. Reichman, Electronics Packaging Technology Conference (Singapore, 2006), pp. 283–289.

  27. S.P. Peng, W.H. Wu, C.E. Ho, and Y.M. Huang, J. Alloys Compd. 493, 431 (2010).

    Article  Google Scholar 

  28. P. Snugovsky, P. Arrowsmith, and M. Romansky, J. Electron. Mater. 30(9), 1262 (2001).

    Article  Google Scholar 

  29. D.J. Chakrabarti and D.E. Laughlin, Bull. Alloy Phase Diagr. 5, 148 (1984).

    Article  Google Scholar 

  30. Z. Mei and J.W. Morris Jr., J. Electron. Mater. 21, 599 (1992).

    Article  Google Scholar 

  31. Y. Tanaka, Epoxy Resins Chemistry and Technology, Chapter 2: Synthesis and Characterization of Epoxides (Marcel Dekker, New York, 1988), pp. 54–63.

    Google Scholar 

Download references

Acknowledgements

This work was supported by the Human Resources Program in Energy Technology of the Korea Institute of Energy Technology Evaluation and Planning (KETEP) granted financial resource from the Ministry of Trade, Industry & Energy, Republic of Korea (20154030200870).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yongil Kim.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Myung, WR., Kim, Y. & Jung, SB. Evaluation of the Bondability of the Epoxy-Enhanced Sn-58Bi Solder with ENIG and ENEPIG Surface Finishes. J. Electron. Mater. 44, 4637–4645 (2015). https://doi.org/10.1007/s11664-015-4024-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-015-4024-x

Keywords

Navigation