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Mechanism of Dendritic Branching

Theories of dendritic growth currently ascribe pattern details to extrinsic perturbations or other
stochastic causalities, such as selective amplification of noise and marginal stability. These
theories apply capillarity physics as a boundary condition on the transport fields in the melt that
conduct the latent heat and/or move solute rejected during solidification. Predictions based on
these theories conflict with the best quantitative experiments on model solidification systems.
Moreover, neither the observed branching patterns nor other characteristics of dendrites formed
in different molten materials are distinguished by these approaches, making their integration
with casting and microstructure models of limited value. The case of solidification from a pure
melt is reexamined, allowing instead the capillary temperature distribution along a prescribed
sharp interface to act as a weak energy field. As such, the Gibbs-Thomson equilibrium tem-
perature is shown to be much more than a boundary condition on the transport field; it acts, in
fact, as an independent energy field during crystal growth and produces profound effects not
recognized heretofore. Specifically, one may determine by energy conservation that weak nor-
mal fluxes are released along the interface, which either increase or decrease slightly the local
rate of freezing. Those responses initiate rotation of the interface at specific locations deter-
mined by the surface energy and the shape. Interface rotations with proper chirality, or rotation
sense, couple to the external transport field and amplify locally as side branches. A precision
integral equation solver confirms through dynamic simulations that interface rotation occurs at
the predicted locations. Rotations points repeat episodically as a pattern evolves until the
dendrite assumes a dynamic shape allowing a synchronous limit cycle, from which the classic
repeating dendritic pattern develops. Interface rotation is the fundamental mechanism
responsible for dendritic branching.
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I. INTRODUCTION

CRYSTALLINE dendrites appear everywhere
throughout the natural world in myriad branched
forms, as diverse as snow flakes and frost patterns, or
as minerals crystallized from solutions and magmas.
Dendritic crystals are also prevalent in metallurgical
technologies, including alloy casting, primary metals
production, welding, and soldering. Dendrites in metal-
lurgy establish the initial microstructures of cast metals
and alloys, and are responsible for setting patterns of
chemical segregation, crystallographic texture, and grain
size developed in these materials. Microstructures, in
turn, strongly influence a material’s subsequent mechan-
ical, physical, and chemical behaviors. Moreover,
postsolidification treatments—the so-called ‘‘down-
stream processing’’ of many metallic materials—which
ultimately yield both semifinished and final products,
are chosen and are affected, to some extent, by the
dendritic microstructure.

The descriptive term ‘‘dendrite’’ derives from
‘‘d�mdqom’’, a tree, with which its highly branched,
arborescent appearance is aptly compared. A dendritic
crystal will usually exhibit morphological hints of its
underlying crystalline structure and symmetry, as it
commonly consists of a primary stem, secondary arms,
or side branches, with tertiary branches sprouting from
the secondaries—all growing in selected crystallographic
directions. It is the continuous generation of all these
branches during dendritic solidification that establishes
the ramified pattern, length scale, and spatial distribu-
tions of all the chemical components and impurities
contained in a solidifying melt or solution. These
features characterize, if not dominate, the microstruc-
ture of most cast alloys.

Relevant to this article is the fact that pure materials
also form dendrites if they freeze from their supercooled
melts. Pure material dendrites, however, leave no relict
chemical variations (segregation) or second-phase
eutectic traces behind as a reminder of their active
presence during freezing. Instead, most pure metallic
melts, if supercooled prior to crystallization, solidify by
redistributing the enthalpy steadily between the evolving
crystalline dendrites (lower enthalpy phase) and the
surrounding melt (higher enthalpy phase). The initial
spatial inhomogeneities in the distribution of solid- and
liquid-state enthalpies, however, fade away quickly after
the completion of solidification, causing such pure
‘‘enthalpy’’ dendrites to vanish into individual grains.
Simply stated, the conduction of heat during solidifica-
tion occurs in the solid-state much more quickly than
does the diffusion of segregated chemical species.
Despite their ultimate evanescence after complete solid-
ification, dendrites growing in high-purity melts can be
observed easily in situ during their active growth stage as
shown in Figure 1. The most prominent features
revealed in Figure 1 include what seems to be a
‘‘steady-state’’ tip, advancing at constant speed into its
surrounding supercooled melt, followed closely by a
repeating series of amplifying side branches growing in
four directions—up, down, and in and out of the
photograph’s focal plane. Farther back from the tip,

these closely spaced branches interact and coarsen prior
to complete solidification.
The history of dendrites specific to their application

and interest in metallurgy is a long and interesting one,
involving their visualization, description, and measure-
ment inmany castmaterials, as well as the development of
a number of hypotheses purporting to explain their
origin.[1] A brief review of contemporary theories of
dendritic growth now follows, to provide the reader a
vantage point for understanding and appreciating the
large disparity that has developed between theories of
dendritic branching and growth kinetics and actual
experimental findings on carefully developed test systems.
A local analysis of interface behavior will then be

developed to provide some critically missing physics,
which the author will show is essential to understanding
the fundamental mechanism of dendritic branching.

II. DENDRITIC GROWTH THEORIES

A. Background

To introduce this section on theories of dendritic
growth, I’ll begin with a quote made 20 years ago by
Dr. James S. Langer, a prominent physicist who has
added much to the theoretical development of this field.
His thoughtful reflections address the question of why
achieving a fundamental understanding of this complex
phenomenon still remains desirable and underscores its
special relevance today for metallurgists attempting to
improve alloys and cast materials design in general:

Metallurgists have long sought to predict and control alloy micro-
structures. . . . cost effective manufacturing techniques ultimately
depend on the precision with which we can solve this problem in

Fig. 1—In situ micrograph of a succinonitrile dendrite growing from
its high-purity supercooled melt. The crystal exhibits a paraboloidal
tip followed by a trailing sequence of repeating side branches. The
interface mechanism responsible for the repeated growth of these
branches is the focus of this study.
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non-equilibrium pattern formation. . . . we would like to incorporate
fundamental understanding of microstructures into computer codes
that simultaneously help us design materials with made-to-order
properties and optimize their manufacturability and performance.

James S. Langer, Physics Today, October 1992.

Contemporary concepts of dendritic growth trace from
the following two important early contributions: (1) the
observations made by physicist A. Papapetrou,[2] who
accurately described the geometry of a growing dendritic
crystal and suggested modeling its shape as an isother-
mal paraboloid of revolution, the interface of which
remains uniformly at its melting point, Tm; and (2) the
follow-up analysis accomplished more than 60 years ago
by G.P. Ivantsov, which describes quantitatively the
nature of the thermal field surrounding an isothermal
needle-like (branchless) dendrite undergoing steady-
state growth.[3–5]

Traditionally, the subject of dendritic growth theory is
divided into the following two independent components:
(1) transport theory, which explains how the large-scale
energetics of the ‘! s transformation operates and
controls the dendrite speed and size, which is mainly
credited to Ivantsov and several other investigators who
extended his findings to broader classes of dendritic
geometries; and (2) interface physics, which captures the
underlying microscopic phenomena that are responsible
for the branching and directionality that characterize
dendritic patterns in real materials. The two theoretical
components of dendritic growth have both markedly
different histories and status with respect to modern
experiments conducted on dendritic growth kinetics and
morphologies. We demonstrate in this article that the
two components of dendrite theory—transport and
interface physics—are not independent aspects at all
but remain linked through a subtle effect involving
energy transport along the interface.

B. Energy Transport

Ivantsov, as well as subsequent investigators of
diffusion-controlled phase transformation in more com-
plex geometries,[6] expressed the mathematical solutions
for the thermal or diffusion fields that transport heat
and/or solute during steady-state freezing in terms of a
lumped dimensionless parameter, called the growth
Péclet number.*

The growth Péclet number P is conventionally defined
in such transport problems as

P ¼ VR

2a
; ½1�

where V and R are the speed of the interface’s advance
and its radius of curvature, respectively, and a is the

diffusivity of the melt. Ivantsov’s transport solution
relates the dendrite’s growth Péclet number to the melt’s
dimensionless supercooling, or supersaturation, defined
in this article for the case of a pure melt as
D# ¼ ðT1 � TmÞ=ðDHf=CpÞ: Here, D# is the dimension-
less temperature difference that transports the latent
heat and, correspondingly, drives the overall phase
transformation kinetics for a solid crystallizing from its
pure melt. In the specific case of ‘! s transformation,
Tm is the material’s equilibrium freezing/melting tem-
perature, and T1 is the supercooled melt temperature
set at some large distance from the heat-releasing
dendrite. The scale factor that nondimensionalizes the
supercooling ðDHf=CpÞ is the characteristic temperature
of the material, given by the ratio of the latent heat
of fusion, DHf; to the melt’s specific heat, Cp: The
characteristic temperatures for most metals are typically
a few hundred Kelvins, but are much less for the organic
test substances discussed subsequently in this article,
which are often employed experimentally to check
theories.**

Ivantsov solved the steady-state energy equation in
the melt surrounding an advancing, isothermal, branch-
less, paraboloidal dendrite and related the dimensionless
supercooling to the dendrite’s growth Péclet number, as

D# ¼ PePE1ðPÞ ½2�

where E1ðPÞ is the first exponential integral, a definite
integral. Although Eq. [2] does not have an exact ana-
lytic inverse, its formal inverse exposes the relationship
between the dendrite’s two dependent variables, V and
R, and the independent variable, D#; namely

V � R ¼ 2a½Iv�1ðD#Þ� ½3�

The function Iv�1ðD#Þ appearing in Eq. [3] represents the
inverse of Ivantsov’s solution (Eq. [2]). One notes that
Eq. [3] relates only the product of the two unknowns of
interest as a hyperbolic function of the specified melt
supercooling, D#: Clearly, finding the unique solution to
the dendritic growth problem requires adding an inde-
pendent equation involving V or R, which is based on
physical principles beyond that of conservation and
transport of the latent heat of the ‘! s transformation.
This irrefutable mathematical fact was fully appreciated
by Ivanstsov himself and by numerous investigators who
attempted to build upon, or modify, Ivantsov’s analysis
of the fundamental heat transfer describing steady-state
dendritic growth (Eq. [2]).

C. Interfacial Physics

Over the last 50 years, several seemingly reasonable
ideas were proposed, developed, checked, and ultimately
discarded, in attempts to propose the additional physical
principle needed to solve the basic dendritic growth

*The mathematical expressions for the transport fields surrounding
dendrites in pure materials and alloys are identical; only the transport
coefficients defining the Péclet number differ.

**The characteristic temperatures, ðDHf=CpÞ for body centered
cubic (bcc) succinonitrile (SCN) and face centered cubic (fcc) pivalic
acid anhydride (PVA) are 23 K, and 11 K, respectively.
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problem.[7–24] These efforts included precepts and
hypotheses on dendritic interfacial physics as varied as
the following:

(a) Maximum velocity
(b) Interfacial stability
(c) Shape self-consistency
(d) Minimum entropy production
(e) Marginal stability (maximum radius)
(f) Selective noise amplification
(g) Microscopic solvability
(h) Trapped wave theory
(i) Maximum entropy production

Take, for example, item (a), the concept of maximum
velocity, which would occur, hypothetically, for a
paraboloidal dendrite, the solid–liquid interface of
which has interfacial energy, i.e., capillarity. As all
interfaces have excess free energy, or surface tension,
this idea could, conceivably, have provided a reasonable
supposition about the operating state of dendrites:
namely, that dendrites grow steadily when they achieve
their maximum velocity, as allowed by the thermal
conduction field and the level of supercooling specified
in the melt. Crystal growth at the maximum velocity
requires specifically that the dendritic tip radius be just
twice the size of the critical radius required for homo-
geneous nucleation of the solid phase from the super-
cooled melt. Some early experiments designed to check

the validity of this notion, however, showed convinc-
ingly that the tip radii of steadily growing dendrites
were, in fact, far larger than that required for achieving
the maximum velocity. Experiments found that den-
drites actually grow with their tip radii more like 100
times the critical radii, and therefore advanced at steady
speeds corresponding to only 1 pct of the predicted
maximum velocity.[25,26]

The other listed hypotheses for the controlling inter-
facial physics, unfortunately, also fail to predict dendritic
branching behavior, size scale, or growth rates, as
determined by quantitative experiments performed on
different well-characterized test substances.[26–31] Perhaps
most disappointing about these ideas was that the
theories based on them proved incapable of providing
even qualitative descriptions of the important morpho-
logical differences observed among dendritic crystals
grown from different substances. As examples, Figure 2
shows a pair of dendrites growing at identical dimen-
sionless supercoolings from different high-purity melts:
On the left is shown a dendrite of succinonitrile (SCN),
½CN�ðCH2Þ2�NC�; a bcc crystal freezing slightly above
58 �C; and on the right, PVA, ½ðCH3Þ3�C�COOH�; an
fcc crystal that freezes near 36 �C: These substances
develop individually unique dynamic tip shapes, followed
by markedly differing patterns for the orientation,
growth rate, and spatial distribution of their side
branches. An acceptably useful theory of dendritic

Fig. 2—Micrographs of cubic dendrites: Left: BCC succinonitrile (SCN), Right: FCC PVA. These dendrites are growing at identical values of
the dimensionless supercooling for each material and show distinctive material-dependent features in their growth morphologies. Without a spe-
cific interface mechanism accounting quantitatively for the development of side branches, these overall patterns—both their similarities and their
differences—can neither be interpreted well using experiments nor predicted accurately through computer simulations.
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growth should be able to describe some of these mate-
rials-specific features, including their speed and branch-
ing structures, if they are to provide a basis for our
fundamental understanding of dendrites and, eventually,
be incorporated into engineering casting codes to predict
microstructures and segregation patterns in alloys.

D. Crystal-Melt Interfaces

Dendrites consist of crystal-melt interfaces only a few
atomic or molecular spacings in thickness. This circum-
stance is treated conveniently with the ‘‘sharp-interface’’
approximation, in which the atomic or molecular
transition between crystal and melt is reduced to a
geometric surface of zero thickness, to which is assigned
an excess energy, composition, and position, in a
manner developed for classic models of heterophase
interfaces by Gibbs.[32]

Diffuse interfaces, by contrast, are encountered in
liquid-vapor systems near their critical points and
during solid-state spinodal decomposition of phase-
separating supersaturated alloys. Diffuse interfaces may
be treated with theories and numerical models that
relate to general free energy expansion methods devel-
oped originally by Ginzburg and Landau.[33] Free
energy expansions deal explicitly with the gradient
structures developed between related critical phases
and with free energy descriptions that account for
structural gradients.[34–37]

Among the sharp interface descriptions postulated for
dendritic growth, several approaches still prevail: Some
sharp interface models, such as marginal stability,[13]

remain in use, as does microscopic solvability, a steady-
state theory that also incorporates interfacial energy
anisotropy. Numerical simulations of diffuse interfacial
structures, based on phase-field models, are now applied
widely, and successfully, although approaching the limit
of atomically thin interfaces remains computationally
challenging.[38–42] Indeed, an array of different simulation
methods, including the phase-field model, prove extre-
mely useful for simulating a variety of solid–liquid and
solid-state phase transformations.

Moreover, to test any specific hypothesis critically,
one must establish a base of quantifiable observations.
To date, the most reliable experiments capable of
evaluating the predictions derived from theory are those
that use test materials that are ultra-pure, stable, and
transparent, such as H2O ice,[25] and plastic crystalline
compounds,[26,27–31] such as SCN and PVA. These
particular experimental studies each involved observa-
tion of these well-characterized molecular substances
solidifying from their melts in high-precision thermo-
stats capable of setting small supercoolings accurately
that control the kinetics of dendritic crystallization.

In this manner, the two major components of dendritic
growth theory could be separated and individually
evaluated, as follows: (1) checking the thermal transport
field responsible for energy flow during the ‘! s phase
transformation, viz., testing Ivantsov’s analysis by mea-
suring a dendrite’s growth Péclet number, using the
product of V� R at known supercooling levels, D#
(Section II–B); and (2) testing separately some key

prediction derived from the interfacial physics that was
added to make the theory unique and that allows explicit
prediction of either V or R for a specified supercooling.

E. Testing Current Theories of Dendritic Growth

The following two theories of dendritic growth are
accepted today: (1) marginal stability, developed in the
mid-1970s,[13,14] which contends that a dendrite grows at
its limit of stability, defined by stochastic fluctuations
that continually perturb the dendrite’s tip; and (2)
microscopic solvability, a steady-state approach devel-
oped in the 1980s that finds unique mathematical
solutions (smooth tips) for specified anisotropic capil-
larity.[16–19] These theories have been checked individu-
ally with experiment and were found incapable of
predicting the correct scaling laws, growth kinetics, or
branching patterns.
The first important experiment that tested micro-

scopic solvability theory studied dendritic growth in
SCN and PVA. The results were reported in the early
1990s by Muschol et al.[30] These investigators examined
carefully several aspects of microscopic solvability
theory. Muschol et al. concluded based on their studies
that microscopic solvability was in severe disagreement
with their experiments. Quoting their concluding
remark, ‘‘MST [microscopic solvability theory] in its
present form cannot realistically be viewed as being
confirmed by experiment’’.[30]

Marginal stability and solvability were again subject
to an independent sequence of quantitative experiments
known as the Isothermal Dendritic Growth Experiment
(IDGE). The IDGE series of dendritic growth tests was
flown in space by NASA three times, as semiautono-
mous and ground-based telemetry-controlled experi-
ments aboard the U.S. Space Shuttle Columbia. Three
space flights of the IDGE were launched successfully
between March 1994, and December 1998 and were
carried as part of an experiment complement comprising
NASA’s United States Microgravity Payload (USMP)
Missions. USMP-2, �3, and �4 collectively yielded
growth kinetic and morphological data on ultra-pure
SCN and PVA from more than 350 experiments.[43]�

Low-earth orbit (LEO) provides a nearly ideal micro-
gravity environment that eliminates all vestiges of
buoyant, or natural, convection in the melt during
solidification.� Buoyant melt convection is induced in

�Interested readers may access NASA’s official archives for the
IDGE-USMP series, available at http://pdlprod3.hosc.msfc.nasa.gov.
To locate associated NASA Technical Reports for the IDGE-USMP
series please go to http://naca.larc.nasa.gov/index.jsp?method=
aboutntr.

�The gravitational acceleration in low-earth orbit, gLEO; affecting
the IDGE experiments on NASA’s USMP missions was reduced to a
quasi-static level of gLEO � 10�7g0; where g0 ¼ 9:807m/s2 is the
average, or standard terrestrial value of the gravitational acceleration.
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the presence of Earth’s gravity by any heat-emitting
dendrite. Achieving slow dendritic growth speeds in
either metals or pure test substances demands setting
and measuring precisely extremely small supercooling
levels in the melt, DT� 1K; which advantageously
allows high resolution in situ microphotography, such as
displayed in Figures 1 and 2. Convective melt flows alter
and complicate the pattern of heat conduction during
freezing of high-Prandtl number fluids, particularly at
the slow dendritic growth speeds needed in these kinetic
experiments. This interference precludes making terres-
trial laboratory measurements of a dendrite’s growth
Péclet number, which as explained, must be obtained
under diffusive, or pure thermal conduction conditions
achievable in fluids only in microgravity.§

The IDGE series of scientific missions involved
precision observations of diffusive dendritic growth
speeds, tip radii, and patterns in microgravity.[44–49]

Two key discoveries were made, and then verified, by
many repeated experiments on different high-purity test
materials. First, a quantitative test of Eq. [2] using
microgravity data verifies Ivantsov’s analysis of latent
heat transport surrounding dendrite tips during den-
dritic growth. This test of the predicted growth Péclet
number versus supercooling was accomplished success-
fully using dendritic growth experiments performed with
high-purity 7-9s SCN. This material was selected
because it crystallizes dendritically with a paraboloidal
dendritic tip, closely approximating the interface shape
assumption made in Ivantsov’s transport analysis.
Figure 1 and the left panel of Figure 2 show the
steady-state tip structures of SCN dendrites are indeed
paraboloids. The product of growth speeds and tip radii
data observed simultaneously under both terrestrial and
microgravity conditions are plotted in Figure 3 as
growth Péclet numbers. Note that only the convection-
free data set obtained under microgravity conditions
verifies that Ivantsov’s heat conduction analysis for a
dendrite tip is correct. These data comprise the first
zero-parameter fit of Ivantsov’s analysis.[44] Note also
that the terrestrial data included in Figure 1 are influ-
enced by strong buoyancy-induced melt convection and,
consequently, do not agree with Ivantsov’s conduction
analysis. Second, the theory of marginal stability shows
that with increasing supercooling, the dendritic growth
speed V increases rapidly, whereas the corresponding tip
radius R decreases more slowly. Their combined behav-
ior allows the growth Péclet number, P ¼ VR=2a; to
increase with supercooling, as shown by transport
theory (Eq. [2]). However, marginal stability also
predicts that the combination V� R2 should remain

constant and be independent of the melt supercooling.
More specifically, marginal stability requires that
2ad0=VR2 � 1=4p2: Here, a is the thermal diffusivity of
molten SCN and d0 is the capillary length of this crystal-
melt system.§§

A direct quantitative check of this dendritic scaling
law predicted from marginal stability theory was
attempted in the mid-1990s with data from the first
two IDGE experiments, both of which used SCN as the
test substance. Data from these experiments are plotted
in Figure 4 that characterize the observed behavior of
SCN dendrites. As shown in Figure 4, the scaling law
prediction is not upheld by these measurements. Instead,
one observes a well-resolved increase of the quantity
VR2 with increased supercooling. Similar, carefully
executed, and multiply repeated experiments, carried
out both terrestrially and in microgravity on PVA in the
third, and final, IDGE experiment, show more scatter
than do the data for SCN and confirm a steady increase
of VR2 with increasing melt supercooling. The conclusion

Fig. 3—Log-log plot of the growth Péclet number, VR=2a; vs melt
supercooling DT for succinonitrile dendrites grown under terrestrial
and microgravity conditions. The Ivantsov heat conduction solution
which is plotted here as a broken straight line, is based on Eq. [2].
The terrestrial growth Péclet number data expose the considerable
influence of terrestrial gravity on heat conduction during crystal
growth, whereas the data from dendritic solidification observed in
microgravity agree closely with Ivantsov’s transport theory. These
data show that classic transport theory describes accurately the
major energy field surrounding paraboloidal dendrites.[44,45]

§The higher the Prandtl number of a melt, the more that hydrody-
namic flow affects heat transfer. The Prandtl number of a fluid Pr is the
ratio of its kinematic viscosity, or momentum diffusivity m½m2=s�; to its
thermal diffusivity, a½m2=s�: Plastic crystals, such as succinonitrile and
pivalic acid anhydride, are stable and conveniently transparent for
microphotography but have relatively large Prandtl numbers,
Pr ¼ m=a>10; whereas molten metals, which suffer from opaqueness,
reactivity, and much higher melting temperatures, exhibit small Pra-
ndtl numbers, Pr� 1:

§§The capillary length, d0 ¼ 2:82	 0:17 nm, is defined from mar-
ginal stability as d0 
 ðCpTmXcs‘Þ=DHf

2: All the constituent thermo-
physical constants for d0 for SCN are fully documented,[45] including,
its equilibrium melting point, Tm ¼ 331:233	 0:001K; as well as the
molar specific heat of the melt, Cp ¼ 160:91	 1:6 J/mol-K; the molar
volume of the melt, X ¼ 0:816	 0:006� 10�4 m3=mol; the interfacial
energy density, cs‘ ¼ 8:94	 0:5mJ/m2; and the molar heat of fusion,
DHf ¼ 3:704	 0:002 kJ/mol:
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drawn from those PVA dendritic growth data was stated
by its authors as follows:

In spite of the large uncertainties in many of the measurements,
the scaling parameter [i.e., VR2 for PVA dendrites] does not appear
to be a constant over the full supercooling range of these experi-
ments, and does not appear to agree with current predicted scaling/
selection rule values.[49]

F. Commonality Among Dendritic Growth Theories

A feature found in common among present-day
dendritic growth models is that capillarity plays its role
by providing the ‘‘inner’’ thermal boundary condition at
the solid–liquid interface, to which the ‘‘outer’’ trans-
port field conforms. This restrictive use of capillarity
remains the case whether a model is based on noise-
mediated pattern development, as in marginal stability
theory, or seeks a solution based on steady-state
solvability. Thus, the Gibbs-Thomson equilibrium
boundary condition merely replaces the isothermal
interface boundary condition originally assumed by
Ivantsov. Moreover, application of capillarity as the
temperature boundary condition on the solid–liquid
interface comprises the identical methodology used since
the earliest models of dendritic growth were considered
over 50 years ago.[7,8]

In the next section, we show that the Gibbs-Thomson
capillarity effect is much more than just a boundary
condition on the surrounding transport field. Capillarity
introduces temperature gradients along a dendritic inter-
face—albeit extremely weak ones—so that the Gibbs-
Thomson equilibrium temperature distribution acts as an
independent energy field during crystal growth, produc-
ing, as we shall demonstrate, more important effects on
the branching process than recognized previously.

III. CAPILLARITY

A. Background

Interfacial energy effects during crystal growth, or
capillarity, are such that the equilibrium temperature
between a crystal and its melt, at a fixed pressure, varies
slightly with the local interfacial curvature. Specifically,
the equilibrium interface temperature is depressed
imperceptibly (by a few milli-degrees below Tm) near a
highly curved dendrite tip and is slightly elevated—and
thus closer to Tm—at locations farther away from the
tip, where the interface is somewhat flatter. As men-
tioned at the end of Section II–B, standard models of
dendritic growth view such paltry capillary fields as
energetically irrelevant because they appear, at least
superficially, to be inconsequential when compared with
the (Ivantsov) transport field that governs the overall
energetics of the ‘! s transformation. This view is
certainly not unreasonable, as the Ivantsov field, acting
normal to the growing crystal-melt interface, spans a
temperature difference in the melt that is several orders
of magnitude greater than the Gibbs-Thomson field
along the interface. Furthermore, it may be argued that
any thermal fluxes that happen to be associated with the
gradients produced by the equilibrium temperature
distribution itself are themselves confined to act tangen-
tially along the interface. Thus, such weak gradients
could not, in any event, assist in the energy transport
directly affecting the rate of ‘! s transformation. For
these apparently cogent reasons, the Gibbs-Thomson
temperature distribution remains today solely as a
passive boundary condition in standard models of
dendritic growth. As shown next, however, capillarity
also plays a more subtle role, which has been over-
looked, in the initiation and control of dendritic
branching.

Fig. 4—Test of the scaling law based on marginal stability theory. The product of simultaneously measured values of dendritic growth speeds in
ultra-pure succinonitrile V times the square of the dendrite’s corresponding tip radii R. These data indicate, in contradistinction to the theoreti-
cal prediction of a constant value, a clear dependence on the level of melt supercooling. The theoretically predicted scaling relationship,
VR2 ¼ const., independent of the melt supercooling, is not confirmed in these experiments. Original IDGE data were extracted from Ref. 45.
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B. Gibbs-Thomson as an Energy Field

Conventional thinking notwithstanding, the Gibbs-
Thomson temperature distribution was reconsidered as
a full-fledged energy field after the present author
analyzed experiments conducted on the melting kinetics
of needle-like crystallites. These crystallites were sus-
pended in their melt under microgravity conditions and
exhibited the puzzling behavior of suddenly becoming
more spherical as they decreased in volume to suffi-
ciently small size prior to their complete extinction by
melting.[50,51] It was shown recently that the observed
onset of spheroidization was caused by the unexpected
appearance during melting of heat currents generated
internally to the crystallites. The ‘‘extra’’ energy for
spheroidization arose through the action of interfacial
capillarity when the needle-shaped crystallites melted
down to sufficiently small sizes.[52,53] This unusual
finding, which was discovered in experiments on melting
crystals, prompted the present reexamination of the role
played by the Gibbs-Thomson temperature distribution
for the case of freezing.

A brief summary of this interface analysis and its
further implications on understanding the mechanism of
dendritic branching follow.

C. Tangential Fields

We examine a simple two-dimensional dendritic
interface, chosen in the form of a semiellipse, with its
semimajor x-axis, a, longer than its shorter semiminor
y-axis, b. This provides a slender, finger-like starting
shape suitable for a dendrite. Figure 5 shows the
interfacial configuration.

It proves convenient subsequently to scale the coor-
dinates of the crystal-melt interface in units of the

semimajor axis a, so that the scaled coordinates
x=a 
 l; and y=a 
 g define dimensionless coordinate
axes for the starting shape. The equation of the ellipse
transforms to

g ¼ b

a

ffiffiffiffiffiffiffiffiffiffiffiffiffi

1� l2
p

: ½4�

The presence of an Ivantsov-type transport field sug-
gests the normal flow of latent heat away from the
crystal-melt interface during subsequent freezing. The
Gibbs-Thomson temperature distribution TintðuÞ repre-
sents the instantaneous distribution of equilibrium
temperatures along the semi-ellipse, with the tip region
at l ¼ 1 slightly cooler than the temperature at the
equator l ¼ 0:We will treat the simpler case of isotropic
capillarity in this article. Anisotropic interfacial energy,
although extremely important in real dendritic crystal
patterns, complicates the current analysis and makes
only minor differences in what we wish to demonstrate
in this study about the fundamental mechanism of
branching.
The equilibrium interfacial temperature along the

crystal-melt interface is expressed by the Gibbs-
Thomson Eq. [1]

TintðuÞ ¼ Tm �
cs‘

DSf=X

� �

jðuÞ ½5�

where cs‘ is the crystal-melt interfacial energy density,
DSf ¼ DHf=Tm is the molar entropy of fusion, X is the
molar volume of the melt, and jðuÞ is the ellipse’s cur-
vature function. The angle u appearing in Eq. [5] is
the local normal angle on the interface, which depends
on the location ðx; yÞ or ðl; gÞ: The small negative tem-
perature shift, Tint � Tm; which is caused by interface
curvature, can be scaled into an interface potential
#ðuÞ; as the dimensionless Gibbs-Thomson equation,

#ðuÞ ¼ Tint � Tm

C=a
¼ �ajðuÞ ½6�

where C=a ¼ a�1 cs‘
DSf=X

� �

is the capillary constant scaled
by the semimajor axis a, which bears the physical unit
[K].
The Gibbs-Thomson capillary temperature field

expressed through Eq. [5], and its associated interfacial
thermodynamic potential, #ðuÞ (Eq. [6]), imply that
weak gradients develop and energy travels along the
interface ‘‘flowing’’ from higher to lower potential. The
gradients caused by this capillary field are found by
calculating the tangential derivative of the interface
potential, which is directed along the arc length of the
curved interface. The gradient vector field of the Gibbs-
Thomson distribution is

$r½#ðuÞ� ¼ �a$r½jðuÞ� ¼ �$r½ĵðuÞ� ½7�

where $r½ �; is the tangential vector gradient operator,
and r denotes a dimensionless unit vector that is parallel
to the interface and pointing toward the tip. The second
equality in Eq. [7] expresses the interfacial potential
gradient in terms of the dimensionless curvature, which
is defined as ĵðlÞ 
 ajðlÞ:

Fig. 5—An elliptically shaped dendritic interface. The tangential
Gibbs-Thomson equilibrium temperature field, TintðuÞ; and the
Ivantsov transport field act simultaneously over the crystal-melt
interface as indicated schematically. Also shown are the dimension-
less space coordinates, l ¼ x=a and g ¼ y=a; the unit normal vector
on the interface n and its normal angle u; and the tangent vector r
directed along the curved interface.
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The dimensionless curvature of an ellipse ĵðlÞ is the
following function of l:

ĵðlÞ ¼ b

að1� l2Þ
3
2 1� b2l2

a2ð�1þl2Þ

� �3
2

½8�

for which the normal angle on the interface remains
positive on the upper half-plane g>0 and negative on
the lower half-plane g<0: The normal angle u and the
scaled l-coordinate are with this sign convention
everywhere related as

uðlÞ ¼ 	 arctan
�bl

a
ffiffiffiffiffiffiffiffiffiffiffiffiffi

1� l2
p

" #

þ p
2

 !

½9�

See again Figure 5. The distribution of the Gibbs-
Thomson interface potential along an elliptical inter-
face is

#ðlÞ ¼ � b

a
ð1� l2Þ 1� b

a

� �2 l2

�1þ l2

� �

 !" #�3
2

½10�

For specificity, a 3:1 ellipse is chosen so the semiaxes
in Eq. [10] assume values a = 3 and b = 1. The inter-
face potential distribution #ðlÞ; is plotted for this ellip-
tical shape in Figure 6. The potential is negative
everywhere and remains close to zero for almost half
the distance along the semiellipse from the equator to
tip. The potential then decreases rapidly as the tip at
l ¼ 1 is approached. One expects from this potential
distribution relatively slowly increasing energy fluxes
near l ¼ 0 and stronger, variable fluxes toward the tip
as energy flows down, and proportionately, to the lo-
cal gradient. The vector gradient field caused by the
Gibbs-Thomson potential distribution on an ellipse
may be shown to be the following function of l:

$r #ðlÞ½ � ¼ 3abð�a2þ b2Þl
ffiffiffiffiffiffiffiffiffiffiffiffiffi

1� l2
p

ða2þ ð�a2þ b2Þl2Þ2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� b2l2

a2ð�1þl2Þ

q � r

½11�

The associated energy flux vector UðlÞ � r [watts/m] on
the interface is determined with Fourier’s law

UðlÞ � r ¼ � kint
C
a2

� �

$r #ðlÞ½ � ½12�

in which the interface conductivity, kint; appearing in
Eq. [12], bears the units [watts/K].–

The flux vector defined in Eq. [12] may be nondimen-
sionalized as

ÛrðlÞ � r ¼
UðlÞ

kintC=a2
� r ½13�

Again, for the illustrative case of a 3:1 ellipse, the
dimensionless energy flux magnitude ÛðlÞ traveling
over the interface is plotted in Figure 6, middle. This
flux magnitude is given by the expressions

Fig. 6—Upper: Distribution of the Gibbs-Thomson interface poten-
tial vs l ¼ x=a for a 3:1 semielliptical crystal. The interface remains
below its thermodynamic melting temperature ð# ¼ 0Þ everywhere,
especially approaching the curved tip region. The maximum decrease
in actual interface temperature [K] would amount to only a few mil-
lidegrees. Middle: Tangential energy flux magnitude, Ûr; caused by
gradients in the Gibbs-Thomson distribution. The flux increases
toward a distinct peak before decreasing and reversing direction
close to the tip. This energy flux is driven by the tangential gradients
of the interface potential function plotted in the upper diagram.
Lower: Normal flux magnitude associated with energy conservation
on the interface. Energy accumulation on the interface is the (nega-
tive) divergence of the tangential capillary flux vector.

–Conventional, i.e., bulk, thermal conductivities bear System
International (SI) units of [watts/m-K]; however, surface, or interfacial,
thermal conductivities must carry SI units of [watts/K] in order that
the interface flux exhibits proper units of [watts/m].
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ÛrðlÞ ¼ �$r #ðlÞ½ � � r ¼ 27lð�23þ 24l2Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffi

1� l2
p

ð�9þ 8l2Þ3
½14�

The tangential interfacial energy flux increases slowly
with distance along the flatter regions of the interface
and rises to a sharp peak located almost 90 pct of the
way to the tip. As the tip is approached even more
closely and l! 1; the flux suddenly decreases and
reverses direction.

D. Interfacial Energy Conservation

The temperature variations caused by capillarity are
extremely small and generally do not exceed a few
millidegrees. This extreme weakness notwithstanding,
the autonomous energy fluxes associated with capillarity
must still be conserved locally at every point along the
interface. The tangential fluxes along the 3:1 elliptical
interface are shown in Figure 6-middle. A standard
method for evaluating local energy conservation is to
calculate the ‘‘convergence’’ of the tangential heat flux
vectors on the interface, ÛðlÞ � r; or equivalently, to
calculate the divergence of the gradient at each point.

The divergence of the potential’s gradient field for a
3:1 ellipse, given by Eq. [11], is defined by standard
vector calculus expressions, namely

$r � $r #ðlÞ½ � ¼ �rr½ÛðlÞ�; ½15�

where the RHS of Eq. [15] is (minus) the divergence of
the dimensionless interface flux. Interface energy con-
servation may be stated mathematically through the
following local balance

kintC
a3

� �

rr½ÛrðlÞ� þ
CpintC
a

� �

@½#ðuÞ�
@t

� UnðlÞ ¼ 0;

½16�

the first term in Eq. [16] is the net energy deposited, or
removed, at a point on the interface by the divergence of
its tangential flux or potential gradient; the second term,
is proportional to the interfacial heat capacity,
Cpint J=m

2 �K
� �

if the interfacial heat capacity is non-
zero; and the third term is the capillary-induced normal
flux leaving the interface, directed either into the crystal
or the melt. These energy terms must balance at every
point along the crystal-melt interface, and account for
the Gibbs-Thomson energy. The effect of the normal
fluxes is to increase, or decrease, slightly, the large
thermal gradients surrounding the interface from the
Ivantsov transport field, which is primarily responsible
for setting the local freezing rates.

Dividing through Eq. [16] by the leading coefficient,
(kint C/a3), yields a fully dimensionless interface conser-
vation equation for the Gibbs-Thomson energy field,

rr½ÛrðlÞ� þ
@½#ðuÞ�
@s

� ÛnðlÞ ¼ 0; ½17�

where the dimensionless interface time, s, is physical
time divided by the interfacial diffusion time, Cpinta

2=kint;
and the dimensionless normal flux is defined here as

ÛnðlÞ ¼ UnðlÞ a3=kintC
	 


: The capillary-related heat flux
released at a point from such an interface is directed
normal to the interface either toward the crystal or
toward the melt—depending on the sign of the diver-
gence of the Gibbs-Thomson tangential flux. The
direction of this normal heat flux at any point must
also be selected in accord with the Le Chatelier-Braun
principle.
Most importantly, this normal capillary flux either

slightly retards, or slightly increases, the local freezing
rate. One notes that if directed toward the crystal, the
normal flux causes a slight retardation of the freezing
rate, whereas if directed toward the melt, then the
normal flux causes a slight local increase in the freezing
rate. Substituting Eq. [15], then Eq. [7], for the first term
in Eq. [17], which is the tangential flux, and eliminating
the second term, by assuming a zero interfacial heat
capacity for the interface, yields the normal flux that
satisfies local interface energy conservation. Perhaps
most surprising is that this normal flux equals the
surface Laplacian of the Gibbs-Thomson potential, and
for isotropic surface energy, also equals the negative
surface Laplacian of the interface curvature, namely,

ÛnðlÞ ¼ r2
r½#ðlÞ� ¼ r2

r½k̂ðlÞ�; ½18�

Evaluating Eq. [18] explicitly for a 3:1 ellipse one finds
that the normal flux is

ÛnðlÞ ¼ �
243ð69� 152l2 þ 256l4Þ

ð9� 8l2Þ
9
2

: ½19�

Equation [19] is plotted in Figure 6 lower. Where the
normal capillary flux has a positive sign (0 £ l £ 0.95) it
is directed toward the melt, and proportionately
increases the local rate of freezing. The flux magnitude
falls precipitously from its peak value near l = 0.9,
reversing sign just below l = 0.95, where the energy
becomes redirected toward the crystal and retards the
rate of freezing.
It is interesting and important to note that the

capillary-mediated modulation of the local freezing
rates from point to point along an interface, as
demonstrated in Figure 6, occurs autonomously by
tangential heat fluxes arising from the gradients of the
Gibbs-Thomson energy field.

E. Le Chatelier-Braun Responses

Now, a crystal-melt interface on which heat energy is
being added or withdrawn from point to point is an
example of what Van’t Hoff termed mobile equilib-
rium.[55] The local response of such a system to
capillary-induced autonomous energy changes is pre-
dicted by the Le Chatelier-Braun effect, the fundamental
basis for which is the combined 1st and 2nd laws of
thermodynamics.[56–59] The Le Chatelier-Braun effect
posits[55,60] that mobile systems respond by negative
feedback to imposed extensive variable changes. In this
instance, the changes involve the autonomous addition
or loss of energy from the Gibbs-Thomson field.
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Viewed the other way round, the Le Chatelier-Braun
effect also states that mobile systems must respond to
intensive variable changes (rising or falling potential) in
a manner so as to increase the corresponding change in
the conjugate extensive variable, which is the energy or
entropy added or released along the interface. These
countervailing descriptions cause confusion about the
Le Chatelier-Braun effect and, consequently, were dis-
tinguished by Paul Ehrenfest in his explanation of this
peculiar dichotomy, as either Widerstandfähigkeit (capa-
ble of resisting) or Passungsfähigkeit (capable of adopt-
ing).[61] Both of these descriptions are, however,
thermodynamically correct and equivalent, and will be
used to determine the direction of the energy fluxes
normal to the interface added by capillarity.

IV. KINEMATIC ROTATION

The opposing freezing responses caused by the normal
flux as it vanishes surrounding the root location on the
interface (See Figure 6-Lower) sharpen and flatten the
adjacent locations simultaneously. Simultaneous yet
opposite changes in curvature occurring at a point on
the interface induce localized rotation, or tilting, of the
nearby interface orientations. Figure 7 shows a sche-
matic that interprets how the influence of a zero in the
instantaneous rates of freezing stimulates a change in
local interface orientation. The local analysis provided
in this study points out where the interface will rotate
autonomously: namely where the surface Laplacians
of the potential, or curvature, vanish, and where the
interface freezing rate is retarded on one side, and
accelerated on the other.

V. DYNAMIC VERIFICATION OF KINEMATIC
ROTATION

The dynamic behaviors of the 3:1 ellipse discussed
previously, as well as that for a 2:1 ellipse, were checked
independently using a low-noise integral equation solver
developed by Lowengrub and Li.[62] This solver can
evolve accurately simulated diffusion-limited dendrites

and other interesting patterns such as fluid-fluid inter-
penetrating Saffman-Taylor ‘‘viscous fingers’’[63,64] ob-
served in Hele Shaw cells.[65–68] In the current study, the
solver provides numerical solutions to Laplace’s equa-
tion tracking the thermal field surrounding the evolving
dendritic pattern and follows the interface as it develops
over time with the main transport field. The boundary
condition applied on the solid–liquid interface is the
Gibbs-Thomson equilibrium temperature distribution
Eq. [5] which reflects both the instantaneous value of the
interface curvature and the presence of interfacial
energy.
The predicted location of the rotation points, which

are determined analytically on these starting shapes,
may be compared with their dynamically evolved
positions as observed with the solver. The analytically
determined value for the initial root position and
corresponding rotation point for a 3:1 semi ellipse with
isotropic interface energy is l?local ¼ 0:9878: The actual
rotation point observed independently with the dynam-
ical solver occurs at l?global ¼ 0:9877: These rotations
correspond to the dimensional location x? � 2:96; which
occurs close to the tip position at x = 3.
In a second case tested with a 2:1 ellipse and isotropic

interface energy, the analytically determined root and
rotation point position was l?local ¼ 0:9688; which com-
pares well with the first rotation point observed through
dynamic evolution at l?global ¼ 0:9687: These positions
correspond, respectively, to the dimensional interface
position at x? � 1:94; which is again near the ellipse’s tip
at x = 2. We note that with isotropy of the interface
energy, the initial rotation points of those elliptical
shapes occur within approximately 2 to 3 pct of the tip
positions of the ellipses.
Adding a small amount of interface energy anisotropy

draws the position of the initial rotation point away
from the tip. Figure 8 shows these results as an overlay
of an undistorted 2:1 ellipse and a frame taken from the
dynamic solver at an early time. This starting shape had
0.5 pct 4-fold energy anisotropy along its interface. The
rotation points developed by these superposed shapes
show up clearly at the predicted dimensional location of
x? � 1:70; which is within approximately 15 pct of the
tip location.

Fig. 7—Influence of a zero in the time rate of change of freezing at a location u?; where the surface Laplacians of the potential, or curvature,
vanish. See again the root location of the normal flux in Fig. 6-Lower. The middle panel suggests that simultaneous opposing tendencies to shar-
pen from cooling and flatten from heating, combine, and induce a wave-like ripple or wrinkle of the interface. The right panel suggests that the
interface wrinkle, once formed, couples to the strong external transport field in the adjacent melt and eventually develops into a dendritic side
branch. This process repeats itself over and over near the tip as the dendrite advances.
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Thus, the tangential component of the fluxes produced
from the Gibbs-Thomson field exhibits a divergence that
causes the interface to both accelerate slightly and be
retarded locally. The response of the interface, as dis-
cussed in Section III–E, results in slightly altered rates of
freezing along the crystal-melt interface.Where the rate of
change of the freezing rate vanishes, the interface starts to
rotate. A ‘‘wrinkle’’ develops near the rotation point as
the interface couples to the outer normal field and grows

rapidly into a branch. The tip meanwhile advances and
alters its shape dynamically from that of the starting
ellipse. That shape change eventually induces yet another
rotation with subsequent branch formation. Up to four
onsets of interface rotation have been observed dynam-
ically near the tip, eachoccurring sooner than theprevious
one. Figure 9 shows the dynamic evolution of the 2:1
ellipse and suggests how a series of kinematic rotations
can evolve into a highly ramified dendritic pattern.

Fig. 8—Dynamical check of the kinematically predicted initial rotation points for a 2:1 ellipse with 0.5 pct 4-fold energy anisotropy. Left panel:
Normal flux produced by capillarity vs distance x showing the analytically predicted rotation point at x? ¼ 1:697: Where the flux is positive, it
accelerates freezing, and where it is negative it retards freezing. Right panel: An early video frame taken from the dynamic simulation of a 2:1
elliptical interface with 0.5 pct 4-fold energy anisotropy. The coordinates x? ¼ 1:697 of the predicted location of the initial rotation based on lo-
cal response theory (left panel) is confirmed independently at x� � 1:70 by observing evolution in the dynamic solver. These responses are pre-
dicted by local analysis of interfacial energy conservation and the LeChatelier-Braun effect. These interface changes may be observed directly
here from the overlay of the starting 2:1 half-ellipse, which is shown as the dashed curve, with the displayed video frame.

Fig. 9—Selected video panels extracted from several hundred frames generated by the dynamic solver, showing longer time evolution of a 2:1
elliptical starting shape with some interface energy anisotropy into a noise-free branched pattern. The pairs of dots indicate the positions of rota-
tions occurring during pattern evolution. The initial panel in this time sequence (frame 0) was overlaid in Fig. 8-right with a second evolved
panel (Frame 49). This confirms the predicted initial rotation points and exposes the adjacent regions of flattening and sharpening. Subsequent
rotation points can be predicted by using a global interface energy analysis, which is not discussed in this study, and checked independently with
the dynamic solver, which shows that they couple to the external field and amplify into branches.
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VI. SUMMARY AND CONCLUSIONS

This study reviewed theories of dendritic crystal
growth and, citing pertinent experimental studies,
showed that current dendrite theories fail to predict
observed phenomena properly. The common thread
among all theories of dendrite formation is their
restricted use of capillarity, namely, how the Gibbs-
Thomson effect is applied to the interface. The Gibbs-
Thomson temperature distribution on a curved dendritic
interface consists of an extremely weak variation from
the curved tip region to the flatter regions away from the
tip. Specifically, the equilibrium temperature variation
spans only a few millidegrees in totality. This tiny range
of temperature—compared with the more robust Ivant-
sov transport field that surrounds the dendrite—has
traditionally relegated the Gibbs-Thomson temperature
distribution as an interface boundary condition on the
external field. The new view taken here is that the
equilibrium temperature distribution is an active inter-
face energy field, albeit it an extremely weak one. As
such, capillarity acting on a crystal interface, which is
well away from from its equilibrium configuration,
produces energy gradients and fluxes and, consequently,
divergences of those weak vector fields.

A reexamination of the consequences of a weak
energy field along the crystal-melt interface revealed that
additional capillary heat fluxes either increase or retard
the local freezing rate, and where they vanish interface
rotation occurs. The Le Chatelier-Braun principle—a
consequence of the laws of thermodynamics—requires a
response from the mobile interface to the weak fluxes
induced autonomously by the Gibbs-Thomson energy
field. We find that curved regions near the tip of an
elliptical interface will warm, and be retarded, so they
respond by flattening, whereas flatter regions will cool,
and accelerate, so they respond by sharpening. Where
the incipient processes of flattening and sharpening
become adjacent, the interface undergoes a rotation, by
tilting and enhancing the exterior local temperature
gradients in the melt. This action couples the interface to
the surrounding transport field and results in branch
formation.

A low-noise dynamic solver verifies the locations of
the initial rotation points, which depends sensitively on
both the interface shape and the anisotropy of the
interfacial energy. The full details of these dynamic tests
will be reported elsewhere. Dynamic solver studies also
allow the observation of subsequent rotation points that
occur episodically at locations near the tip, the shape of
which changes over time. (The location of subsequent
rotation points cannot be found just using the current
local analytical theory.) Eventually, the tip develops an
appropriate ‘‘steady’’ tip shape that leads to a synchro-
nicity between the occurrence of kinematic rotations and
the tip advancement. These act in concert as a nonlinear
limit cycle. Once established, the dendrite’s limit cycle
produces the classic branching pattern.

Thus, we conclude, capillarity-induced rotation pro-
vides the fundamental deterministic mechanism respon-
sible for dendritic branching. Specifically, rotation
occurs where the surface Laplacians of the Gibbs-

Thomson potential and the interface curvature vanish.
These are equivalent statements when the interfacial
energy is isotropic. Selective noise amplification, mar-
ginal stability, or other stochastic phenomena do not
enter the process at this early stage or seem to play any
direct role in pattern-forming dynamics, per se. Some
aspects concerning how the rotation couples with the
exterior transport field have yet to be resolved and are
part of an ongoing analysis of global energy conserva-
tion on near-equilibrium interfaces. Certainly more
computer-based dynamic testing and new experiments
on well-characterized materials are called for to test
these ideas more critically and perhaps to achieve a
deeper understanding of their implications for predict-
ing cast microstructures.
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