Skip to main content
Log in

Growth Behavior of Intermetallic Compounds in Cu/Sn3.0Ag0.5Cu Solder Joints with Different Rates of Cooling

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

The growth behavior of intermetallic compounds (IMC) in Cu/Sn3.0Ag0.5Cu solder joints, including the interfacial Cu6Sn5 layer and Ag3Sn, and Cu6Sn5 in the solder, were investigated when different cooling methods—quenched water, cooling in air, and cooling in a furnace after reflow—were used. For the solder joint quenched in water, no obvious Cu6Sn5 or Ag3Sn was detected in the solder, and the thickness of interfacial Cu6Sn5 layer was slightly thinner than that of the joint cooled in air. On the basis of results from scanning electron microscopy and energy-dispersive spectrometry, a mechanism is proposed for growth of IMC in Sn3.0Ag0.5Cu solder during solidification. The rate of cooling has a substantial effect on the morphology and size of Ag3Sn, which evolved into large plate-like shapes when the joint was cooled slowly in a furnace. However, the morphology of Ag3Sn was branch-like or particle-like when the joint was cooled in air. This is attributed to re-growth of Ag3Sn grains via substantial atomic diffusion during the high-temperature stage of furnace cooling.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. K. Kanlayasiri, M. Mongkolwongrojn, and T. Ariga, J. Alloys Compd. 485, 225 (2009).

    Article  Google Scholar 

  2. T. Fouzder, I. Shafiq, Y.C. Chan, A. Sharif, and W.K.C. Yung, J. Alloys Compd. 509, 1885 (2011).

    Article  Google Scholar 

  3. C.Y. Lin, U.S. Mohanty, and J.H. Chou, J. Alloys Compd. 501, 204 (2010).

    Article  Google Scholar 

  4. A.K. Gain, Y.C. Chan, A. Sharif, and W.K.C. Yung, Microelectron. Eng. 86, 2347 (2009).

    Article  Google Scholar 

  5. R. Mayappan and Z. Ahmad, Intermetallics 18, 730 (2010).

    Article  Google Scholar 

  6. Y. Li, K. Moon, and C.P. Wong, Science 308, 1419 (2005).

    Article  Google Scholar 

  7. L. Yang and Z. Zhang, J. Electron. Mater. 42, 3552 (2013).

    Article  Google Scholar 

  8. A.K. Gain and Y.C. Chan, Intermetallics 29, 48 (2012).

    Article  Google Scholar 

  9. L.C. Tsao, J. Alloys Compd. 509, 8441 (2011).

    Article  Google Scholar 

  10. L. Snugovsky, P. Snugovsky, D.D. Perovic, T. Sack, and J.W. Rutter, Mater. Sci. Technol. 21, 53 (2005).

    Article  Google Scholar 

  11. G. Cuddalorepatta, Acta Mater. 58, 5989 (2010).

    Article  Google Scholar 

  12. J. Keller, Acta Mater. 59, 2731 (2011).

    Article  Google Scholar 

  13. F. Guo, S. Choi, K.N. Subramanian, T.R. Bieler, J.P. Lucas, A. Achari, and M. Paruchuri, Mater. Sci. Eng. A 351, 190 (2003).

    Article  Google Scholar 

  14. K. Zeng, Mater. Sci. Eng. R 38, 55 (2002).

    Article  Google Scholar 

  15. H. Chen, J. Han, J. Li, and M. Li, Microelectron. Reliab. 52, 112 (2012).

    Article  Google Scholar 

  16. L. Snugovsky, D.D. Perovic, and J.W. Rutter, Mater. Sci. Technol. 20, 1403 (2004).

    Article  Google Scholar 

  17. K.S. Kim, S.H. Huh, and K. Suganuma, Mater. Sci. Eng. A 333, 106 (2002).

    Article  Google Scholar 

  18. H.F. Zou, H.J. Yang, and Z.F. Zhang, Acta Mater. 56, 2649 (2008).

    Article  Google Scholar 

  19. H.K. Kim and K.N. Tu, Phys. Rev. B 53, 16027 (1996).

    Article  Google Scholar 

  20. Q.K. Zhang and Z.F. Zhang, Acta Mater. 59, 6017 (2011).

    Article  Google Scholar 

  21. X. Liua, M. Huang, Y. Zhao, C.M.L. Wu, and L. Wang, J. Alloys Compd. 492, 433 (2010).

    Article  Google Scholar 

  22. H.T. Ma, L. Qu, M.L. Huang, L.Y. Gu, N. Zhao, and L. Wang, J. Alloys Compd. 537, 286 (2012).

    Article  Google Scholar 

  23. L.M. Yang, S.Y. Quan, Y.D. Yang, and G.M. Shi, J. Nanosci. Nanotechnol. 12, 2700 (2012).

    Article  Google Scholar 

  24. A.S.M.A. Haseeb, M.M. Arafat, and M.R. Johan, Mater. Charact. 64, 27 (2012).

    Article  Google Scholar 

  25. L. Qi, J. Huang, X. Zhao, and H. Zhang, J. Alloys Compd. 469, 102 (2009).

    Article  Google Scholar 

  26. J.H. Yao, K.R. Elder, H. Guo, and M. Grant, Phys. Rev. B 47, 14110 (1993).

    Article  Google Scholar 

  27. Y. Takamatsu, H. Esaka, and K. Shinozuka, Mater. Trans. 52, 189 (2011).

    Article  Google Scholar 

  28. D.Q. Yu, L. Wang, C.M.L. Wu, and C.M.T. Law, J. Alloys Compd. 389, 153 (2005).

    Article  Google Scholar 

  29. H.T. Lee and Y.F. Chen, J. Alloys Compd. 509, 2510 (2011).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Linmei Yang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, L., Zhang, Z.F. Growth Behavior of Intermetallic Compounds in Cu/Sn3.0Ag0.5Cu Solder Joints with Different Rates of Cooling. J. Electron. Mater. 44, 590–596 (2015). https://doi.org/10.1007/s11664-014-3530-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-014-3530-6

Keywords

Navigation