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Propagation of Input Uncertainties in Numerical
Simulations of Laser Powder Bed Fusion

SCOTT WELLS, ALEX PLOTKOWSKI, and MATTHEW JOHN M. KRANE

Laser powder bed fusion has the potential of redefining state-of-the-art processing and
production methods, but defect formation and inconsistent build quality have limited the
implementation of this process. Numerical models are widely used to study this process and
predict the formation of these defects. Presently, the uncertainties of model input parameters
and thermophysical properties used by these numerical simulations have not been investigated.
In the present study, the uncertainty in these input parameters and material properties are
quantified for laser powder bed fusion, with and without a simulated powder bed, to determine
their influence on the predictive accuracy of an experimentally validated numerical model.
Accounting for all possible sources of uncertainty quickly becomes computationally expensive
on account of the curse of dimensionality. Uncertainty in laser absorption, solid, and liquid
specific heat of the metal were found to have the largest effect on model prediction reliability
with or without the use of a powder bed. Results also illustrate that accounting for these three
uncertain parameters still captures the majority of model prediction uncertainty. Furthermore,
the methodology of this study may be used to understand the uncertainty in as-built
microstructure through propagation to microstructure prediction models, or applied under
processing conditions where high Péclet numbers are observed and the thermal convection and
fluid flow within the molten pool are substantial.
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I. INTRODUCTION

LASER powder bed fusion (L-PBF) is a process
through which a laser heat source, typically a neody-
mium-doped yttrium aluminum garnet (Nd:YAG)
solid-state laser,[1] scans a bed of metallic powder
melting and consolidating the powder under the beam
at a length scale on the order of 100 to 200 microns in
diameter. To prevent combustion and reactions with the
environment, the process is typically conducted in an
inert atmosphere. By adding and locally melting multi-
ple powder layers, complex geometries such as internal
open-cell structures can be manufactured. Due to the
small melt pool size, near net shaping of components is
possible, reducing or eliminating the need for expensive
post-production machining such as drilling or boring.
Furthermore, the geometric flexibility of the process can
reduce the number of parts needed in an assembly, thus

limiting the need for heavy fasteners and welding. Alloy
systems most often used in the laser powder bed fusion
process include: Ti-6Al-4V, SS 316, Inconel 718 and
Inconel 625.[2] These advantages and alloy systems make
L-PBF attractive for use in the aerospace, automotive,
and biomedical industries.[2]

One major factor limiting widespread production of
components by laser powder bed fusion is inconsisten-
cies in build quality. Parts exhibit variability in surface
morphology[3] and defect formation (e.g., unintended
keyholing,[4,5] porosity and cracking,[6–10] lack of
fusion,[11] and delamination[12]). These defects, and their
variability make certifying components for critical
applications produced by L-PBF difficult, as they
degrade component mechanical properties. Conse-
quently, minimization of these defects through process
optimization and scan strategies, such as those described
in Reference 13, is an important focus of laser welding
and laser powder bed fusion research.
As detailed by DebRoy et al.,[2] numerical simulations

have been used extensively to provide insight into
process parameter optimization by investigating pre-
dicted temperature histories and thermal gradients, melt
pool flow, residual stress formation, and as-built grain
morphology. These model outputs help establish pro-
cessing windows in which the likelihood of defect
formation is reduced. However, the physics of the
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process is very complex, featuring several modes of heat
and mass transport, and a wide range of length and time
scales which resolve behavior from the powder level up
to the entire component. Full part simulations are
computationally expensive and time consuming; there-
fore, simulations are often restricted to single line scans.
The physical complexity and computational expense of
the process models make their use in build design
difficult, a difficulty exacerbated by the uncertainty in
the input parameters and the choices made regarding the
inclusion of physical phenomena and how to model
them. The uncertainty in these input parameters (specif-
ically, thermophysical properties, process parameters
such as laser power, and model calibration variables
such as laser absorption efficiency and penetration
depth) propagate through the simulations into the melt
pool dimensions and solidification time predictions
which may then be further propagated to microstruc-
tural prediction models. Modeling of a component
without some estimates of the uncertainties in the model
outputs on which the design depends may lead to poor
build quality and defect formation.

Presently, little consideration has been given to the
uncertainty in model input parameters and what role it
may have on the results of numerical simulations. One
exception is work by Johnson et al. who used a trained
surrogate model to quantify the uncertainty in printabil-
ity maps for two alloy systems, based on the uncertainty
in thermal conductivity and absorptivity of the alloys.[14]

Additionally, several efforts have been made to identify
parameters that affect the build quality and component
performance. Brandt[15] identified more than 60 and
Yagroitsev[16] further increased this value to over 130
parameters for the laser powder bed fusion process.While
most of these parameters are process specific, several
serve as inputs to numerical simulations and heat transfer
models. These model inputs will therefore be the primary
focus of this uncertainty analysis.

This works’ focus will was on a subset of parameters
identified by Brandt[15] and Yagroitsev[16] that are inputs
to the present numerical model. This reduction of order
was effected by concentrating on conditions under which
fluid flow within the molten pool has no appreciable
influence on heat transfer and solidification. In real-
world applications, this conduction-dominated regime is
characterized by the non-dimensional Péclet number,
which describes the ratio of convective to conductive
heat transfer, being much less than 1, which is achieved
by using low laser power and high scan speeds, yielding
a low energy density within the molten pool. Under these
conditions the surface tension gradients and the fluid
motion they drive can be neglected, because previous
experiments and computations have shown that flow has
little influence on the shape of the melt pool or thermal
behavior.[17] This approximation is physically reason-
able in our present cases and is numerically convenient
as neglecting Marangoni flow reduces the number of
uncertain input parameters. The scan speed and laser

power used in the present study were assumed to fall
within this regime based on the observations reported in
Reference 17.
The primary model predictions of interest for this

investigation were melt pool dimensions and solidifica-
tion time where solidification time is defined as the time
between the first solid forming and the last liquid
solidifying. Melt pool dimensions are valuable when
selecting heat source scan strategies for the laser powder
bed fusion process due to the cyclical melting and
heating experienced during a build, and to determine
hatch spacing to avoid lack of fusion defects. Spatial
microstructure variations, including grain size, phase
fraction, and morphology, are often observed in as-built
components.[18] Understanding the dimensions of the
molten pool enables more effective scan strategies to
minimize these variations. Solidification time provides
insight into the thermal gradients and cooling rates
observed around the melt pool while also acting as an
input to microstructural prediction models (e.g., Cellu-
lar Automata) to understand how the uncertainty of
processing parameters propagate from the current
model to the product of microstructure development
simulations.

II. METHODOLOGY

In the present work, an experimentally validated finite
volume method (FVM) model[17] was applied to deter-
mine which parameters have the largest influence on the
uncertainty in the predicted solidification time and melt
pool dimensions during L-PBF of Inconel 625, given
input uncertainty values estimated from the literature.
The numerical model is coupled with TASMA-
NIAN,[19–23] a non-intrusive library for generating
surrogate models for these outputs of interest. Monte
Carlo (MC) sampling over the input uncertainties was
applied to these surrogate models to produce probability
distribution functions (PDF) for the simulation outputs
of interest.

A. Model Description

1. Numerical model
For the present study, a finite volume method

transport model based in OpenFOAM[17] was used.
This model is described in more detail in Reference 17
which also shows it has good agreement with melt pool
shapes when the Péclet number is small (the conduction
dominate regime). The current analysis was restricted to
the conduction dominant regime, in which fluid velocity
was assumed to be negligible in the prediction of heat
transfer and solidification behavior. This assumption
simplifies the governing equations, leaving only the
conservation of energy:

@ðq cpTÞ
@t

¼ rðkrTÞ þ ST þ _Q ½1�
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where q is density, cp is specific heat, k is thermal con-
ductivity and T is the temperature. The energy source
term, ST, accounts for the latent heat release rate and
is given by:

ST ¼ � @

@t
ðqflLfÞ

� �
; ½2�

where fl is the temperature-dependent liquid mass frac-
tion calculated using a continuous sigmoidal function
based on work by Rosler,[24] and Lf is the specific
latent heat of melting. A Gaussian energy distribution
is assumed for the volumetric heat source:

_Qðx; y; zÞ ¼ 2gP

r2dðp=3Þ3=2
exp

�3ðx2 þ y2Þ
r2

þ�3z2

d2

� �
½3�

where g is the laser absorption, P is the simulated laser
power, r is the radius of the incident laser spot, and d
is the laser penetration depth into the material. The
scan is along the x-axis and z is the depth from the
surface into the part. For this model, the laser absorp-
tion is not based on direct absorptivity measurements,
rather, this parameter was calibrated to obtain the best
agreement with experimental measurements for melt
pool dimensions as discussed in Reference 17. The
laser spot radius is constant at 85.7 lm. Although the
actual penetration depth of lasers in metals and alloys
is much smaller than the control volume size used, the
penetration depth in the model was selected to spread
the heat input over several control volumes, an
assumption commonly used in laser welding research.
As such, it is not a true representation of the physics,
but rather the value of d is assigned to enhance numer-
ical stability. A more complete description of how
these values were obtained can be found in Reference
17 along with a full description of the boundary condi-
tions which are the same as used here.

Property data for density, specific heat, and thermal
conductivity for bulk IN625 were obtained from
JMatPro and used to solve the energy equation in the
model. Neither the calculation method nor the

associated uncertainties in these values is provided by
JMatPro thus the uncertainty used in the present work
were based on uncertainty values reported for the
parameter specific measurement method. Table I sum-
marizes the thermophysical property values obtained
from JMatPro as functions of temperature.
When modeling the L-PBF process many researchers

elect to not account for the topology or discrete nature
of the powder bed. To quantitatively determine what
effect the powder bed properties have on predictions of
solidification time and melt pool dimensions, the present
model was used for two separate analyses. Initially the
properties used were those of fully dense Inconel 625
following the values given in Table I. The second
analysis modeled the powder bed as a thin layer (30
lm) of metal powder-gas mixture over a solid substrate.
The effective density and specific heat of the simulated
powder layer were modeled as volume weighted aver-
ages of the bulk and cover gas properties:

qeff T;/ð Þ ¼ qgas 1� /ð Þ þ qmetal / ½4�

and

cp;eff T;/ð Þ ¼ cp;gas 1� /ð Þ þ cp;metal/ ½5�

where the cover gas properties were that of argon to
simulate an inert atmosphere. The powder packing
density is / and 1 � / is the volume fraction filled
with argon.
Thermal conductivity is poorly modeled as a weighted

average because the paths and modes of heat transfer in
heterogeneous porous media are different from those in
a consolidated metal, where it is entirely by conduction.
In powder beds, the contact area between particles is
small and the contact and constriction resistances
severely limit conductive heat flow. Conduction and
radiation through the interpenetrating gas accounts for
the majority of the thermal energy transport. Work by
Gusarov and Kovalev[25] concluded that the effective
thermal conductivity of powder beds primarily depends
on three morphological features: the volume fraction of
the particles (/), the average coordination number of

Table I. Most Likely Property Values and Uncertainties for Model Inputs

Parameter Units Most Likely Values Uncertainty (± 3r) Measurement Method

qS kg/m3 8604 � 0:6828T 1.0 pct dilatometry
qL kg/m3 8604 � 0:6828T 1.0 pct dilatometry
qargon kg/m3 1:6954 � 3:6� 10�3 T þ 3� 10�6 T2 10 pct dilatometry
CpS J/kg K 754.77 4.0 pct calorimetry
CpL J/kg K 754.77 4.0 pct calorimetry
Cp;argon J/kg K 520.0 4.0 pct calorimetry
kS W/m K 12:30 þ 0:01472T 5.0 pct flash diffusivity
kL W/m K 8:961 þ 0:01474T 5.0 pct flash diffusivity
kargon W/m K 0:0249 þ 7� 10�5 T 5.0 pct flash diffusivity
Lf J/kg 217,500 4.0 pct calorimetry
P W 195 2.5 pct —
g — 0.31 15 pct —
d lm 20 5.0 —
/ — 0.60 0.05 —

*(S), (L) correspond to solid and liquid IN625.
Uncertainties are assumed to follow a Gaussian distribution and temperature-dependences are expressed in �C.
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each particle (N), and the neck-to-particle size ratio.
They also defined a nondimensional characteristic
length (L), Eq. [8], as a function of /, N, the adiabatic
index of the cover gas (c), and the dimensionless
Knudsen number (Kn) which is calculated from the
mean-free path length (l) and an assumed average
particle diameter (D). From these parameters, they
derived an explicit formula to determine the effective
thermal conductivity of a powder bed, showing good
agreement with experimental data. This explicit for-
mula, Eq. [9], was adapted in the present work with
values given in Table II.

c ¼ cp
�
cv ½6�

Kn ¼ l=D ½7�

L ¼ cþ 1

9cþ 5

� �
3

4
ffiffiffi
p

p
Kn

� �
½8�

keff
kargon

¼ /N
2

1

2
lnð1þ LÞ þ lnð1þ

ffiffiffiffi
L

p
Þ þ 1

1þ
ffiffiffiffi
L

p � 1

� �

½9�
For simulations of the laser powder bed fusion

process, the density, specific heat, and thermal conduc-
tivity of each cell in the predefined powder layer follow
Eqs. [4], [5], and [9], respectively. The properties were
found from these equations until the liquid fraction of a
given cell was calculated to be greater than 0.01 or 1 pct,
which marked the onset of melting. Once this melting
criterion was met, the cell was no longer considered
powder, and the density, specific heat, and thermal
conductivity values took on the temperature-dependent
values of bulk IN625.

2. Mesh and time step description
The convergence study detailed in Reference 17 was

used to determine the grid-independent spatial and
temporal resolution for the present conditions. The
study showed a grid-independent solution with a cell
spacing of 12.5 lm in the x-direction, and 6.25 lm in the
y and z-directions. For the present uncertainty analysis,
all simulations were conducted in a 5.0 9 0.8 9 0.4 mm
(x, y, z) computational domain, illustrated in Figure 1.

A steady state condition was considered to be met
when the solidification time at the surface on the melt
pool centerline changed less than 1 ls from one control
volume to the next. (That time is generally between ½
and 1 pct of the solidification time.) The maximum melt
pool width and depth were calculated based on the
liquidus temperature at a point in the computational
domain after a steady state was reached by interpolating
temperature data along the y and z-directions. Solidifi-
cation time was calculated along the centerline of the
melt pool surface and 15 lm below the top surface by
tracking the time between the liquid fraction dropping
below 100 pct and reaching a value less than 0.1 pct. A
timestep of 1 ls was used to ensure sufficient temporal
resolution. For cases when the powder layer was
simulated, it had a preset depth of 30 lm where the
domain below that layer used the bulk properties of
IN625 to simulate a substrate.

B. Uncertainty Analysis

To analyze the propagation of input uncertainty to
model outputs of interest, the numerical model was
coupled with TASMANIAN,[19–23] a non-intrusive
library used to construct a polynomial surrogate model.
This surrogate model approximated the behavior of the
numerical simulation predictions but can be sampled at
a fraction of the computational expense. The replace-
ment of the transport model with a polynomial surro-
gate allowed for Monte Carlo-based sampling to
establish probability distribution functions (PDF) for
each output of interest. The present uncertainty analysis
was similar to those used in References 26, 27 applied to
other solidification processes.
The upfront cost of constructing the surrogate model

is dependent upon the number of points on a sparse
grid, on which each point corresponds to one set of
input values for the numerical model and one associated
response. The number of points grows rapidly with the
number of uncertain inputs. The present L-PBF model
has 13 uncertain input parameters when not accounting
for the powder layer, and 14 when including the powder
bed due to the addition of the powder packing density.
To capture the full uncertainty space, a 13 or 14-di-
mensional sparse grid would be needed and would
require hundreds of simulations to construct the surro-
gate. To reduce this upfront cost, the uncertainty

Table II. Values Used to Calculate the Effective Conductivity

of the Powder Bed, With Argon as the Gas Phase

l 68 nm cAr 5/3
D 35 lm Kn 0.0019
kAr 0:0249 þ 7� 10�5

�
K

� 	
T (W/

mK)
L 59.4

N 12 keff
kAr

12
/ 0.60

Packed powder coordination number selected for the assumed FCC
packing.

Fig. 1—Computational domain used to simulate single line scan.
The scan begins with the laser spot centered at x = 0 and traverses
in the positive x-direction. Axes given in mm.
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analysis in the present work was proceeded by a simple
sensitivity analysis of the influence each parameters’
associated uncertainty had on model predictions.

1. Input parameters
Density, specific heat, and thermal conductivity val-

ues for bulk IN625 were obtained from JMatPro, which
unfortunately does not provide either its calculation
method or the associated uncertainties. For this reason,
the established uncertainties in property data were
estimated based on measurement techniques for each
of the properties. In addition to the uncertainty in
thermophysical properties, several other model param-
eters possess a degree of uncertainty due to variation in
material and/or measurement procedure. Uncertainty in
laser power may arise due to noise and variations in
current provided to the pumping source. As discussed in
Reference 17, the penetration depth (d) in the present
model was calibrated to ensure numerical stability while
sufficient energy is imparted. A large uncertainty of 5.0
microns was used here to account for the deviation from
the true physics of the laser-metal interactions. Work by
Deisenroth et al.[28] found that even under favorable
conditions, uncertainty in measured absorbed energy
values is in excess of 10 pct. In the present model, the
laser absorptivity parameter was not determined directly
from experimental measurements, but rather by model
calibration by comparing measured and predicted tem-
peratures and to fit melt pool dimensions. The laser
absorptivity uncertainty value was estimated to be 15
pct of the baseline value of 0.31 here. Finally, powder
packing density was assigned an uncertainty of 0.05(� 8
pct) to account for local variations in packing density
arising from variations in particle size. All uncertainties
were assumed to follow a Gaussian distribution and the
uncertainty values given in Table I are representative of
three standard deviations (3r), a 99 pct confidence
interval.

2. Sensitivity analysis
The numerical model contains 13 or 14 input

parameters, depending on whether a powder layer is
included, all of which have an associated uncertainty.
Accounting for all these inputs in the uncertainty
propagation study would be computationally expensive
due to the high dimensionality of the uncertainty space.
In an effort to reduce the number of dimensions, a
sensitivity analysis was carried out. For each uncertain
input, outputs were calculated using the numerical
model at the mean input value and at the two extremes
of the range of uncertainty; these three evaluations give
a simple measure of the effect of input uncertainty on
the output uncertainty.

The criteria used to determine whether the uncertainty
for a particular input parameter is significant are:

� Change in solidification time is more than 1 pct of the
baseline values;

� Change in melt pool width is more than 1 pct of the
baseline width;

� Change in melt pool depth is more than 1 pct of the
baseline depth.

Input parameters that met any of these three criteria
were included in the subsequent uncertainty analysis as
discussed in Section III–C.

3. Constructing and testing the surrogate model
A sparse grid containing the input parameters that

were not down-selected by the preliminary sensitivity
analysis was generated for the model with and without a
powder layer. The sparse grids were generated in
TASMANIAN using Clenshaw–Curtis quadrature rules
and Lagrangian polynomials were used to interpolate
between points when constructing the surrogate. These
methods were used as they are computational cheap
(few grid points) and the model behavior is expected to
be smooth throughout the uncertainty space. A
level-two analysis was used to keep the number of grid
points, and thus the number of numerical simulations
needed, relatively low.
Each point on the sparse grid represents a set of input

parameter values that is passed through the numerical
model. A polynomial response surface was formed by
interpolating among all the response values. This
response surface acts as a surrogate model which can
then be interrogated rapidly for the outputs of interest.
This process was repeated for all the outputs to generate
a surrogate model for each.
To validate that the surrogate model accurately

represented the behavior of the simulation, the surrogate
was sampled at values away from the grid points used to
construct it where the predictions are the least reliable,
and compared to the predictions at those points from
the numerical model. The comparison of the outputs of
the surrogate to the numerical model with the full
physics ensures that behavior is correctly captured by
the interpolated polynomial over the entire input range.
Results for the surrogate validation showed solidifica-
tion times and pool dimensions within 3 pct of the
numerically calculated value.

4. Monte Carlo sampling
Once validated, the surrogate model was sampled

with confidence that the predictions were representative
of the transport model. This is beneficial as the
polynomial response surface can be sampled at a
fraction of the cost of the numerical model. To produce
probability distribution functions (PDFs) for each of the
outputs of interest, the surrogates for both powder bed
representations were sampled over the uncertainty
ranges using a Monte Carlo-based method. To ensure
a statistically valid representation of the models, 10
million random values for each input parameter were
selected from the Gaussian distribution around its most
likely value. The pseudorandom number generating
algorithm, Mersenne Twister, was utilized to carry out
the Monte Carlo random sampling.

C. Reduced-Order Uncertainty Analysis

In addition to the full uncertainty propagation
analysis which included all inputs to which output
uncertainties were sufficiently sensitive, as defined in
Section II–B–B, a reduced-order analysis was also
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performed which only accounted for the three param-
eters which caused the largest output uncertainty in each
of the powder bed models. This guarantees that only 19
numerical simulations were needed in constructing the
polynomial surrogate model which is a drastic reduction
in the computational expense need to account for all
input parameter uncertainties, while still capturing the
majority of the uncertainty in model predictions.

III. RESULTS

A. Baseline

Baseline model predictions for the two powder bed
models were established using the mean values listed in
Table I. As illustrated by Figure 2, the temperature rise
at the edge of the numerical domain is negligible,
showing that the size of the domain was sufficient to
model a single pass in a semi-infinite space. Table III
presents solidification time data at several points along
the middle of the domain illustrating a steady state was
achieved at the point of measurement.

B. Parameter Sensitivity Analysis

A simple analysis was conducted to determine the
uncertainty of which input parameters had an apprecia-
ble effect on model prediction reliability (Sec-
tion II–B–B). Each parameter was individually
adjusted ± 3r from its mean value in Table I to capture
the extremes of the uncertainty bounds. Adjusted
parameters which caused a change in solidification time
greater than 1 pct and/or a change in melt pool
dimensions greater than 1 pct of the baseline were

considered ‘high-sensitivity’ parameters and included in
the full uncertainty quantification analysis. Figures 3
and 4 summarize the analysis for the laser powder bed
fusion process for the cases when the powder bed is not
included for and when it is modeled as a mixture of
metal particles and a cover gas, respectively. Figure 3
shows that the five parameters to which model predic-
tion uncertainty without a powder layer was found to
have a high-sensitivity are (in order of importance) laser
absorption, the specific heat of solid and liquid phases of
IN625, laser power, and laser penetration depth. When
a powder layer is modeled, the inputs passing the criteria
in Section II–B–B are the same, but also include the
powder packing density as shown by Figure 4.

C. Uncertainty Analysis

1. Model without powder layer
To analyze the total uncertainty in the model predic-

tions, a level-two analysis of the five significant param-
eters from Figure 3 was conducted. To build the
surrogate model, a five-dimensional sparse grid with
51 total points was developed using TASMANIAN to
represent the parameter space inside the ranges of the
input uncertainties. The input values corresponding to
each these points were fed into the OpenFOAM model,
the simulations were performed, and the outputs were
fed back as a response to the sparse grid. Using these 51
input grid points and the associated outputs, the
surrogate model for each of the outputs of interest was
constructed.
Before sampling, the surrogate model for each output

of interest was validated at several points not located at
grid points. This ensures that the quadrature rules used
in constructing the sparse grid and the interpolation
scheme between the grid points are valid. Additionally,
this ensures the level of analysis was high enough to
accurately represent the behavior of the numerical
model. The grid points on the sparse grid occur at ±
3r for each parameter. The points used for validation
occur at � r, � 2r, r, and 2r for each of the input
parameters. These check points are provided in
Table IV, as are the outputs of interest generated by
the full numerical L-PBF model and the surrogates,
both with and without the powder layer.
Table IV shows that the surrogate models accurately

represent the transport model for predictions of solid-
ification time and melt pool dimensions; the solidifica-
tion times and pool dimensions are within 3 pct of the
full numerical model results. These surrogate models
were then sampled 10 million times to produce the
probability distribution functions shown in Figure 5.
Accompanying statistics for the Monte Carlo sampling
are detailed in Table V.

2. Model with Powder Layer
The model with a powder layer was treated similarly.

In this case, six parameters were identified as high-sen-
sitivity; thus, a six-dimensional sparse grid was gener-
ated. This level-two sparse grid contained 73 total
points, requiring 73 evaluations of the numerical model
to develop the surrogate. Validation data for the

Fig. 2—Top-down view of single pass simulation for solid fraction
and temperature (K).
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surrogate models is provided in Table IV. Again, the
surrogate models accurately represents the transport
model and is used for Monte Carlo sampling with 10
million samples of each surrogate. The generated
probability distribution functions are shown in Figure 6
and sampling statistics are provided in Table V

D. Reduced-Order Uncertainty Analysis

As many of the model input parameters uncertain-
ties had little effect on uncertainty in the model
predictions, the crude sensitivity analysis reduced the
dimension of the uncertainty space from 13 to 5 when
not accounting for the powder bed, and from 14 to 6
for the mixture powder bed model. Despite this
reduction, to construct the second order polynomial
surrogate models, 51 and 73 numerical simulations
were required, respectively. As the present work has
assumed the processing conditions would result in
conduction dominant heat transfer, fluid mechanics
has been neglected, reducing the number of uncertain
input parameters while also drastically speeding up the
computations. As a result, the required numerical
simulations can be performed relatively quickly, on the

order of 100 clock hours using 128 total cores across
two AMD Epyc 7662 ‘‘Rome’’ processors; however, if
fluid mechanics were included this increases by an
order of magnitude. Additionally, including the fluid
mechanics incorporates several other input parameters
whose uncertainty must be accounted for (e.g., surface
tension gradient). Furthermore, the present analysis is
only level-two. The comparison of surrogate model
predictions to data obtained from the transport model
presented in Tables IV show that this low level of
analysis is sufficient to produce a reliable surrogate for
the present study, but this may not hold true when
incorporating fluid flow. Higher-order analysis would
require more points on the sparse grid and thus more
numerical simulations to generate an accurate
surrogate.
In addition to this uncertainty analysis including 5 or

6 parameters deemed to be high-sensitivity, a reduce-
d-order analysis was conducted with only the three most
significant parameters. The reduced-order analysis fol-
lows the same process of generating a sparse grid and a
surrogate model. Likewise, the 3 parameter surrogate
model was also validated at values away from grid
points to ensure it accurately represented the numerical

Table III. Comparison of Steady State Solidification Times With and Without a Simulated Powder Layer Showing a Steady State

Was Reached

Probe Location (x, y, z) (mm) ts (ms) (No Powder) ts (ms) (Simulated Powder Layer)

(2.00, 0.0, � 0.015) 0.148 0.186
(2.25, 0.0, � 0.015) 0.148 0.186
(2.50, 0.0, � 0.015) 0.148 0.186
(2.75, 0.0, � 0.015) 0.148 0.186
(3.00, 0.0, � 0.015) 0.148 0.186

Times were measured along the scan direction, at the scan centerline along the top surface.

Fig. 3—Sensitivity analysis for solidification time at and below the top surface (a, b), (c) melt pool width, and (d) melt pool depth for cases
without a simulated powder layer.
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model. By reducing the dimensionality of the uncer-
tainty space from 5 and 6 for the two powder bed
models down to only 3, the total number of numerical
simulations required to construct the surrogate model is
reduced to 19. Thus, computational expense is further

reduced. The motivation being that if we can show this
analysis is sufficient to characterize the reliability of the
model outputs for the conduction-dominated regime,
then we have an easier starting point for a later, more
comprehensive analysis including fluid flow.

Fig. 4—Sensitivity analysis for solidification time at and below the top surface (a, b), (c) melt pool width, and (d) melt pool depth for cases with
a simulated powder layer.

Table IV. Numerical Model Outputs of Interest at Parameter Values Away From Sparse Grid Points, Compared to Surrogate
Model Predictions for Cases With and Without the Powder Layer

Inputs Output

No Powder Simulated Powder

OpenFOAM Surrogate OpenFOAM Surrogate

P = 193.5 W
g = 0.295
d = 18.67 lm
/ =0.583
cps = cpl = 744.7 J/kgK

ts (ms) (surface) 0.139 0.139 0.178 0.178
ts (ms) (sub-surface) 0.134 0.134 0.167 0.166
width (lm) 122.8 123.1 141.3 141.0
depth (lm) 35.2 34.8 35.5 36.0

P = 192.0 W
g = 0.280
/ = 0.566
d = 17.33 lm
cps = cpl = 734.6 J/kgK

ts (ms) (surface) 0.131 0.132 0.168 0.168
ts (ms) (sub-surface) 0.125 0.125 0.157 0.157
width (lm) 120.4 119.6 139.4 140.2
depth (lm) 33.8 33.4 34.3 34.4

P = 196.5 W
g = 0.325
/ = 0.617
d = 21.33 lm
cps = cpl = 764.8 J/kgK

ts (ms) (surface) 0.156 0.157 0.197 0.196
ts (ms) (sub-surface) 0.151 0.151 0.188 0.187
width (lm) 127.5 127.0 145.2 144.6
depth (lm) 38.6 38.1 39.0 38.7

P = 198.0 W
g = 0.34
/ = 0.633
d = 23.67 lm
cps = cpl = 774.9 J/kgK

ts (ms) (surface) 0.165 0.165 0.207 0.202
ts (ms) (sub-surface) 0.160 0.160 0.198 0.197
width (lm) 129.0 128.9 146.5 146.2
depth (lm) 40.0 40.5 40.2 41.1
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1. Reduced-order: model without powder layer
Based on the sensitivity analysis and the results

presented in Figure 3, the three parameters deemed
most significant when the powder bed is not modeled
were laser absorption and the solid and liquid specific
heats. A 3-dimensional, level-2 sparse grid was gener-
ated for these three uncertain input parameters. This
sparse grid, shown in Figure 7, has only 19 points
requiring full numerical simulations.

Once the surrogate model was constructed, it was
validated as before. Results for the validation are
presented in Table VI. After validation that the reduce-
d-order surrogate accurately represented the transport
model under the same conditions, the surrogate was
sampled 10 million times for each of the outputs of
interest, generating output probability distribution func-
tions. These PDFs are shown in Figure 8 and sampling
statistics are displayed in Table VII.

2. Model with powder layer
From the sensitivity analysis and Figure 4, the three

most sensitive parameters for the mixed properties
powder bed model were also laser absorption, and solid
and liquid specific heat. The three dimensional, level-2
sparse grid for these input parameters is the same as
before as shown in Figure 7. Validation of the con-
structed surrogate is tabulated in Table VI. and the
produced probability distribution functions are illus-
trated in Figure 9. Statistics for the Monte Carlo
sampling can be found in Table VII.

E. Comparison of Reduced-Order to Full Analysis

The purpose of the reduced-order analysis was to
decrease as much as reasonable the dimensionality of the
uncertainty space for models of the L-PBF process, so as
to minimize the computational expense without a

Fig. 5—Probability distribution functions of the solidification time at the surface (a) and sub-surface (b), and melt pool dimensions (c, d)
generated by sampling the polynomial surrogate model 10 million times.
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significant loss in detail. The probability distribution
functions produced by the reduced-order analysis com-
pared to those of the full analysis, including all
parameters that were deemed high-sensitivity are shown
in Figures 10 and 11 showing good agreement between

the two with only slight narrowing of the reduced-order
analysis. A comparison of the sampling statistics for the
full analysis vs the reduced-order is provided in
Table VIII showing similar mean values with a small
reduction in standard deviation.

Table V. Statistics for the Monte Carlo Sampling of the Full Surrogate Model Predictions With and Without the Simulated

Powder Layer

Full Analysis Statistics

No Powder Powder

Mean r Mean r

ts (ms) (Surface) 0.148 1.17 9 10�2 0.186 1.47 9 10�2

ts (ms) (Sub-Surface) 0.142 1.13 9 10�2 0.177 1.40 9 10�2

Melt Pool Width (lm) 125.1 3.23 142.7 2.89
Melt Pool Depth (lm) 36.4 1.65 37.3 1.53

Fig. 6—Probability distribution functions of the solidification time at the surface (a) and sub-surface (b), and melt pool dimensions (c, d)
generated by sampling the polynomial surrogate model 10 million times.
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IV. DISCUSSION

The results in Section III show that for the numerical
model of L-PBF, with or without the inclusion of a
powder bed, the uncertainty in the predictions arose
almost entirely from uncertainty in the laser absorptivity
and the specific heats of the solid and liquid phases of
IN625. The output uncertainties were almost entirely
insensitive to most of the other input parameter uncer-
tainties in Table I. Comparisons between probability
density functions (Figures 10 and 11) and sampling
statistics (Table VIII) obtained from the reduced-order
analysis and the more comprehensive analyses showed
only slight shifts in means and minimal broadening of
the output distributions for both powder bed represen-
tations. For many parameters, this lack of sensitivity
can be explained by looking at the low uncertainty in
input values. For example, density and thermal conduc-
tivity are properties with small measurement variability,
so their uncertainty is small. While the model predic-
tions themselves may be highly sensitive to these
thermophysical properties, the uncertainty in these
properties is small and so contribute little to output
uncertainty.

Uncertainty in laser absorptivity was found to have
the largest contribution to the uncertainty in the outputs
of interest for both representations of the powder bed.
As discussed in Reference 17, the laser absorptivity
value used in the transport model is not based on
experimental measurements, rather on the results pro-
duced when different values were calibrated to experi-
mental measurements of melt pool dimensions and
temperature, but there is a high uncertainty in that fit.
Additionally, this parameter is present in the volumetric
heat source term, Eq. [3]. This term controls the amount
of thermal energy imparted on the system and the effects
of that transfer are highly sensitive to variation in laser
absorption and its uncertainty. The specific heats of the

liquid and solid phases are the other two most important
contributions to the output uncertainties. These prop-
erties control the uncertainty in the metal thermal
capacity, qcp, which in turn controls the cooling rate. As
mentioned before, the uncertainty in density is low thus
which is why its’ contribution to model prediction
uncertainty is much smaller than in the specific heat
despite being multiplied in all occurrences in the energy
conservation equation.
Additionally, when comparing the results of the two

different approaches (with and without the powder
layer), it is seen that the solidification times at positions
on and 15 lm below the top surface are significantly
different. This deviation can be attributed to the much
lower thermal diffusivity of the powder bed. The heat
conducts more slowly outward from the sides of the melt
pool into the unmelted powder and the majority of
thermal energy conducts away from the melt pool
occurs down into the substrate. Not able to shed heat
laterally as fast as into a consolidated metal, the melt
pool solidification rate is greatly reduced.
Finally, the observation that a reduced-order analysis

captures the vast majority of input parameter contribu-
tion to the model predictions’ uncertainty is important,
because reducing the dimensions of the uncertainty
space reduces the number of expensive simulations
required to construct a surrogate model for sampling.
The reduction to only three important parameters
(instead of 13 or 14) will enable faster analysis of
similar problems such as processing conditions with
higher Péclet numbers where fluid flow must be consid-
ered, and with it, several new uncertain parameters such
as the surface tension gradient.

V. CONCLUSION

This work used uncertainty quantification techniques
to analyze a finite volume model for the L-PBF process,
and to determine the most significant sources of input
uncertainty and their effect on model prediction accu-
racy. Preliminary results show the propagation of input
uncertainties to model predictions of melt pool dimen-
sions and solidification time for a single-pass simulation
in the conduction dominant regime.
Uncertainty in laser absorption and the metal specific

heats were found to have the largest effect on the
reliability of predictions of the L-PBF model with or
without the use of a powder bed. Comparing the PDFs
for the reduced-order uncertainty analysis for these
three processes to the full comprehensive analysis, which
included the uncertainty in laser power, numerical
penetration depth, and packing density of the powder
bed, show that the three variables mentioned above
dominate the uncertainty in model predictions.
Accounting for only these three variables significantly
reduces computational time while still providing accu-
rate measurements of model output uncertainty.Fig. 7—Three dimensional, level-2 sparse grid for the reduced-order

analysis for both powder models, constructed using TASMANIAN.
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Table VI. Numerical Model Predictions of Outputs of Interest at Parameter Values Away From Points on the Sparse Grid

Compared to the Reduced-Order Surrogate Model Predictions at Those Values When the Powder Bed is not Included

Inputs Output

No Powder Simulated Powder

OpenFOAM Surrogate OpenFOAM Surrogate

g = 0.295
cps = cpl = 744.7 J/kgK

ts (ms) (surface) 0.141 0.141 0.180 0.178
ts (ms) (sub-surface) 0.135 0.135 0.170 0.168
width (lm) 122.5 122.6 140.6 140.3
depth (lm) 35.4 35.2 35.8 36.5

g = 0.280
cps = cpl = 734.6 J/kgK

ts (ms) (surface) 0.133 0.133 0.171 0.171
ts (ms) (sub-surface) 0.128 0.128 0.160 0.160
width (lm) 119.9 119.9 138.7 138.1
depth (lm) 34.4 34.1 34.9 35.1

g = 0.325
cps = cpl = 764.8 J/kgK

ts (ms) (surface) 0.155 0.155 0.195 0.195
ts (ms) (sub-surface) 0.150 0.150 0.186 0.185
width (lm) 127.8 127.5 145.7 144.9
depth (lm) 38.3 37.6 38.8 38.3

g = 0.34
cps = cpl = 774.9 J/kgK

ts (ms) (surface) 0.162 0.162 0.203 0.203
ts (ms) (sub-surface) 0.157 0.157 0.194 0.194
width (lm) 129.9 129.7 147.4 146.7
depth (lm) 39.3 38.9 39.6 39.2

Fig. 8—Probability distribution functions of the solidification time at the surface (a) and sub-surface (b), and melt pool dimensions (c, d) for the
reduced-order analysis when the powder layer is not included.
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Table VII. Statistics for the Monte Carlo Sampling of the Analysis Surrogate Model Predictions of Solidification Time on and 15

lm Below the Top Surface, and Melt Pool Dimensions With and Without the Powder Layer

Reduced-Order Analysis Statistics

No Powder Powder

Mean r Mean r

ts (ms) (Surface) 0.148 0.86 9 10�2 0.186 1.08 9 10�2

ts (ms) (Sub-surface) 0.142 0.79 9 10�2 0.177 1.02 9 10�2

Melt Pool Width (lm) 125.1 1.70 142.7 1.55
Melt Pool Depth (lm) 36.4 0.95 37.4 0.91

Fig. 9—Probability distribution functions of the solidification time at the surface (a) and sub-surface (b), and melt pool dimensions (c, d) for the
reduced-order analysis when simulating a powder layer.

3028—VOLUME 52B, OCTOBER 2021 METALLURGICAL AND MATERIALS TRANSACTIONS B



The current study quantifies the propagation of
uncertainty in thermophysical properties, process
parameters, and model calibration variables, and iden-
tifies the most influential parameters on model output
uncertainty. While the uncertainty and its effect can be
quantified, reducing these effects is difficult. Reduction
in uncertainty in thermophysical properties, e.g., specific
heat, requires more accurate (and more expensive)
measurement techniques. Uncertainty in laser power
might be reduced by improvements in the laser pumping
source or controllers. Finally, the uncertainty in laser
absorption efficiency may be reduced by basing it on a
physical model rather than using it as a parameter to

calibrate the model to experimental results. Such an
approach would, of course, require reliable experimental
measurements of the optical properties of the liquid
metal surface.
The uncertainty in solidification time may be further

propagated by using it as input uncertainty for
microstructural prediction models (e.g., cellular auto-
mata or phase field) to establish uncertainty bounds on
microstructural features such as grain size and crystal-
lographic texture. Finally, the methodology detailed in
this work is not restricted to the conduction dominate
regime. By using the observations associated with the
reduced-order analysis, a useful extension of this work is

Fig. 10—Comparison of the probability distribution functions of the solidification time at the surface (a) and sub-surface (b), and melt pool
dimensions (c, d) for the full and reduced-order analysis when not considering the powder layer.
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to investigate the uncertainty in model inputs under
processing conditions (high power and low scan speeds)
where fluid flow and convective heat transfer in the
molten pool cannot be neglected.
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