Skip to main content
Log in

Experimental Determination of Heat Transfer Within the Metal/Mold Gap in a DC Casting Mold: Part II. Effect of Casting Metal, Mold Material, and Other Casting Parameters

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

Extensive experimental studies were conducted to quantify the effect of different parameters that can affect the heat transfer from the metal to the mold during the steady-state phase of DC casting. In the first part previously published, the experimental technique was established and results were reported for the effect of gas type (atmosphere within the mold) and the gap between the metal and the mold. The results showed the significant effect of gas thermal conductivity and the metal-mold gap on the mold wall heat transfer coefficient. In this second publication on heat transfer in the mold wall region of a DC casting mold, the results from the effect of casting temperature, gas flow rate, casting alloy, mold material, and the mold insert material on the mold wall heat transfer coefficient are described. The experiments reported in the current paper show that these additional factors tested do not affect the heat flux through the mold wall to the same extent as the gap size or the gas type. The heat transfer coefficient changes by less than 5 pct when casting temperature is changed by ±25 K, less than 15 pct when the gas flow rate within the metal-mold gap flows at up to 3 LPM, and approximately 30 pct when the mold material is changed from stainless steel to AA601 to copper. Similar results were obtained when different insert materials were used. These results are explained with the help of an electrical analogy of heat transfer and are consistent with the heat transfer theory.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. A. Prasad and I.F. Bainbridge: Metall. Mater. Trans. A, 2013, vol. 44A, pp. 456-68.

  2. I.F. Bainbridge, J.A. Taylor, and A.K. Dahle: Light Metals, A.T. Taberaux, ed., TMS, Warrendale, 2004, pp. 693–98.

  3. S. Benum, A. Hakonsen, J.E. Hafsas, and J. Sivertsen: Light Metals, C.E. Eckart, ed., TMS, Warrendale, 1999, pp. 737–42.

  4. W.J. Bergmann: Metallurgical Transactions, 1970, v. 1, pp. 3361-3364.

    CAS  Google Scholar 

  5. W.J. Bergmann: Journal of Metals, 1973, v. 23, pp. 247-256.

    Google Scholar 

  6. W.J. Bergmann: Aluminium, 1975, v. 51, pp. 336-339.

    Google Scholar 

  7. D.C. Weckman, and P. Niessen: Zeitschrift fuer Metallkunde, 1983, v. 74, pp. 709-715.

    Google Scholar 

  8. J. Sengupta, B.G. Thomas, and M.A. Wells, Metall. Mater. Trans. A, 2005, v. 36A, pp 187-204.

    Article  CAS  Google Scholar 

  9. J. F. Grandfield, and P.T. McGlade, Materials Forum, 1996, v. 20, pp. 29-51.

    CAS  Google Scholar 

  10. V.K. de Barcellos, C.R.F. Ferreira, C.A. dosSantos, and J.A. Spim, Ironmaking and Steelmaking, 2010, v. 37, n. 1, pp. 47-56.

    Article  Google Scholar 

  11. J.K. Brimacombe, Canadian Metallurgical Quarterly, 1976, v. 15, n. 2, pp 163-175.

    Article  Google Scholar 

  12. J.-W. Cho, H. Shibata, E. Toshihiko, and M. Suzuki, ISIJ International, 1998, v. 38, n. 3, pp 268-275.

    Article  CAS  Google Scholar 

  13. L. Guo, X. Wang, H. Zhan, M. Yao, and D. Fang, ISIJ International, 2007, v. 47, n. 8, pp 1108-1116.

    Article  CAS  Google Scholar 

  14. B.I. Kubrik, Steel in the USSR, 1987, v. 17, n. 12, pp 573-575.

    Google Scholar 

  15. J.-E. Lee, T.-J. Yeo, K.H. Oh, K. Jong, and U.-S. Yoon, Metallurgical and Materials Transactions A, 2000, v. 31A, pp 225-237.

    Article  CAS  Google Scholar 

  16. K.C. Mills, P. Grieveson, A. Olusanya, and S. Bagha, Continuous Casting, Institute of Metals, London, 1985, pp. 57.1–57.7.

  17. A. Mostafa, A.J. Jahromi, and O. Abouali, Computational Materials Science, 2008, v. 44, pp. 807-812.

    Article  Google Scholar 

  18. K. Nakai, M. Kawasaki, K. Nakajima, T. Sakashita, and Y. Sugitani: Continuous Casting, Institute of Metals, London, 1985, pp. 71.1–71.8.

  19. U. Olmann and K. Schwerdtfeger: Steel Research Institute, 2006, v. 77, n. 3, pp 186-193.

    Google Scholar 

  20. W. Wang, and A. Cramb, Steel Research Institute, 2010, v. 81, n. 6, pp 446-452.

    Article  CAS  Google Scholar 

  21. J.M. Drezet, M. Rappaz, G.U. Gruen, Gremaud, Metallurgical and Materials Transactions A, 2000, v. 31A, pp 1627-1634.

    Article  CAS  Google Scholar 

  22. S. Argyropoulos, and H. Carletti: Metallurgical and Materials Transactions B, 2008, v. 39B, pp. 457-468.

    Article  CAS  Google Scholar 

  23. Y. Meng, and B.G. Thomas, Metallurgical and Materials Transactions B, 2003, v. 34B, pp 685-705.

    Article  CAS  Google Scholar 

  24. M.F. Modest: Radiative Heat Transfer., 2nd ed., Academic Press, New York, 2003.

  25. F.P. Incropera and D.P. Dewitt: Introduction to Heat Transfer, 3rd ed., Wiley, New York, 1996.

  26. Y. Nishida, W. Droste, and S. Engler, Metallurgical Transactions B, 1986, v. 17B, pp 833-844.

    Article  CAS  Google Scholar 

  27. W.S. Janna: Engineering Heat Transfer, 2nd ed., CRC Press LLC, Boca Raton, 2000.

  28. C.H. Henager, and W.T. Pawlewicz, Applied Optics, 1993, v. 32, n. 1, pp 91-101.

    Article  CAS  Google Scholar 

  29. K. Ho, and R.D. Pehlke, AFS Transactions, 1984, v. 92, pp 587-598.

    Google Scholar 

  30. K. Ho, and R.D. Pehlke, Metallurgical Transactions B, 1985, v. 16B, pp 585-594.

    Article  CAS  Google Scholar 

  31. I.F. Bainbridge: Ph.D. Thesis, Division of Materials, School of Mechanical and Mining Engineering, University of Queensland, Brisbane, 2005.

  32. A. Prasad, and I.F. Bainbridge, Materials Science Forum, 2010, v. 654-656, pp 783-786.

    Article  Google Scholar 

  33. A. Sabau, K. Kuwana, S. Viswanathan, K. Saito, and L. Davis: Light Metals, A.T. Taberaux, ed., TMS, Warrendale, 2004, pp. 667–72.

  34. D. Mortensen, Metall. Mater. Trans. B, 1999, v. 30B, pp 119-133.

    Article  CAS  Google Scholar 

  35. J.M. Drezet, B. Commet, H.G. Fjaer, and B. Magnin: Ninth International Conference on Modelling of Casting, Welding and Advanced Soldification Processes, P.R. Sahm, P.N. Hansen, and J.G. Conley, eds., Shaker Verlag, Aachen, 2000, pp. 33–40.

  36. K. Ho: Engineering Materials, University of Michigan, Michigan, 1985, pp. 174.

    Google Scholar 

  37. M. Trovant and S. Argyropoulos: Light Metals, R. Huglen, ed., TMS, Warrendale, 1997, pp. 927–31.

  38. N. Muto, N. Hayashi, and T. Uno: Sumitomo Light Metals Technical Reports, 1996, v. 37, pp. 180-184.

    Google Scholar 

  39. D.C. Weckman, and P. Niessen: Metall. Trans. B, 1982, vol. 13B, pp. 593–602.

Download references

Acknowledgments

The CAST CRC was established under, and is funded in part by, the Australian Federal Government’s Cooperative Research Centre scheme. Helpful discussions with Assoc. Prof. John Taylor at the University of Queensland are also acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Arvind Prasad.

Additional information

Manuscript submitted September 9, 2011.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Prasad, A., Bainbridge, I.F. Experimental Determination of Heat Transfer Within the Metal/Mold Gap in a DC Casting Mold: Part II. Effect of Casting Metal, Mold Material, and Other Casting Parameters. Metall Mater Trans A 44, 3099–3113 (2013). https://doi.org/10.1007/s11661-013-1646-6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-013-1646-6

Keywords

Navigation