Skip to main content
Log in

Effect of Graphene Nanoplatelets on Wetting, Microstructure, and Tensile Characteristics of Sn-3.0Ag-0.5Cu (SAC) Alloy

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

The effect of graphene nanoplatelets (GNPs) on the wettability, microstructure, and tensile properties of Sn-3.0Ag-0.5Cu (SAC 305) was studied using melting and casting route. The microstructure of the bulk solder is observed with a scanning electron microscope and transmission electron microscope, and the intermetallic compound (IMC) phases are identified by electron probe micro-analyzer. The solderability of the samples is assessed by spreading and wetting tests on a Cu substrate. The experimental results indicate that an addition of 0.05 wt pct GNPs in Sn-3Ag-0.5Cu solder improves the spreading and wettability significantly compared to monolithic SAC. It is also revealed that the thickness of the Ag3Sn IMCs is reduced as compared to the monolithic SAC alloy. Tensile results show that the composite solder exhibits the 13.9 pct elongation and 17 pct increase in the ultimate tensile strength when 0.05 wt pct GNPs in Sn-3Ag-0.5Cu alloy are added. This may be due to the refinement of the IMCs in composite solders compared to the same in Sn-3Ag-0.5Cu alloy brought about by the uniform dispersion of graphene nanoplatelets. It is suggested in this study that the amount of GNPs in Sn-3Ag-0.5Cu alloy should not exceed 0.05 wt pct as it may degrade the desired properties due to the agglomeration of GNPs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. M. Abtew and G. Selvaduray: Mater. Sci. Eng. R, 2000, vol. 27, pp. 95–141.

    Article  Google Scholar 

  2. K. Zeng and K.N. Tu: Mater. Sci. Eng. R, 2002, vol. 38, pp. 55–105.

    Article  Google Scholar 

  3. K. Suganuma: Curr. Opin. Solid State. Mater., 2001, vol. 5, pp. 55–64.

    Article  Google Scholar 

  4. F. Guo: J. Mater. Sci.: Mater. Electron., 2007, vol. 18, pp. 129–45.

    Google Scholar 

  5. J.H. Park, H.Y. Lee, J.H. Jhun, C.S. Cheon and J.P. Jung: JWJ, 2008, vol. 26, pp. 43–48.

    Google Scholar 

  6. J.W. Moon, M.-II Kim and J.P. Jung: JWJ, 2002, vol. 20, pp. 99–103.

  7. Y.S. Ki, H.-II Kim, J.M. Kim and Y.E. Shin: JWJ, 2003, vol. 21, pp. 92–98.

  8. K. S. Kim, S. H. Huh and K. Suganuma: J. Alloy. Compd., 2003, vol. 352, pp. 226–36.

    Article  Google Scholar 

  9. X.L. Zhong and M. Gupta: J. Phys. D: Appl. Phys., 2008, vol. 41, pp. 095403.

    Article  Google Scholar 

  10. P. Liu, P. Yao and J. Liu: J. Electron. Mater., 2008, vol. 37, pp. 874–79.

    Article  Google Scholar 

  11. A.K. Gain, Y.C. Chan and W.K.C. Yung:Microelectron. Reliab., 2011, vol. 51, pp. 2306–13.

    Article  Google Scholar 

  12. S. Chantaramanee, S. Wisutmethangoon, L. Sikong and T. Plookphol: J. Mater. Sci.: Mater. Electron., 2013, vol. 24, 2013, pp. 3707–15.

    Google Scholar 

  13. M.A.A. Mohd Salleh, A.M. Mustafa Al Bakri, H. Kamarudin, M. Bnhussain, M.H. Zan@Hazizi, and F. Somidin: Phys. Proc., 2011, vol. 22, pp. 299–304.

  14. A.K. Gain, Y.C. Chan and W.K.C. Yung: Micelectron. Reliab., 2011, vol. 51, 975–84.

    Article  Google Scholar 

  15. A. Sharma, S. Bhattacharya, S. Das, H.-J. Fecht and K. Das: J. Alloy. Compd., 2013, vol. 574, pp. 609–16.

    Article  Google Scholar 

  16. A. Sharma, S. Bhattacharya, S. Das and K. Das: Metall. Mater. Trans. A, 2013, vol. 44A, pp. 5587–01.

    Article  Google Scholar 

  17. D.B. Miracle: Compos. Sci. Technol., 2005, vol. 65, pp. 2526–40.

    Article  Google Scholar 

  18. M. Rashad, F. Pan, A. Tang and M. Asif: Prog. Nat. Sci. : Mater. Int., 2014, vol. 24, pp. 101–08.

    Article  Google Scholar 

  19. J. Dutkiewicz, P. Ozga, W. Maziarz, J. Pstrus, B. Kania, P. Bobrowski and J. Stolarska: Mater. Sci. Eng. A, 2015, vol. 628, pp. 124–34.

    Article  Google Scholar 

  20. J.Y. Wang, Z.Q. Li, G.L. Fan, H.H. Pan, Z.X. Chen and D. Zhang: Scr. Mater., 2012, vol. 66, pp. 594–97.

    Article  Google Scholar 

  21. Testing methods for soldering fluxes, Japanese Industrial Standards, JIS Z 3197: (2012).

  22. D.A. Bolleddula: PhD Thesis, University of Washington Graduate School, 2011.

  23. A.S.M.A. Haseeb, M.M. Arafat and M.R. Johan: Mat. Char., 2012, vol. 64, pp. 27–35.

    Article  Google Scholar 

  24. J. Shen, Y.C. Liu, Y.J. Han, Y.M. Tian and H.X. Gao: J. Electron. Mater., 2006, vol. 35, pp. 1672–79.

    Article  Google Scholar 

  25. P.A. Meenan, S.R. Anderson and D.L. Klug: in Handbook of Industrial Crystallization, A.S. Myerson, ed. Elsevier, Amsterdam, 2001, pp. 67–100.

  26. Giles Humpston, David M. Jacobson: Principles of Soldering, ASM International, 2004.

    Google Scholar 

  27. R. Rioboo, M. Marengo, and C. Tropea: Exp. Fluids, 2002, vol. 33, pp. 112–24.

    Article  Google Scholar 

  28. S. Middleman. Modeling Axisymmetric Flows. Academic Press, London, 1995.

    Google Scholar 

  29. L.H. Tanner: J. Phys. D: Appl. Phys., 1979, vol. 12, pp. 1473–84.

    Article  Google Scholar 

  30. H. Y. Lee, A. Sharma, S. H. Kee, Y. W. Lee, J. T. Moon and J. P. Jung: Electron. Mater. Lett., 2014, vol. 10, pp. 997–1004.

    Article  Google Scholar 

  31. H. Wang, F. Wang, F. Gao, X. Ma and Y. Qian: J. Alloy. Compd., 2007, vol. 433, pp. 302–05.

    Article  Google Scholar 

  32. K. Ma, H. Wen, T. Hu, T. D. Topping, D. Isheim, D. N. Seidman, E. J. Lavernia and J. M. Schoenung: Acta Mater., 2014, vol. 62, pp. 141–55.

    Article  Google Scholar 

  33. T. Siewert, S. Liu, D.R. Smith and J.C. Madeni: Database for Solder Properties with Emphasis on New Lead-free Solders, NIST, Colorado, 2002.

    Google Scholar 

  34. M. Rashad, F. Pan, A. Tang and M. Asif: Proc. Natl. Sci.: Mater. Int., 2014, vol. 24, pp. 101–08.

  35. Y. Kim, J. Lee2, M. S. Yeom, J. W. Shin, H. Kim, Y. Cui, J. W. Kysar, J. Hone, Y. Jung, S. Jeon and S. M. Han: Nat. Commun., 2013, vol. 4, pp. 2114.

  36. K.M. Kumar, V. Kripesh and A.A.O. Tay: J. Alloy. Compd., 2008, vol. 450, pp. 229–37.

    Article  Google Scholar 

  37. S.M.L. Nai, J. Wei and M. Gupta: Mater. Sci. Eng. A, 2006, vol. 423, pp. 166–69.

    Article  Google Scholar 

  38. C.S. Goh, J. Wei, L.C. Lee and M. Gupta: Acta Mater., 2007, vol. 55, pp. 5115–21.

    Article  Google Scholar 

  39. R.J. Arsenault and N. Shi: Mater. Sci. Eng. A, 1986, vol. 81, pp. 175–87.

    Article  Google Scholar 

  40. S.R. Bakshi and A. Agarwal: Carbon, 2011, vol. 49, pp. 533–44.

    Article  Google Scholar 

  41. C.S. Goh, J. Wei, L.C. Lee and M. Gupta: Mater. Sci. Eng. A, 2006, vol. 423, pp. 153–56.

    Article  Google Scholar 

  42. ASM Handbook, Fractography, The Materials Information Society, Fractogrphy, vol-12.

  43. K.S. Kim, S.H. Huh and K. Suganuma: Mater. Sci. Eng. A, 2002, vol. 333, pp. 106–14.

    Article  Google Scholar 

Download references

Acknowledgment

This work was supported by the Technology Innovation Program (or Industrial Strategic technology development program, 10051436, Development and mass production of 25 pct reduced prices nano-micro compound Pb-free solder paste for automotive devices to respond to ELV Directive) funded By the Ministry of Trade, Industry & Energy (MI, Korea).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jae Pil Jung.

Additional information

Manuscript submitted April 6, 2015.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sharma, A., Sohn, HR. & Jung, J.P. Effect of Graphene Nanoplatelets on Wetting, Microstructure, and Tensile Characteristics of Sn-3.0Ag-0.5Cu (SAC) Alloy. Metall Mater Trans A 47, 494–503 (2016). https://doi.org/10.1007/s11661-015-3214-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-015-3214-8

Keywords

Navigation