Skip to main content
Log in

Fabrication of a Flexible Bismuth Telluride Power Generation Module Using Microporous Polyimide Films as Substrates

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

In this study, we investigated the effect of the structure of microporous p-type (Bi0.4Te3Sb1.6) and n-type (Bi2.0Te2.7Se0.3) BiTe-based thin films on their thermoelectric performance. High-aspect-ratio porous thin films with pore depth greater than 1 μm and pore diameter ranging from 300 nm to 500 nm were prepared by oxygen plasma etching of polyimide (PI) layers capped with a heat-resistant block copolymer, which acted as the template. The cross-plane thermal conductivities of the porous p- and n-type thin films were 0.4 W m−1 K−1 and 0.42 W m−1 K−1, respectively, and the dimensionless figures of merit, ZT, of the p- and n-type BiTe films were estimated as 1.0 and 1.0, respectively, at room temperature. A prototype thermoelectric module consisting of 20 pairs of p- and n-type strips over an area of 3 cm × 5 cm was fabricated on the porous PI substrate. This module produced an output power of 0.1 mW and an output voltage of 0.6 V for a temperature difference of 130°C. The output power of the submicrostructured module was 1.5 times greater than that of a module based on smooth BiTe-based thin films. Thus, the thermoelectric performance of the thin films was improved owing to their submicroscale structure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. F.J. DiSalvo, Science 285, 703 (1999).

    Article  Google Scholar 

  2. J.-F. Li, W.S. Liu, L.D. Zhao, and M. Zhou, NPG Asia Mater. 2, 152 (2010).

    Article  Google Scholar 

  3. T.C. Harman, P.J. Taylor, M.P. Walsh, B.E. LaForge, and T.C. Harman, Science 297, 2229 (2002).

    Article  Google Scholar 

  4. M.S. Dresselhaus, G. Chen, M.Y. Tang, R. Yang, H. Lee, D.Z. Wang, Z.F. Ren, J.P. Fleurial, and P. Gogna, Adv. Mater. 19, 1043 (2007).

    Article  Google Scholar 

  5. G.J. Snyder and E.S. Toberer, Nat. Mater. 7, 105 (2008).

    Article  Google Scholar 

  6. K.F. Hsu, S. Loo, F. Guo, W. Chen, J.S. Dyck, C. Uher, T. Hogan, E.K. Polychroniadis, and M.G. Kanatzidis, Science 303, 818 (2004).

    Article  Google Scholar 

  7. R. Venkatasubramanian, E. Siivola, T. Colpitts, and B. O’Quinn, Nature 413, 597 (2001).

    Article  Google Scholar 

  8. M. Takashiri, S. Tanaka, M. Takiishi, M. Kihara, K. Miyazaki, and H. Tsukamoto, J. Alloys Compd. 462, 351 (2008).

    Article  Google Scholar 

  9. A.I. Hochbaum, R. Chen, R.D. Delgado, W. Liang, E.C. Garnett, M. Najarian, A. Majumdar, and P. Yang, Nature 451, 163 (2008).

    Article  Google Scholar 

  10. M. Kashiwagi, S. Hirata, K. Harada, Y. Zheng, K. Miyazaki, M. Yahiro, and C. Adachi, Appl. Phys. Lett. 98, 023114 (2011).

    Article  Google Scholar 

  11. D.W. Song, W.-N. Shen, B. Dunn, C.D. Moore, M.S. Goorsky, T. Radetic, R. Gronsky, and G. Chen, Appl. Phys. Lett. 84, 1883 (2004).

    Article  Google Scholar 

  12. B.J. Last and D.J. Thouless, Phys. Rev. Lett. 27, 1719 (1971).

    Article  Google Scholar 

  13. A. Yamamoto, M. Takimoto, T. Ohta, K. Sakamoto, K. Miki, L. Whitlow, K. Kamisako, and T. Matsui, Proceedings of the 17th International Conference on Thermoelectrics, 198, 1998.

  14. M. Ohtaki, R. Hayashi, and K. Araki, Proceedings of the 26th International Conference on Thermoelectrics, 112, 2007.

  15. F.S. Bates and G.H. Fredrickson, Phys. Today 52, 32 (1999).

    Article  Google Scholar 

  16. T. Hashimoto, M. Shibayama, and H. Kawai, Macromolecules 13, 1237 (1980).

    Article  Google Scholar 

  17. T. Hirai, M. Leolukman, C.C. Liu, E. Han, Y.J. Kim, Y. Ishida, T. Hayakawa, M. Kakimoto, P.F. Nealey, and P. Gopalan, Adv. Mater. 21, 1 (2009).

    Google Scholar 

  18. T. Miyazaki, K. Hayashi, K. Kobayashi, Y. Kuba, H. Ohyi, T. Obara, O. Mizuta, N. Murayama, N. Tanaka, Y. Kawamura, and H. Uemoto, J. Vac. Sci. Technol. B 26, 2611 (2008).

    Article  Google Scholar 

  19. M. Park, C. Harrison, P.M. Chaikin, R.A. Register, and D.H. Adamson, Science 276, 1401 (1997).

    Article  Google Scholar 

  20. O.H. Park, J.Y. Cheng, M.W. Hart, T. Topuria, P.M. Rice, L.E. Krupp, R.D. Miller, H. Ito, and H.C. Kim, Adv. Mater. 20, 738 (2008).

    Article  Google Scholar 

  21. Y. Yamamoto, Y. Agawa, Y. Hara, S. Amano, A. Chayahara, Y. Horino, and K. Fujii, Proceedings of the International Conference on Ion Implantation, 2, 1148, 1998/1999.

  22. I.V. Gasenkova and E.I. Tochitsky, Proceedings of the XIV International Conference on Thermoelectrics, 29, 1995.

  23. I.V. Gasenkova, Proceedings of the XIV International Conference on Thermoelectrics, 151, 1997.

  24. M. Takashiri, T. Borca-Tasciuc, A. Jacquot, K. Miyazaki, and G. Chen, J. Appl. Phys. 100, 54315 (2006).

    Article  Google Scholar 

  25. M. Takashiri, M. Takiishi, S. Tanaka, K. Miyazaki, and H. Tsukamoto, J. Appl. Phys. 101, 074301 (2007).

    Article  Google Scholar 

  26. T. Borca-Tasciuc, A.R. Kumar, and G. Chen, Rev. Sci. Instrum. 72, 2139 (2001).

    Article  Google Scholar 

  27. A. Jacquot, B. Lenoir, A. Dauscher, M. Stölzer, and J. Meusel, J. Appl. Phys. 91, 4733 (2002).

    Article  Google Scholar 

  28. J. Callaway, Phys. Rev. 113, 1046 (1959).

    Article  Google Scholar 

  29. C. Dames and G. Chen, J. Appl. Phys. 95, 682 (2004).

    Article  Google Scholar 

  30. M. Takashiri, S. Tanaka, H. Hagino, and K. Miyazaki, J. Appl. Phys. 112, 084315 (2012).

    Article  Google Scholar 

  31. B. Abeles, Phys. Rev. 131, 1906 (1963).

    Article  Google Scholar 

  32. Y.-J. Han, Phys. Rev. B 54, 8977 (1996).

    Article  Google Scholar 

  33. L.W. da Silva and M. Kaviany, Int. J. Heat Mass Transf. 47, 2417 (2004).

    Article  Google Scholar 

Download references

Acknowledgements

This work is supported by NEDO [Bio Electromechanical Autonomous Nano Systems (BEANS) Project], Japan.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Kunihisa Kato or Koji Miyazaki.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kato, K., Hatasako, Y., Kashiwagi, M. et al. Fabrication of a Flexible Bismuth Telluride Power Generation Module Using Microporous Polyimide Films as Substrates. J. Electron. Mater. 43, 1733–1739 (2014). https://doi.org/10.1007/s11664-013-2852-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-013-2852-0

Keywords

Navigation