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The fracture toughness of a material depends upon the material’s composition and microstruc-
ture, as well as other material properties operating at the continuum level. The interrelationships
between these variables are complex, and thus difficult to interpret, especially in multi-com-
ponent, multi-phase ductile engineering alloys such as a/b-processed Ti-6Al-4V (nominal
composition, wt pct). Neural networks have been used to elucidate how variables such as
composition and microstructure influence the fracture toughness directly (i.e., via a crack
initiation or propagation mechanism)—and independent of the influence of the same variables
influence on the yield strength and plasticity of the material. The variables included in the
models and analysis include (i) alloy composition, specifically, Al, V, O, and Fe; (ii) materials
microstructure, including phase fractions and average sizes of key microstructural features; (iii)
the yield strength and reduction in area obtained from uniaxial tensile tests; and (iv) an
assessment of the degree to which plane strain conditions were satisfied by including a factor
related to the plane strain thickness. Once trained, virtual experiments have been conducted
which permit the determination of each variable’s functional dependency on the resulting
fracture toughness. Given that the database includes both K1C and KQ values, as well as the
in-plane component of the stress state of the crack tip, it is possible to quantitatively assess the
effect of sample thickness on KQ and the degree to which the KQ and K1C values may vary. These
interpretations drawn by comparing multiple neural networks have a significant impact on the
general understanding of how the microstructure influences the fracture toughness in ductile
materials, as well as an ability to predict the fracture toughness of a/b-processed Ti-6Al-4V.
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I. INTRODUCTION

THE fracture toughness (K) of a material describes
how the material will respond when subjected to a load
with a critical flaw size. This property, while important
for the design engineer, is an often ill-studied problem,
costly to measure, and is exceptionally difficult to
predict. While progress has been made to predict the
yield strength and fatigue properties of engineering

alloys given a specific composition and microstructure
(including titanium based alloys[1–6]), and while funda-
mental relationships between composition and slip
mechanisms have been determined,[7–11] the prediction
of fracture toughness based upon composition and
microstructure is far less mature. In other words, there is
a ‘‘knowledge gap’’ or ‘‘predictability gap’’ when it
comes to fracture toughness. This is especially true for
ductile materials, such as a/b-processed Ti-6Al-4V.
The origin of this ‘‘predictability gap’’ may be

attributed to the complex manner by which fracture
occurs (i.e., by which cracks propagate). The area
immediately in front of a crack tip is subjected to local
stresses which may exceed the tensile strength of the
material (rys ¼ f composition, microstructureð Þ). The
specimen geometry and dimensions, initial flaw size,
state of stress at the crack tip, and the response of the
material to the concentrated stress and crack propaga-
tion all contribute to the fracture toughness. The degree
to which these relationships are known varies signifi-
cantly. For example, there is a reasonable level of
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maturity with regard to the understanding of the
relationships between applied stress, basic sample
geometries, and initial crack shapes/sizes and the result-
ing fracture toughness. Conversely, there is generally a
dearth of legacy knowledge regarding the influence of
the individual continuum material parameters (e.g.,
yield strength and the state of stress at the crack tip,
rz) on the measured toughness. This knowledge gap
includes (generally) any understanding of how the
microstructure responds to the presence of a crack
under load, including crack tip opening and growth and
the development of damage (e.g., secondary microc-
racks) in the immediate vicinity of the primary crack.
This knowledge asymmetry is shown schematically in
Figure 1 with the well-established connection between
geometry and crack size and the material property
shown with a solid line. In a similar fashion, the various
interconnected material variables are shown with dotted
lines to indicate the lack of understanding of their
interrelationships and contribution to the material
response, K.

Beyond the variables included directly in fracture
mechanics, one relationship has been fairly well estab-
lished, namely the inverse relationship between yield
strength and fracture toughness (see Figure 2). The data
in this schematic diagram have been compiled from a
variety of sources and for a range of Ti-based alloys.
Similar plots have guided alloy selection and fracture
toughness knowledge and are shown throughout the
literature [e.g., Reference 12]. However, owing to the
difficult nature of the interpretation of the material
response, there have been few efforts to move beyond
this rudimentary observation and establish a mechanis-
tic understanding of the influence of microstructure on
the fracture of ductile multi-phase materials in general
and for Ti-based alloys specifically. The notable excep-
tions for ductile multi-phase materials are the seminal
work of Ritchie and Thompson,[13] and the more recent
computational work by Osovski et al.[14] and others.[15]

An additional barrier exists when attempting to
develop a micromechanistic understanding of fracture.
This barrier is related to the geometry-dependent
variability of the local stress state at the crack tip.
While Figure 1 appropriately labels the material
response as K, the specific K that is determined is a
function of the stress state at the crack tip, which in turn
is a function of both sample geometry and the local yield
strength (rys). It is well known that the stress state at the
crack tip, specifically the in-plane stress parallel to the
crack front (rz), can result in different fracture tough-
ness values based on variations in sample thickness. This
variability is depicted in Figure 3, where the K increases
with decreasing sample thickness, due to the pro-
nounced role of the plane stress condition within the
sample. As can be seen, the radius of the plastic zone
size (ry) also plays a role. This size is related directly to
the square of the ratio between the fracture toughness
and the yield strength of the material in which the plastic
zone resides, which can range from several microns to
several millimeters, depending upon both rys and K1C.
Experimentally, it is often challenging to ensure that all
tested samples result in a K1C value, rather than an

apparent toughness, or KQ value. This is because the
threshold of specimen size between plane strain and
plane stress, and therefore between KQ and K1C, is
largely dependent upon the composition and the
microstructure through their influence on not only the
plastic zone size (ry) but also on the tensile properties
and toughness (i.e., ry � (K1C/rys)

2). Further complicat-
ing the problem for Ti-based alloys is ensuring exper-
imentally that the heat treatment results in an average
microstructure that is uniform over a length scale
sufficient to measure a valid K1C. For example, in this
work, each coupon is thicker than 25 mm, yet not all
have resulted in a valid K1C.
These numerous challenges have severely limited the

efforts to conduct studies which detail the role of
microstructure on toughness in ductile materials. The
available data describing the role of microstructural
features and composition on toughness in Ti-6Al-4V
provide a qualitative description (e.g., +/�/0) of
variables which influence fracture toughness, but such
work does not directly distinguish whether such vari-
ables govern toughness by influencing the continuum
(e.g., yield strength) or by determining the micromech-
anisms (e.g., crack path).[16,17] Notably, the seminal
work of Ritchie and Thompson has clearly demon-
strated not only the importance of considering both
macroscopic (continuum) and microscopic contribu-
tions to the fracture toughness in some materials (not
Ti-based), but also that the two are interrelated and
must be considered together when trying to develop an
understanding of crack initiation and crack growth in
ductile materials.[13] Other researchers have focused on
materials where there are clear microstructural features
responsible for crack/void nucleation such as hard
intermetallics along grain boundaries. While other
authors have followed an approach similar to that of
Ritchie and Thompson, most have worked to apply
continuum theories to microstructural features.[18,19]

Such efforts have, by necessity, relied on unverifiable
assumptions regarding the properties of individual
phases, without considering the complex interrelation-
ship between the phases, or even of variations in
interfacial energy or the mechanical constraint provided
by distributions of local phases. By adopting an
approach that consists of a combination of neural
network models and in-depth characterization, it is
possible to analyze and interpret both the continuum
and micromechanistic contributions simultaneously.
For example (and as will be shown here), it is possible
to assess whether a given microstructural feature con-
tributes to a continuum variable (i.e., yield strength), a
micromechanistic detail (i.e., microcracking or void
nucleation), or both.
There have been recent efforts to investigate such

interrelationships using neural network approaches.
Such a modeling approach has been developed by the
authors for the prediction of tensile properties in both b
and a/b-processed Ti-6Al-4V.[1–4,20] These research
efforts have used models incorporating Bayesian statis-
tics,[21,22] and include metrics for microstructural fea-
tures which have been quantified using stereological
methods, as described elsewhere.[23] Following training
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and testing, the models for the interpolative prediction
of tensile properties have resulted in differences of less
than ± 2.5 pct from experimentally measured values for
both yield strength and ultimate tensile strength.[20]

Considering the extended range of tensile properties
possible in Ti-6Al-4V (e.g., 725 to 930 MPa for yield
strength), a prediction with an associated uncertainty of

± 2.5 pct error is quite remarkable. Given the success in
applying neural networks for yield strength, the separa-
tion of the continuum and micromechanistic contribu-
tions of the material to the fracture toughness may be
possible using a similar approach.
An additional advantage afforded by neural networks

is the potential to conduct virtual experiments. Such
experiments, described in detail elsewhere,[1–3,20] allow
for a single variable (e.g., a microstructural feature,
continuum variable, or solute species) to be varied, while
the other variables are set to single values. These
experiments can be used to visualize and make
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Fig. 1—Schematic of the complexity involved in deriving fundamental details of the fracture toughness problem.
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interpretations on a complex, n-variable response sur-
face (here, fracture toughness). While such results have
been successful in the prediction of tensile properties,
the application of neural network models to the predic-
tion of fracture toughness is expected to be somewhat
more difficult, and hence, the results potentially less
accurate. This is due to the complicated manner in
which the material responds to the application of a load
in the presence of a flaw. Indeed, the material response
and the absence of a sufficient published legacy under-
standing of the influence of microstructure on fracture
might reasonably be expected to present a challenge
when verifying the results.

An additional consequence of the models that are
developed within this paper is the ability not only to
include a factor for the estimation of the thickness of the
plane strain region of the specimen, but also to predict a
first approximation for the expected plane strain thick-
ness without necessarily knowing the yield strength of
the material. The direct inclusion of the plane strain
region is important for two reasons. Firstly, its inclusion
allows a direct analysis of KQ as a function of thickness,
and the comparison of KQ(t) with valid K1C values. This
is because the rules-based model not only ‘‘scales’’ the
KQ’s to reflect values closer to their K1C if plane strain,
rather than mixed mode, conditions dominated the test,
but also ‘‘adjusts’’ K1C’s to be KQ’s if the plane strain
thickness were to be decreased. Secondly, it adds a
physical constraint as an input variable to the virtual
experiments, thereby more closely resembling the actual
experiment. An additional practical and important
consequence in the prediction of an appropriate thick-
ness that would result in a test dominated by plane
strain, and hence K1C, is the possibility to predict, and
hence design, a KQ(t) where the stress state at the crack
tip is positively (and predictably) influenced by the
triaxiality at the free surface, rather than an overly
conservative K1C for thin specimens, resulting in smaller
(thinner) components and a total weight savings.

The research described in this paper has three
principal aims. The first is the development of the
necessary databases to relate composition/microstruc-
ture and fracture toughness in a/b-processed Ti-6Al-4V.
The second is the development of rules-based models to
predict interpolatively (i.e., within the database) the
fracture toughness in these alloys. The third is the
determination, validation, and interpretation of the
functional dependencies derived from the models. It is
necessary to develop several types of models to accom-
plish these tasks and permit the development of a
mechanism-based understanding of fracture in a/b-pro-
cessed Ti-6Al-4V.

II. EXPERIMENTAL PROCEDURES

As described in previous work on the prediction of
tensile properties,[9] this research includes an intentional
variation of not only microstructural features but also
composition. A total of nine different titanium alloys
(based around the nominal composition of Ti-6Al-4V)
were produced with intentional variations in the relative

amounts of the individual elemental species, including
the impurity O and Fe contents. The variations in alloy
compositions, as measured by TIMET’s Henderson
Technical Laboratory, Henderson, NV using inductively
coupled plasma (ICP) spectroscopy, are Ti-xAl-yV
(4.76 < x < 6.55; 3.30 < y < 4.45) with controlled
variations in the impurities O and Fe (0.07 < wt pct
O<0.20; 0.11<wt pct Fe<0.41)*. As was the case for

the tensile properties,[20] a total of 54 fracture toughness
specimens were prepared, corresponding to nine alloy
compositions with six different thermomechanical pro-
cessing histories. These specimens were extracted from
the forged billets in a manner designed to minimize
differences in plastic deformation strains, and thus
minimize differences in texture. For each fracture
toughness sample, there was a corresponding tensile
sample, as documented in the previous work, with
nominally the same microstructure.
The geometry of each fracture toughness specimen

was that of a compact tension specimen with a fatigue
pre-crack. These specimens were tested at room tem-
perature according to ASTM E399 specifications. The
thickness (B) was 25.4 mm, and the W and a values were
~ 51 and 20.5 to 25 mm, respectively. These geometries
were selected based on the estimation that the tests
would yield values that would qualify for K1C measure-
ments, a test that was specified by the specific funding
program. Further, the testing was conducted by a
certified testing laboratory. Even still, only 23 tests
resulted in valid K1C measurements. The other tests have
been reported as KQ. It should be noted that of the 24
samples with the highest oxygen contents, all but one
were reported as K1C, and consistently had lower
fracture toughness values. This is not surprising given
the fact that these samples also invariably have higher
yield strengths. However, given the variation in type of
toughness reported, the models that will be developed in
this paper will be for the experimentally less rigorous
KQ. It is expected that the normalization of the models
with the inclusion of the plane strain thickness might
give a KQ that is a reasonable approximation of K1C.

III. NEURAL NETWORK DEVELOPMENT

As noted previously, it is necessary to develop several
types of Bayesian Neural Network (BNN) models with
sufficient accuracy such that they may be used to
develop a mechanism-based understanding of fracture in
a/b processed Ti-6Al-4V. These are shown schematically
in Figures 4(a) through (c) where the inset double
triangle captures the interconnected nature of the

*For reference, AMS specification #4920 is 5.5<wt pct Al< 6.75;
3.5<wt pct V<4.5; wt pct O(max) = 0.20; and wt pct Fe(max) = 0.30.
The Al content ranged below that of the nominal composition, while
the vanadium exhibited a slightly extended range. The maximum Al
level was designed to avoid short-range ordering of the hcp phase.
Oxygen was designed to exhibit a slightly extended range to cover both
extra-low interstitial (ELI) and non-ELI grades. Iron, a known
strengthener, was also designed to have an extended range.
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continuum material variables, such as the yield stress
and stress state at the crack tip, and their dependencies
upon microstructure and composition which may influ-
ence the fracture toughness directly. Notably, the
extrinsic toughening mechanisms (see Figure 1) are
neglected as they can likely be related to individual
microstructural features and therefore contribute as
identified micromechanisms. The models that will be
developed include a baseline model which only includes
the continuum variables thereby approximating the
legacy understanding (see Figure 4(a)), a model which
only includes potential micromechanistic details (see
Figure 4(b)), and a model which includes both the
continuum and micromechanistic details, including
microstructure and composition (see Figure 4(c)). These
models, their quality, and their functional dependencies
will be shown and the results discussed.

The development of a high-fidelity neural network
critically depends upon the careful establishment of a
robust, high-fidelity database relating input variables
(e.g., composition, microstructure) to an output variable

(e.g., fracture toughness). The first aspect of developing
a neural network model is the rigorous development of
such a database. Therefore, following fracture tough-
ness, an undeformed section of the fracture toughness
blocks was excised and prepared for metallographic
analysis using conventional specimen preparation tech-
niques. Following preparation, the samples were char-
acterized in an identical manner described elsewhere,[20]

and making use of a FEI/Philips Sirion scanning
electron microscope (SEM) operating in backscattered
electron (BSE) mode at 15 kV. The backscattered
electron micrographs were collected in a random and
unbiased fashion, and quantified using stereological
techniques developed for these types of a/b-processed
Ti-6Al-4V microstructures.[23] The features that were
quantified are the size and volume fraction of the
equiaxed alpha particles (equiaxed-a size (lm) and
FV
equiaxed-alpha), the volume fraction of total alpha

(FV
total-alpha), and the thickness of the alpha laths in the

transformed b regions (a-lath width, lm).[23] These
microstructural features, and the corresponding

Fig. 4—Schematic diagram to illustrate the various sets of input data used to generate the neural network models.
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compositions, were first used as inputs to predict their
yield strengths, based on the well-developed and vali-
dated model developed in previous work.[20] The results
were then compared to tensile specimens that had
nominally the same thermomechanical processing his-
tory, and therefore, nominally, the same microstructure
and properties. The blind predictions based upon the
model developed in Reference 20 were within ± 2.5 pct
of the data obtained from the corresponding tensile
tests, further validating the results of the previous work.
Thus, while the corresponding experimentally measured
yield strength and reduction in area from the tensile tests
were used as inputs to the models developed in this
paper to reduce the possibility of the propagation of a
large uncertainty between yield strength and toughness
models, there is considerable confidence that the influ-
ence of composition and microstructure on toughness in
the various models developed is accurate.

A database was developed containing experimentally
determined data, including (i) alloy composition, specif-
ically, Al, V, O, and Fe; (ii) materials microstructure,
including phase fractions and average sizes of key
microstructural features; (iii) the yield strength and
reduction in area obtained from uniaxial tensile tests;
(iv) an assessment of the degree to which plane strain
conditions were satisfied by including a plane strain
thickness factor; and (v) the fracture toughness. The
plane strain thickness factor is calculated from an
average of 5 measurements across the fracture surface,
as illustrated in Figure 5. While it is acknowledged that
the true plane strain thickness will likely be greater than
that estimated (closer to the crack tip prior to ductile
rupture), this approach accounts for the curvature
which is set in part by the true plane strain thickness,
and hence the variability of the plane strain thickness is
captured but in a determinable fashion.

This database was used to train neural networks to
predict interpolatively the fracture toughness of the
alloy Ti-6Al-4V, based on varying combinations of
microstructure, composition, yield strength, reduction in
area, and plane strain thickness. Fourteen combinations
of inputs were used to generate the models. Four
sets of inputs included the combinations of the three
continuum contributions mentioned above (YS, RA,
tplane strain), and 8 sets included microstructure and
composition. In this way, it is possible to explore
separately the influence of microstructure/composition
on fracture toughness through its modification of con-
tinuum variables (e.g., yield strength) and microstruc-
ture/composition on fracture toughness through
extrinsic means. In addition, two sets of inputs were
used to develop models which may be used to predict the
plane strain thickness. One of these two sets of inputs
directly included composition and microstructure, while
the other included yield strength and reduction in area.

The artificial neural networks were trained following
the Bayesian scheme described by Mackay.[21,22] Typi-
cally, when the neural network is being trained and
tested, one particular model emerges as a superior
model, based on the minimization of the residual error
using a mean square error (MSE) approach with respect
to the experimental values. When this superior model is

further interrogated for the determination of the func-
tional dependencies, by carrying out virtual experiments
(see below), each of the dependencies will represent a
physical reality that is easily interpreted. For example,
the influence of oxygen on the yield strength in r + b
processed Ti-6-4 emerges as the most potent strength-
ening mechanism, and is in keeping with what is
expected given the legacy data. However, as described
previously, the absence of legacy information relating
microstructural features with fracture toughness, in
addition to the complex nature of fracture in general,
creates a situation where it is appropriate to consider
more than the single model with the lowest MSE.
Therefore, for each of the 14 sets of inputs (12 for the
interpolative prediction of fracture toughness and 2 for
plane strain thickness), a total of 288 models were
developed with different model architectures (i.e., dif-
ferent seed values, number of nodes, and sigma widths).
Of these 288 models, at a minimum, the three best
models with the lowest MSE values were subsequently
investigated.

IV. USE OF THE NEURAL NETWORK MODELS

Once developed, the neural network can be used in
one of two ways. Firstly, neural networks can be used to
develop a predictive tool, where the properties of a
testing (not training) dataset are predicted. The test
dataset represents a fraction of the 54 samples that were
not used for the training; in this case, 40 samples were
used to train the model and 14 to test the model.
Secondly, the neural network model can be used to
conduct virtual experiments, as described above. These
are control experiments where the values of given
microstructural features can be set to, or held at, given
values. In this way, it is possible to obtain information
from virtual experiments where such control of individ-
ual microstructural features may not be possible exper-
imentally. One such virtual experiment is the
determination of the functional dependence of a given
property on the selected input variable. Thus, the
functional dependencies are determined by setting all
but one variable at a fixed average value and allowing
that single variable to vary while observing the change in
the predicted fracture toughness. It is acknowledged that
it would not be possible to generate some of the
combinations of inputs physically (in the laboratory),
but, nevertheless, it is the trend exhibited by these virtual
experiments that is of most use regarding the provision
of an insight into the functional dependency of the
property on the given variable.

V. RESULTS AND DISCUSSION

It is useful to first provide an example illustrating how
the chemistry, microstructure, and tensile properties all
contribute during fracture propagation (and thus are
captured in a measure of fracture toughness) in off-set-
ting ways. Consider first the three distinctly difference
microstructures shown in Figures 6(a) through (c).
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These three microstructures have been quantified, and
the stereologically determined metrics presented in
Table I. Also included in Table I are the chemistries
and yield strengths for each specimen. It is clear that the
microstructure, chemistry, and yield strength are dis-
tinctly different. Yet, despite these differences, these
three samples have a statistically identical fracture
toughness (see Table I, KQ ~ 83 MPa�m). This is not
to suggest that titanium alloys all have a single value of
fracture toughness. Indeed, to the contrary, as shown in
Figure 2, the fracture toughness can range from ~ 40 to
~ 110 MPa�m, depending upon composition and
microstructure. Even for the Ti-6Al-4V database devel-
oped here, the toughness ranges from ~ 50 to ~ 100
MPa�m. Rather, Figures 6(a) through (c) and the
corresponding Table I illustrate the problems experi-
mentalists have faced when attempting to decouple the
composition, microstructure, and continuum variables
when interpreting the measured toughness.

The microstructures shown in Figures 6(a) through
(c) have resulted in samples whose experimentally
measured yield strengths vary by more than 12 pct
(725 to 832 MPa). From this result, it is reasonable to
conclude that yield stress alone cannot be used as a
single input variable to a model which predicts fracture
toughness. Rather, microstructural features also play a
role, to be established through virtual experiments (see
below). Thus, in addition to modifying the local tensile
properties and hence the stress state at the crack tip,
microstructure may also affect extrinsic phenomena or
micromechanisms such as the crack path modification,
shown schematically in Figure 1.

The results which follow demonstrate that, for com-
plex problems such as fracture toughness, multiple
neural network architectures can be developed and the
resulting models probed to separate interdependent
terms. For fracture toughness, it will be shown that it
is possible to isolate the micromechanistic and contin-
uum contributions. For the purposes of this work, the
continuum variables are yield strength, ductility (reduc-
tion in area), and a factor that scales with plane strain
thickness. Indirectly, these continuum variables will
allow for the investigation of the effect of crack tip fields
(e.g., plane strain vs. mixed mode vs. plane stress
conditions) on the reported value of K (i.e., K1C vs. KQ).

A. Development and Interpretation of Models for the
Prediction of Toughness

A variety of methods exist to evaluate the accuracy of
a model. The first involves an analysis of both the
deviation of a prediction from an experimentally deter-
mined value as well as the predicted errors of the
models. The second involves an analysis of the mean
square of the errors (MSEs). The latter will often help
separate seemingly similar models, and is often used to
pick ‘‘the optimum’’ model. For the former, the average
(�d) and maximum deviations (dmax) and errors (E) are
reported. For the latter (e.g., the interpretation of model
accuracy based upon MSEs), the three models with the
lowest MSE for each of the 12 model types have been
averaged and are reported.
Figures 7 (a through d) show the predicted vs.

experimental toughness for four representative models,
while Table II summarizes the numerical analysis of all
12 models, with the four shown in Figure 7 highlighted
for ease of comparison. Figure 7(a) shows the best
model that excludes direct input of microstructure and
composition, specifically the model with only the three
continuum variables included. This model has a max-
imum deviation from experiment of 19.5 pct and an
average deviation from experiment of 3.5 pct. Although
this is the best ‘‘baseline’’ model which mimics the
legacy understanding of toughness in Ti-based alloys
(i.e., it only includes continuum effects and does not
directly include either microstructure or composition), it
is a considerably poorer model than those that include
such inputs. It is illustrative to note that this scatter is
analogous to the data presented in Figure 2, reflecting
the legacy approach. Figures 7(b) through (d) include
either microstructure and composition without any
direct inclusion of continuum inputs (see Figure 7(b))
or composition and microstructure in addition to
continuum inputs, such as yield strength (Figure 7(c))
or yield strength, plane strain thickness, and reduction
in area (Figure 7(d)). These three models, in addition to
having superior MSEs (15.6, 10.2, 10.6, respectively),
have significantly lower average and maximum devia-
tions from prediction (davg: 1.8, 1.1, 0.9; dmax: 7.9, 5.6,
5.8) than the model shown in Figure 7(a).
The results of these numerical analyses demonstrate

two significant factors when considering the develop-
ment of data-informatics tools for the prediction of the

Fig. 5—The way in which plane strain thickness measurements have
been made.
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toughness of a material, including artificial neural
networks. Firstly, in order to reduce the uncertainty
and improve the quality of the models, it is necessary to
include details regarding microstructural and composi-
tional inputs in addition to the inclusion of continuum
variables. Excluding microstructure and composition
(i.e., focusing only on the influence of yield strength) will
lead to significant scatter in the values of the predicted
yield strengths when correlated with toughness (see
Figure 7(a)). This model indicates that such scatter is
rather significant, and the raw data obtained for this
research indicate that such scatter exceeds 20 pct.
Secondly, of the models that do include compositional
and microstructural inputs, the models that also include
yield strength directly are far superior to those which do
not. When considering a further analysis of the mean
square errors (average ranging from 10.2 to 15.6), it is
apparent that the mean square of the errors are all less
than 11.52 for models where yield strength is included,
whereas those that did not directly include yield strength
were all greater than 12.89. Similarly, an analysis of the
maximum deviation (dmax) shows that the four models
which include yield strength in addition to the compo-
sition/microstructure have an average maximum devia-
tion of 6.25 pct, while the four models which exclude
yield strength but include composition/microstructure
have an average maximum deviation of 8.65 pct, also
indicating a poorer quality model. These observations
reinforce the importance of considering the continuum
effect of yield strength on establishing the stress state at
the crack tip, independent of the effect, if any, that
specific local microstructural features may have on the
micromechanisms of toughness. However, it is equally
clear that the inclusion of microstructure and compo-
sition as inputs leads to improvements in the models
which may then be interrogated to help determine
possible mechanisms.

It is important to identify the effect that the input
variables have on toughness. However, as previously
described, this is particularly challenging for fracture
toughness since a given effect of microstructure on a
property such as yield strength (i.e., an important
continuum variable) does not necessarily cause a rigor-
ously corresponding effect (either +/�/neutral) on
toughness nor its microscale phenomena, such as crack
propagation or possible extrinsic toughening/weakening
mechanisms. Therefore, rather than only focusing on the
best models (i.e., Model #6 or #12), a series of virtual
experiments to explore functional dependencies has been
developed for each of these models in order to compare
them and thus explore the effect of the microstructural
and compositional variables on toughness, both in
conjunction with and isolated from the continuum
variables. As will be seen, this novel simultaneous
application of different neural network architectures to
such a complex problem has resulted in some newly
developed understandings of the contributions of
microstructure to fracture toughness in r + b processed
Ti-based alloys.

B. Virtual Experiments Using the Neural Networks

1. Effect of yield strength on toughness
Figures 8(a) through (c) show the functional depen-

dence of yield strength on KQ for three models**. For

each functional dependence, there is a significant
decrease in KQ with increasing yield strength for all
models which include as input yield strength as well as
compositional and microstructural variables. Given the
legacy data shown in Figure 2, such a decrease is
expected. Additionally, Figures 8(a) through (c) include
trends calculated from the three best model architec-
tures. These trends show clearly that the functional
dependencies obtained for each model architecture are
quite similar, indicating that the models have interro-
gated the databases, identified a strong dependence, and
established a nearly identical weighting function. This
would occur when there are strong correlations to be
made among the data. Thus, an advantage of using
three model architectures emerges, as it is possible to
further assess the overall accuracy of a particular
functional dependency. As will be shown below, the
functional dependencies for the ‘‘best’’ model architec-
tures often exhibit such remarkably consistent trends,
indicating clearly the degree of importance and influence
of a particular input variable. However, the authors also
observed some cases where the forms of the functional
dependencies are rather different for the ‘‘best’’ model
architectures. Such differences were often observed in
conjunction with either an insignificant dependence (i.e.,
minimal influence of a feature upon a property) or an
anomalously complex dependency, including several
that appear to exhibit second or higher order natures,
indicating a likely over-fitting of the model to a
particular variable.
Figure 8(c) includes an estimation of plane strain

thickness. This model, when compared with models that
exclude the plane strain thickness (see Figures 8(a)
through (b)), shows that the yield strength has less of
an influence on the fracture toughness. Indeed, the slope
decreases by ~ 40 pct when plane strain thickness is
included. This result is reasonable, and is readily
explained by the fact that the database consists of both
KQ and K1C data. Invariably, the K1C will be lower than
KQ. Recall that yield strength influences the stress state
(rz) at the crack tip, and hence, for a given specimen
thickness, whether plane strain conditions are valid.
This ~ 40 pct decrease in the magnitude of the influence
of yield strength on toughness, when considered with the
effect of plane strain thickness on toughness discussed in

**The numerical component of the model designations in the fig-
ure captions for Figures 8, 9, 10, 11, 12, 13 corresponds to the neural
network architecture itself. The format is value of the seed-number of
hidden nodes-initial Gaussian width. For example, ‘‘500-3-1’’ corre-
sponds to a value of the seed number (500) for an architecture with 3
hidden nodes, and an initial Gaussian width of 1, as described in detail
elsewhere.[26]

METALLURGICAL AND MATERIALS TRANSACTIONS A VOLUME 49A, MARCH 2018—855



the subsequent section, suggests that the neural net-
works are acting to scale experimentally measured KQ’s
to an estimate of a K1C if the thickness were to increase,
as well as scale experimentally measured K1C’s to an
estimate of KQ if thickness were decreased.

As is evident, there is still a significant effect that yield
strength has on toughness, independent of the effect of
stress state at the crack tip. The model (see Figure 8(b))
that includes the reduction in area does not decrease the
dependency of toughness on yield strength. Thus, yield
strength must influence toughness in ways beyond a
simple stress-strain argument. While the exact cause of
this inverse relationship is not known for a/b-processed
Ti-6Al-4V, a two-phase, elastic-plastic, strain-hardening
material, the following phenomena are possible. Firstly,
the crack tip opening displacement is likely to be less for
samples with higher yield strengths. A smaller crack tip
opening displacement would result in a decrease in the
crack tip radii, resulting in a high stress distribution over
a greater distance from the crack tip. This could result in
a greater volume of material experiencing a higher
stress, which, if above a critical stress (e.g., a critical
resolved shear stress for dislocation motion), would
make possible the accumulation of damage in front of
the crack tip, including the formation of new pores or
cracks, and ultimately decreasing the fracture toughness.
Secondly, though less likely, a microstructural feature or
compositional variable may exist that does not influence
the uniaxial tensile properties (yield strength, ductility)

but might decrease the material’s damage tolerance.
Lastly, reflect that ligament bridging is essentially a
series of tensile tests. If ligament bridging does occur,
which is highly probable for a two-phase ductile
material, the yield strength of the material would be
directly proportional to the crack tip radius and, thus, to
the crack propagation. While multiple mechanisms
might be operating, the determination of which is the
operative mechanism is not trivial and has not been
determined in this work.

2. Effect of plane strain thickness on toughness
While the plane strain thickness does modify KQ, the

magnitude of this contribution is often not clear (see
Figure 3). A classical estimation shown by Irwin of KQ

incorporating d1C is given as

KQ ¼ KC ¼ K1C 1þ 1:4 b1Cð Þ2
� �

;

where

b1C ¼ 1

t

K1C

rys

� �2

:

These equations give an empirical relation based upon
a true plastic zone size calculation (and hence upon a
rigorous determination of both K1C and yield strength)
and would result in a KQ which does not approximate,
indeed, far overestimates the KQ’s obtained in this work

Fig. 6—Backscattered electron micrographs taken from three different samples which exhibit nominally the same KQ.

Table I. Composition, Microstructure, and Tensile Properties of Figs. 6(a Through c)

Sample ID Al V Fe O
FV Total
Alpha

Equiaxed a
Size (lm) FV Equiaxed a

a Lath
Thickness (lm)

Yield
Strength (MPa) KQ

85-1 4.76 4.27 0.39 0.07 87.3 5.57 68.9 0.316 725 83.6
100-3 5.64 3.83 0.25 0.14 92.2 5.93 44.5 0.350 832 83.8
109-1 6.51 4.29 0.11 0.08 89.9 6.54 70.4 0.361 790 83.3
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for this alloy for the thickness of our specimens. Thus, it
is still a challenge to determine the influence of thickness
upon the measured toughness (K) and whether that
toughness represents a valid K1C or plane stress-domi-
nated KQ. It is equally challenging to determine the
appropriate experimental conditions based upon classi-
cal fracture mechanics, as the approximation for B
(sample thickness) (B ‡ 2.5(K1C/rys)

2) represents a min-
imum thickness before plane strain behavior may occur,
and not an absolute prediction that it will occur. The
variation in whether plane strain behavior occurs
therefore must be related to intrinsic material variabil-
ity, including the effects of both microstructure and
composition. Therefore, it is notable that by including
both KQ’s and K1C’s in this model, and by including a
factor to incorporate the variation in plane strain
thickness, the possibility of estimating the effect of
thickness on the toughness variability that exists
between K1C and KQ has been determined.

Consider Figure 9 which presents the influence of
plane strain thickness on KQ when yield strength is
included in the models, and is held at a fixed ‘‘average’’
value, i.e., when undertaking a virtual experiment. In
this figure, the samples with a smaller plane strain
thickness (i.e., effectively those with KQ values) exhibit
predicted toughness values up to ~9 MPa�m greater
than their K1C microstructural/compositional analogs.
As was done with the effect of yield strength, the
functional dependencies and their predicted errors
obtained using the three best model architectures are
shown to illustrate the similarity among them. Indeed,
the results show a negligible difference between the three
best model architectures indicating a very clear effect of
variable on property. The influence of plane strain
thickness on the toughness suggests that the magnitude
of the difference between a true K1C and a measured KQ

can be up to at least 10 pct of the value for a/b-processed
Ti-6Al-4V. The interplay between yield strength, plastic
zone size, sample thickness, and KQ/K1C still represents
a complex problem—but the current research allows for
a first approximation of their interdependencies—ex-
perimentally clarifying the order of magnitude difference
that is often schematically illustrated in representations
such as Figure 3.

3. Determining the functional dependence of
microstructure and composition on fracture toughness

Three of the microstructural features that affect frac-
ture toughness are the volume fraction equiaxed alpha,
the size of the equiaxed alpha, and the thickness of the
alpha laths in the transformed beta regions. For a model
that includes only composition and microstructure, the
three functional dependencies are shown in Figures 10(a)
through (c). Clearly, the volume fraction equiaxed alpha
significantly affects the toughness (~ 14 MPa�m), with
lesser effects attributed to the size of the equiaxed alpha (~
10 MPa�m) and the thickness of the alpha laths (~ 7
MPa�m). However, when the continuum variables are
included as separate inputs, as in the model leading to
Figure 8(d), the functional dependencies (see Fig-
ures 11(a) through (c)) allow for differentiation regarding
which features contribute to the continuum and which

features are directly related with micromechanisms.
Consider the significant reduction in the degree to which
toughness is dependent upon volume fraction equiaxed
alpha when continuum variables are included. Thus, in a
model that includes yield strength, the contribution of
volume fraction equiaxed alpha becomes negligible (~ 0 to
1 MPa�m). This strongly suggests that the volume
fraction equiaxed alpha only affects toughness by mod-
ifying the macroscopic yield strength of the material.
When the results of the investigation into the influence of
composition and microstructure on tensile properties[9]

are considered, it is clear that this is the microstructural
variable that has the largest influence on the tensile
properties over the range that can be affected. Similarly,
consider the much smaller reduction in the degree to
which toughness is dependent upon the size of the
equiaxed alpha when yield strength is included. In the
model that includes yield strength, the contribution of
equiaxed alpha size has the greatest effect (~ 7 MPa�m).
Lastly, consider the influence of the effect of the thickness
of the alpha laths, both with and without yield strength in
the model. Inclusion of continuum variables yields a
similar result as that noted for the influence of volume
fraction equiaxed alpha. Thus, it appears that this
microstructural variable does not directly influence frac-
ture toughness. From consideration of Figure 11, it
appears that the equiaxed alpha size (or another
microstructural feature directly linked to the size of the
equiaxed alpha) has, at the very least, as significant an
influence on the micromechanisms of fracture as it does
on the continuum variables.
In a similar fashion, the functional dependencies of

the compositional variables have been determined, and
their influence upon the fracture toughness explored.
The functional dependencies obtained for a model
including microstructure and composition but not yield
strength are shown in Figures 12(a) through (d), while
the functional dependencies obtained for a model
including microstructure, composition, and yield
strength are shown in Figures 13(a) through (d). Two
primary observations can be made for these two figures.
The first observation is the manner in which both
a-stabilizers (Al and O) influence the toughness.
These functional dependencies exhibit relatively clear
trends for the model without yield strength included
(Figures 12(a) and (b)). The trends are fairly consistent
for models developed with different model architectures.
This is expected, given the strong positive influence of Al
and O on yield strength, as well as the strong negative
influence of YS on toughness. However, the implications
of the functional dependencies are less clear for the
model that includes yield strength. Indeed, the two best
combinations of model architectures produce signifi-
cantly different trends. Additionally, the error bars are
significantly greater, and the shape of one of the O
functional dependencies is rather complex. It should be
noted that the raw data, which have already produced
exceptionally good dependencies of the composition on
the tensile properties, are taken from within the same
billets as these toughness specimens. Therefore, the
accuracy of the input compositional variables appears
not to be in doubt. Thus, it is reasonable to consider that
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Fig. 7—(a) The best predicted vs. experimental plot of KQ that excludes composition and microstructure and (b through d) the predicted vs.
experimental plots of KQ for three example models which include composition and microstructure.

Table II. Numerical Analysis of Model Quality. Corresponding Components of Fig. 7 are Labeled

Model

Inputs

Avg. MSEs

Best Model

YS RA tpl.strain Comp/Micro �d dmax
�E Emax

#1 � � 19.1 57.3 1.5 5.6
#2 � � 5.4 26.7 0.9 2.2
#3 � � 6.8 28.4 0.6 1.6
#4 (7a) � � � 3.5 19.5 1.2 5.4
#5 (7b) �/� 15.61 1.8 7.9 1.4 4.1
#6 (7c) � �/� 10.20 1.1 5.6 1.6 7.3
#7 � �/� 13.78 1.4 6.9 1.7 7.2
#8 � �/� 14.40 1.6 12.3 1.5 4.3
#9 � � �/� 11.52 1.3 7.4 1.4 4.3
#10 � � �/� 12.89 1.0 7.5 1.1 6.1
#11 � � �/� 11.16 0.9 6.2 1.8 11.4
#12 (7d) � � � �/� 10.55 0.9 5.8 1.0 4.6
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either these trends are reasonable facsimiles of a
complex reality or neither Al or O directly affect the
micromechanisms of fracture in an unambiguous fash-
ion captured by models which include yield strength.
The second observation is the manner in which both
b-stabilizers (V and Fe) influence the toughness. The
functional dependencies for each of these species show
an increase in toughness for increasing solute content
for models excluding yield strength. Additionally,
although V appears to have a neutral effect on toughness
once yield strength is included, it does appear that
increased Fe still has a positive influence on toughness.
The trends in the composition of Fe are contrary to the
previous observations which clearly showed an inverse
relationship between strength and toughness for the
other seven compositional or microstructural variables.
Only Fe resulted in trends that indicate an increase in Fe
results in an increase in both yield strength and
toughness.

Both the equiaxed alpha size and the Fe levels may be
rationally related to the fracture toughness in the

following way�. A more detailed explanation may be

found elsewhere.[24] The critical microstructural feature
is a special twist boundary, whereby adjacent equiaxed
alpha particles have parallel (0001) planes (parallel to
within a degree or two). A necessary condition is that
the interface must also be parallel to the (0001) plane of
both adjacent equiaxed alpha particles. When the (0001)
plane normal is rotated by up to 30 deg, the material has
a higher probability of accumulating critical damage in
the form of microcracks. These microcracks will ‘‘split
open’’ the (0001) interfaces, and terminate when the
interface plane deviates. Thus, not all particles with
parallel (0001) planes will experience microcracks, only

Fig. 8—Result of virtual experiments: effect of YS on KQ as determined by models which include (a) composition-microstructure-yield strength,
(b) composition-microstructure-yield strength-reduction in area, (c) composition-microstructure-yield strength-plane strain thickness.

�The full extent of this research cannot be adequately presented in a
single publication. The characterization activities (though published
first[24]) were extensively informed by this modeling effort. Indeed,
without the identification of the importance of the size of the equiaxed
alpha particle size, the characterization efforts would not have been
pursued as carefully.
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those where the interface is also parallel. This particular
interface is relatively rare, yet is correlated with a
majority of microcracks near the fracture surface. The
role of Fe is less clear, but seems to be related to a very
thin layer of beta that separates the adjacent equiaxed
alpha particles. As Fe stabilizes the beta phase, the
thickness of this thin layer increases, separating the
equiaxed alpha particles. One argument may be that a
thicker beta region can more easily accommodate strain.
Another is that this particular (0001) 30 deg rotation
would result in (effectively) a face-centered cubic stack-
ing at the interface, which is an especially high-energy
interface and subject to decohesion following Irwin’s
energy theory. As another phase (beta) is stabilized, the
high-energy interface would be eliminated.

C. Extension of this Approach to Other Problems

Traditionally, neural network models are applied to
problems where the dependency of a determinable
output (e.g., a property) on a series of inputs (e.g.,
microstructure, composition) can be understood by an
optimized relationship. Even more complex ‘‘commit-
tee’’ neural network models[26] rely upon, at the very
least, the existence of a dependency of an output on an
input. This work has demonstrated that there exist
certain problems that are best studied by comparing the
functional dependencies of models where the input
variables change. From the perspective of neural net-
works, effectively this says that there exist certain
problems for which measurable inputs can be exist in
not only the input layer (e.g., composition, microstruc-
ture), but also the hidden layer (e.g., yield strength).
From the perspective of materials science problems, this
approach can be extended to any problem where one
measurable continuum output variable influences
another measurable property. It is demonstrated here
for a ‘‘weak-link’’-driven problem, and is likely extend-
able to other weak-link-driven phenomena, including
low cycle fatigue or any other complex processes where
c = f(a,b), and d = f(a,b,c).

VI. CONCLUSIONS

Multiple architectures have been adopted to establish
Bayesian Neural Network models. The models have
been based upon a well-developed database with sys-
tematic variations in composition, microstructure, and
tensile properties. The models based upon different
input architectures have been assessed to determine how
composition and microstructure influence the fracture
toughness of r + b processed Ti-6Al-4V. From these
models, it is possible to differentiate the continuum and
mechanistic aspects of fracture toughness.
At a continuum level, it is clear that the plane strain

thickness (e.g., sample thickness) and yield strength play
dominant roles. It is also apparent from the virtual

Fig. 9—Result of a virtual experiment: The functional dependence of
plane strain thickness on KQ when yield strength is included in mod-
el.

Fig. 10—Result of virtual experiments:(a through c) The influence of microstructural variables on fracture toughness excluding the influence of
yield strength.
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Fig. 11—Result of virtual experiments: (a through c) The influence of microstructural variables on fracture toughness for models including yield
strength.

Fig. 12—Result of virtual experiments: (a through d) The influence of compositional variables on fracture toughness excluding the influence of
yield strength.
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experiments for models including and excluding yield
strength that the thickness of the alpha laths and the
volume fraction of the equiaxed alpha particles, while
directly influencing the yield strength of the material
(and hence its resistance to the crack tip opening), do
not directly influence the toughness. Further, the size of
the equiaxed alpha particles, while influencing the yield
strength, also directly contributes to fracture toughness
through micromechanistic details. Lastly, it is possible
to estimate the effect of plane strain thickness of
toughness values that do not satisfy the strict K1C

requirements. Indeed, KQ may be as much as 10 pct
greater than a corresponding K1C would be. This
estimation represents a powerful use of the neural
network approach, and may provide a quantitative tool
for components limited by fracture toughness.

The development of an approach whereby different
architectures are compared has made it possible to gain
new insights into fracture toughness in a two-phase

ductile material. Such experimental studies are rarely
conducted on ductile metallic systems such as r + b
processed Ti-6Al-4V. It is expected that a similar
comparison of multiple neural network architectures
may lead to new interpretations of critical microstruc-
tural features for similarly complex mechanical proper-
ties in other multi-component, multi-phase engineering
alloys.
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