Spatial and Temporal Characteristics of Propagating
Deformation Bands in AA5182 Alloy at Room Temperature
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The spatial and temporal characteristics of propagating deformation bands in the Al-Mg alloy
AAS5182 in O temper were studied experimentally at room temperature. Tensile tests were
carried out on flat specimens at strain rates in the range from 107> to 10~' s~'. Digital image
correlation (DIC) and digital infrared thermography (DIT) were applied to monitor the
propagating bands. It was found that the material exhibits a sharp yield point, and Liiders
bands were seen at all the strain rates. Jerky flow took place all along the Liiders plateau. It thus
seems that the Portevin—Le Chatelier (PLC) effect starts at incipient yielding and that there is no
critical strain. At the end of the Liiders plateau, PLC bands immediately started to propagate
back and forth along the gage section of the specimen. The work hardening of the material
decreased consistently with increasing strain rate, while the flow stress on the Liiders plateau
was rather unaffected by the strain rate. This indicates that the dynamic strain aging (DSA)
mainly affects the strength of the interaction between mobile and forest dislocations. The strain
to necking was found to decrease gradually with strain rate for this alloy, which is consistent

with the lower work-hardening rate at the higher strain rates.
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I. INTRODUCTION

ALUMINUM alloys are important technological
materials primarily due to their attractive strength-to-
weight ratio. They are used in diverse applications
ranging from packaging to the aeronautical industry.
Important candidates for such applications are the
alloys from the 5000 series whose primary alloying
element is Mg. They may be rolled into thin sheets and
offer significant strength. However, their plastic defor-
mation at room temperature is discontinuous, with the
strain localizing in narrow bands that leave undesirable
traces on the surface of the final product. This is the
signature of the Portevin—Le Chatelier (PLC) phenom-
enon, which manifests itself in certain ranges of tem-
perature and strain rate. The repeated strain localization
is due to the negative strain rate sensitivity (SRS) of the
material, which, in turn, is correlated with smaller scale
phenomena associated with interactions between solute
and dislocations, referred to as dynamic strain aging
(DSA). The technological goal is to increase the SRS to
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positive values in the range of temperatures and strain
rates relevant for industrial processes. This would ensure
material stability during processing and would eliminate
the PLC phenomenon. In particular, in AI-Mg alloys, it
is desirable to increase the SRS and to eliminate the
PLC effect at room temperature.

As proposed by Cottrell,l"? the unstable plastic flow
observed in Al-Mg alloys can be a result of solute-
dislocation interaction at the microscopic level. To date,
a full understanding of the micromechanical mecha-
nisms and the relevant factors affecting the macroscopic
behavior of serrated plastic flow is still lacking. How-
ever, the cause of the PLC effect is negative steady-state
SRS, which is attributed to DSA associated with
conditions when point defects can diffuse toward mobile
dislocations and temporarily arrest them.** The results
of DSA are higher flow stress and greater work
hardening at lower strain rates than for higher ones,
and further serrated stress-strain curves, discontinuous
plastic flow, and propagating deformation bands during
plastic straining. An interesting historical presentation
of the various studies of the PLC effect can be found in
Reference 5.

In this article, we provide experimental data on the
mechanical behavior of one of the most important
commercial alloys from the 5000 series, namely, AA5182
in O temper. Using DIC and DIT, the spatiotemporal
characteristics of the Liiders and PLC bands are
revealed in tensile tests at different strain rates. This
combined use of DIC and DIT enabled us to study the
similarities and differences between the two types of
localized deformation and the correlation between the
strain and temperature increments induced by the
deformation band. The experimental observations are
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discussed in relation to existing models to enhance the
understanding of the underlying mechanisms responsi-
ble for Liiders and PLC bands.

II. EXPERIMENTAL

Sheets from the alloy AAS5182 were produced by
conventional DC casting, hot and cold rolling to final
gage 1.0 mm, and finally soft annealed (O temper). The
chemical composition (wt pct) of the alloy is Si (0.11
pet), Fe (0.21 pct), Cu (0.0215 pct), Mn (0.27 pct), Mg
(4.55 pct), Cr (0.0033 pct), Zn (0.005 pct), Ti (0.01 pct),
and Al (balance). Figure 1 shows the grain structure of
the material in the soft state (longitudinal section). The
material exhibited a fine-grained recrystallized micro-
structure with a characteristic grain size of 11 um.

Five tests denoted P1, P2, P3, P4, and P5 were carried
out to observe and characterize the discontinuous plastic

Fig. 1—Microstructure of aluminum alloy AA5182.

flow and the propagating deformation bands at different
overall strain rates. All tests were carried out on the
same specimen geometry depicted in Figure 2. It is a flat
and smooth specimen with 20-mm width and 100-mm
gage length. The specimens were all cut from the rolled
sheet and their axial loading direction aligned with the
rolling direction. The test program is summarized in
Table I The table presents the measured specimen
dimensions, applied displacement and strain rates, time
to rupture of the specimen, and dimensions of the
optical gage. The optical gage defines the square area
over which strains are measured with DIC at different
locations along the gage length of the specimen. The
location then refers to the center of the optical gage.

The tests were carried out at room temperature in a
servohydraulic material testing system (MTS model 810,
MTS, Minneapolis, MN) with a 10-kN load cell, in
displacement control with crosshead velocity adjusted to
the desired nominal strain rate in the range from 10 to
10" s7'. Note that all specimens were gripped and
clamped at exactly the same positions. The acquisition
frequency for the force and displacement was as follows
in the five tests: 10 Hz in P1, 50 Hz in P2, 100 Hz in P3
and P4, and 1000 Hz in P5.

Two different techniques were used to observe and
eventually characterize the discontinuous plastic flow
and the deformation bands spatially and temporally,
namely, DIC and DIT. The gage length of the flat
specimen was entirely imaged with a fast CCD camera
(Photron Ultima APX-RS, Photron USA, Inc., San
Diego, CA) on one side and with an infrared camera
(JADE 570M, Electrophysics, Sofradir EC, Inc., Fair-
field, NJ) on the other side. The imaged zones for DIC
and DIT are shown in Figure 2. Prior to the tests, one
side of the specimen was decorated with finely sprayed
black and white paints to enhance the image contrast for
the DIC, while the other was decorated with a fully
black paint in order to enhance its emissivity for the
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Fig. 2—Specimen geometry in millimeters. The zones monitored with DIC and DIT are shown, as well as locations and coordinates of points

where experimental results are described.

Table I. Tensile Test Program

Specimen Dimensions

Width Thickness Crosshead Nominal Strain Time to Optical Gage
Test (mm) (mm) Velocity (mm/s) Rate (s') Rupture (s) Dimensions (mm x mm)
Pl 19.79 1.03 0.00917 7% 107° 3539.95 10.11 x 10.11
P2 19.74 1.04 0.0436 3.33 x 107* 739.36 10.11 x 10.11
P3 19.84 1.01 0.3668 28 x 1073 81.63 10.11 x 10.11
P4 19.78 1.01 1.31 1 x 1072 21.11 10.11 x 10.11
P5 19.72 1.03 13.1 1 x 107! 2.679 10.11 x 10.11
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Table II.

Image Sizes and Acquisition Speeds for Field Measurements Using DIC and DIT

CCD Camera Infrared Camera
Image Size Acquisition Conversion Image Size Acquisition Conversion

Test (Pixels) Shutter (Frames/s) Factor (mm/Pixel) (Pixels) Shutter (Frames/s) Factor (mm/Pixel)
P1 128 x 656 50* 0.17360 44 x 239 30%** 0.44977
P2 128 x 656 507 0.17316 47 x 240 25t 0.42
P3 128 x 656 125 0.17404 47 x 239 150 0.42213
P4 128 x 656 125 0.17351 47 x 239 150 0.42085
P5 128 x 656 125 0.17298 46 x 239 150 0.42870

*DIC recorded between 1200 and 1440 s.

**DIT recorded between 1200 and 1500 s.

"DIC and DIT recorded between 0 and 480 s.
DIT. The realization of the texture for DIC is as follows:

a first layer of paint is spread, black (or, respectively,
white) on which microdroplets of white paint (or black,
respectively) are deposited so that the distribution is
homogeneous. The texture of the specimen should be
heterogeneous, but the distribution of the paint should
be as homogeneous as possible. Note that the quality of
the speckle pattern is defined by its smoothness. Errors
were estimated for both measures. The thermal resolu-
tion of the infrared camera used in this work is less than
20 mK. For DIC, an estimate of errors in strain is done
by the software Correli"™MT (LMT-Cachan, Cachan,
France) and was found to be around 6 x 1072 for the
five tests.

For the DIC, the recorded digital images had a
128 x 656 pixel size (Table II). Images were recorded at
a shutter speed of 50 or 125 frames per second. The
principle of DIC is based on the fact that the distribu-
tion of gray scale values of a rectangular area in the
initial image corresponds to the distribution of gray
scale values of the same area in the destination image. A
cumulative strain map can be obtained by comparing
each current deformation image with the initial image,
while an incremental strain map can be computed by
comparing the image at the current load step with the
previous image. These maps are com}\;/[)uted from the
recorded data by the software Correli"™T developed by
Hild and co-workers!®” Using DIT, the temperature
field over the gage area of the specimen is obtained
during deformation. The image sizes and acquisition
speeds for DIT are also given in Table II.

III. RESULTS

Figure 3 shows the force-displacement curves for all
five tests up to failure. While there is no significant
influence of strain rate on the yield stress, the work
hardening and, thus, the flow stress are found to
decrease as the strain rate increases. It is further seen
that the ductility (or, more specifically, elongation to
necking) decreases when the overall strain rate increases.
Very slight necking is observed in all tests, and all
specimens failed by through-thickness shear.

Jerky flow is apparent in the force-displacement
curves from all the tests. The amplitude of the serrations
is seen to increase with increasing strain and to decrease
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Fig. 3—Load-displacement curves for tests P1, P2, P3, P4, and P5.

with increasing strain rate. All the load-displacement
curves display a yield point usually characteristic of the
development and growth of a Liiders band. The Liiders
plateaus from all tests are shown in Figure 4, where the
stress-time curve from the initial phase of the test is
plotted. The behavior in the plateau region is compared
for the five tests in Figure 5, where the time is
normalized with the duration ¢, of the Liiders plateau
associated with each test. It can be seen that the yield
point and the average plateau stress seem to depend only
slightly on the strain rate within the actual range.
Serrations are observed immediately after the yield point
and the characteristics of these serrations are like those
of the PLC phenomenon in the sense that their
amplitude decreases when the strain rate is increased.
Figure 6 shows the strain-time histories for tests P2,
P3, P4, and P5 within the region of the Liiders band, as
measured by DIC at the locations depicted in Figure 2
along the longitudinal axis of the specimen (for test P1,
there is no DIC and DIT data in the beginning of the
test when the Liders band propagates). These locations
correspond to coordinates along this axis, namely, y
equal to 17.7, 35.4, 53.1, 70.8, and 88.5 mm. The strains
are measured by optical strain gages located at these
positions. The size of these gages is given in Table 1. The
digital images were processed with the Correli"™7"
software!®”! to obtain the corresponding strain history
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Fig. 4—Stress-time curves from the beginning of tests P1, P2, P3, P4, and PS5, showing the yield point and the Liiders plateau.

in these areas. It is seen that at all coordinates the strain
increases in the elastic domain and then is nearly
constant until the Liders band passes by the location
of the optical gage. At this point, the strain increases
rapidly to about 0.010 to 0.015 and then stays nearly
constant until the Liiders band has strained the entire
gage region of the specimen. From Figure 6, for test P2,
it is seen that the Liiders band continuously moves
across the specimen, arriving first at y = 17.7 mm, then
at y = 354 mm, followed by y = 53.1 mm, and
y = 70.8 mm, and finally arriving at y = 88.5 mm. In
the example of test P3, the Liiders band appears to move
in the opposite direction, first arriving at y = 88.5 mm
and at last at y = 17.7 mm. In other tests the band
propagation is not continuous. For instance, for test P5,
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it is seen that the Liiders band arrives first at y =
88.5 mm, followed by y = 70.8 mm, then at y =
17.7 mm, followed by y = 53.1 mm, and finally at
y = 35.4 mm. This indicates that there might be more
than one Liiders band operating at the same time.

The temperature-time curves within the region of the
Liiders band are shown in Figure 7, as obtained by DIT.
The temperature histories for all coordinates indicated
in Figure 2 are given. It is observed that the temperature
decreases at all locations during straining in the elastic
domain, owing to the thermoelastic effect, and stays
constant until the arrival of the Liiders band. The
temperature increases rapidly by about 0.5 K (0.5 °C)
due to the plastic strain carried by the Liiders band, and
then it stays constant again until the entire gage area of
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the specimen has been covered by the Liiders band. The
arrival times of the Liiders band are consistent with
those obtained from the strain history in Figure 6, but
some differences should be expected since the visual and
thermal cameras monitored opposite faces of the spec-
imen. The Liiders band reaches, for example, for test P35,
first y = 88.5 mm, followed by y = 70.8 mm, then
y = 17.7 mm and y = 53.1 mm almost simultaneously,
and finally y = 35.4 mm. Again, the arrival times at the
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Fig. 5—Stress-time curves of tests P1, P2, P3, P4, and P5 in the
Liiders plateau regime, where ¢, is the duration of the Liiders
plateau associated with each test.
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different locations indicate that the motion of the band
is not continuous and that there could be two bands
operating simultaneously.

Using DIC and DIT allows us to see more details of
the nucleation and propagation of the Liiders and PLC
bands. We present in the following these details for all
tests carried out at an average strain rate range from
10 to 10" s~'. Figure 8 displays the entire duration of
the tests and shows the temperature change A T(x =
0,y,t) vs time along the longitudinal centerline of the
specimen in the imaged area during the deformation
process. The temperature change displayed in Figure 8
is obtained in the following way: at each acquisition
time ¢, the acquired data are a matrix 7(x,y,f) repre-
senting the chart of temperatures as measured by the
infrared camera. Here, (x,y) is a pixel from the imaged
zone, where x and y represent lines (in the transverse
direction) and columns (in the longitudinal direction
corresponding to the tension axis) in the specimen,
respectively. To minimize noise in the visualization of
the bands, the average temperature change over a time
increment modt is considered and expressed mathemat-
ically as

j=m—1
AT(x,y,t) = [T(x,p,t +mot) — T(x,y,t + jot)]

1
m 4

~

(1]

where ot is the acquisition shutter (in time between
individual frames). The choice of the parameter m
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Fig. 6—Strain-time curves from tests P2, P3, P4 and P5 within the region of the Liiders plateau. The curves are given for five different locations

in the gage section with reference to Fig. 2.
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Fig. 7—Temperature-time curves from tests P2, P3, P4, and PS5 within the region of the Liiders plateau. The curves are given for five different

locations in the gage section with reference to Fig. 2.

depends on the crosshead velocity and the acquisition
speed during the test. For the tests carried out in this
work, m = 50 was used for P1 and P2, m = 10 was
used for P3 and P4, and m = 1 was used for P5.

In Figure 8, the force-time curve is superimposed on
the spatiotemporal temperature change AT(x = 0,y,7)
to help in the interpretation, and the white vertical
dashed line indicates the transition when the Liiders
band disappears and PLC bands appear in the specimen.
The same spatiotemporal representation during the
Liiders plateau regime is given in Figure 9 in order to
demonstrate more clearly the band behavior. It is clearly
seen that two Liiders bands nucleate at y ~ 30 mm for
test P2 and at y &~ 60 mm for test P4, while for test P35,
they disappear at y ~ 40 mm. For test P3, there is only
one Liiders band that propagates from the bottom to
the top along the entire gage length of the specimen. For
test P4, for example, the band that propagates in the
positive direction of the y-axis is moving in a continuous
manner. In contrast, the band moving in the other
direction exhibits some discontinuities for y between 50
and 40 mm. The fact that two bands are operating at the
same time is consistent with the findings presented in
Figures 6 and 7. At the end of the Liiders plateau, PLC
bands start to propagate across the gage section, as
clearly seen from Figure 8. This spatiotemporal map
confirms that sometimes more than one PLC band
operate simultaneously. It is further observed that the
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band velocity decreases as the strain increases and the
work-hardening decreases. At the same time, the tem-
perature pulse, and therefore also the strain increment,
induced by the band increases. Another observation is
that the number of PLC bands up to necking decreases
with increasing strain rate and that the intensity of the
bands increases.

The band morphology is shown in Figure 10 for all
tests. The spatial distribution of the strain increment
from DIC and the temperature variation from DIT are
compared in the figure. It is seen that the results are
consistent with respect to the morphology of the PLC
band. The symmetric orientation of the bands is
explained by the fact that the images for DIC and
DIT are of the two opposite faces of the specimen. The
band width is estimated to be 5 mm, while the band
orientation (defined as the angle between the band and
the horizontal x-axis) is approximately 30 deg. Further,
the figure confirms that two bands may operate at the
same time, which is the case at time r = 1.6 seconds for
test P5. Figure 11 provides a three-dimensional illustra-
tion of the morphology of the PLC bands at two
different instants for test P5 in terms of the temperature-
variation field.

Figure 12 shows the normalized strain and tempera-
ture vs time for tests P2, P3, P4, and P5, where &* =
¢/eémax 18 the normalized strain and T = (T — Thin)/
(Tmax — Tmin) 1s the normalized temperature. Here, gyax
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Fig. 8—Spatiotemporal temperature change as observed with DIT in tests P1, P2, P3, P4, and P5 with the force-time curve superimposed. The
vertical white dashed line indicates the transition when the Liders band disappears and PLC bands appear in the specimen.

is the strain at maximum force (i.e., at incipient
necking), Ty, 1S the minimum temperature, and Tiax
is the temperature at maximum force. The data are
acquired at the coordinate y = 53.1 mm. The staircase-
like appearance of the strain-time curve is the signature
of the PLC effect, since it indicates that the strain at a
given location increases only during the time it takes the
PLC band to pass by the optical gage. We further note
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that the strain carried by the band increases with time
and, thus, with increasing strain. The temperature
history has similar appearance to the strain history,
and we see that the temperature increment increases
with straining. This is consistent with the strain history
data, and simply implies that the plastic work carried
out during the passing of the band increases with strain.
The figure further confirms that the PLC bands get more
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Fig. 9—Spatiotemporal temperature change during the Liders plateau as observed with DIT in tests P2, P3, P4, and P5 with the force-time

curve superimposed.

intense, in the sense that they carry more strain as
the strain rate is increased. The encircled region of
Figure 12 shows where the Liiders band appears and is
followed by the PLC bands.

IV. DISCUSSION
A. Yield Point, Liiders Plateau, and Serrated Yielding

The material exhibits a sharp yield point at all strain
rates tested. This is a result of the strain aging
phenomenon, and the reason for the sharp yield point
is pinning of dislocations by interaction with solutes that
migrate to the dislocations during the aging time.® In
this case, the aging time is the time from manufacturing
of the sheet to the execution of the tensile tests. The
Liiders band is then related to unlocking of dislocations
in the case of weak pinning and formation of new
dislocations in the case of strong pinning.”) Similar
observations for Al-Mg alloys were reported in several
studies, e.g., References 10 through 15. Robinson and
Shaw!'” found that Ludering occurred for an AA5182
alloy that was cold worked, annealed at 573 K (300 °C)
for 30 minutes, and then air cooled. When the same
alloy was cold rolled, annealed at 723 K (450 °C) for
10 minutes and water quenched, the Liiders extension

METALLURGICAL AND MATERIALS TRANSACTIONS A

was absent. The materials had similar grain sizes.
Robinson and Shaw!'” suggest that the high uniform
density of dislocations in the quenched material is
sufficient to remove the yield point, and that the
stronger static strain aging in the air-cooled material is
due to the higher ratio of solute atoms to dislocation line
length and the longer time available for solute migration
in the period of the air cooling. Similar conclusions were
also made by Rossig et al.l'VV Lloyd er al'? studied the
yield point elongation in the 5182-O alloy. They
conclude that the occurrence of the Liiders effect was
linked to the structure of the grain boundaries. Process-
ing histories leading to grain boundaries free of defects
resulted in the Liiders effect, whereas treatments giving a
high density of grain boundary dislocations removed it.
The result implies that segregation to individual dislo-
cations and segregation to grain boundaries are both
important processes. The room-temperature deforma-
tion behavior of an Al-Mg6.5 alloy sheet was investi-
gated by Romhaniji e /'3 The material was cold rolled
with reductions between 5 and 70 pct and then annealed
at 593 K (320 °C) for 3 hours. The Liiders extension
was suppressed for the materials with rolling reductions
less than 15 to 20 pct. For these materials, the rolling
and annealing resulted in well-defined subgrains of small
size. The fine cell structure implies a high dislocation
density and, thus, a more dilute solute atmosphere.
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Higher rolling reductions led to a fully recrystallized
microstructure with lower dislocation density after
annealing. This leads to more favourable conditions
for static strain aging, and for that reason, these
materials exhibited Liiders extensions.

The yield point (upper yield stress) and the average
flow stress within the Liiders plateau (lower yield stress)
seem to be rather insensitive to the strain rate, and the
difference between the upper and the lower yield stresses
is about 10 MPa. Romhanji er a/.'*! found that the yield
stress (or rather the plateau stress) was practically
insensitive to the strain rate for the fully recrystallized
materials for which the Liiders extension occurred.
From Figure 6, it is seen that the strain carried by the
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Liiders band is about 0.01 for the lowest strain rate and
increases somewhat with the strain rate. The plastic
work done as the Liiders band passes by a given location
leads to a temperature increase of approximately 0.5 K
(0.5 °C) (Figure 7). If we assume, for simplicity, that the
thermomechanical process is adiabatic and that about
90 pct of the plastic work is dissipated as heat, the
temperature increase AT is given as

AT = 0.9(7—&8 2]

pC

where & is the average flow stress within the Liiders
plateau, Ag is the plastic strain increment, p is the
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Fig. 12—Normalized strain and temperature vs time at coordinate y = 53.1 mm for tests P2, P3, P4, and P5. Note that the encircled region cor-

responds to the Liders band.

density of the material, and C is the specific heat. From
the experimental results, we have that ¢ =~ 135- 10°N/m?
and Az ~ 0.01, while from MatWeb,""® we find that o~
2650 kg/m® and C ~ 904 J/kg K for AA5182 in O
temper. Using these data, we obtain AT ~ 0.5K
(0.5 °C) from Eq. [2], which is certainly close to the
value measured with DIT.

Another important observation is that jerky flow
appears as soon as the material has entered into the
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Liiders plateau. The serrations indicate that there is no
critical strain for the onset of the PLC effect; instead, it
occurs at incipient yielding and seems to coexist with the
Liiders band. Since this occurs in all tests, we conclude
that the material exhibits negative steady-state SRS
within the actual range of strain rates at room temper-
ature and that the critical strain is zero. These findings
are in agreement with the observations by Robinson and
Shaw!' and Picu er al'¥ for the same alloy. Another
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explanation proposed by Ohtani and Inagakil'” is that

the Liiders strain exceeds the critical strain for the PLC
effect to occur, and accordingly, serrated yielding will
commence in a region right behind the front of the
propagating Liiders band.

The amplitude of the serrations in the stress-time
curve is strongest for the lowest strain rate and decreases
as the strain rate is increased. Similar observations were
reported by Kang er all'” for AA5754 (AIMg3) sheets.
At the same time, the spatiotemporal map in Figure 8
indicates that the PLC bands get more intense for higher
strain rates, in the sense that the strain increment
produced by one passing of the band increases. The
normalized strain-time curves at the center of the gage
area presented in Figure 12 indicate that the band
propagation becomes steadier as the strain rate in-
creases. These curves also show that the strain increment
produced by the PLC band (also denoted the band
strain) increases markedly and the band velocity
decreases as the Work hardemng rate of the material
decreases. Kang e al.'” also found that the band strain
increases with the global strain for AA5754.

B. Work Hardening and Necking

The force-elongation curves show that the work-
hardening rate decreases with strain rate, while the flow
stress on the yield plateau is less affected (Figure 3).
Thus, it seems that the main effect of DSA is to increase
the strength of the interaction between mobile and forest
dislocations, as proposed by Mulford and Kocks!"® and
later dlscussed by Wycliffe ez a/."! and van den Beukel
and Kocks.”” As discussed in Reference 20, the aging
may possibly affect both the friction stress and the forest
hardening. The observed reduction of the work-hard-
ening rate is further in agreement with the more recent
theories for DSA developed bP/ Picul?!! and Soare and
Curtin.?? In particular, Picu® proposed a mechanism
for DSA based on solute clustering at forest dislocations
and its effect on the strength of dislocation junctions.
Using a model constructed with this mechanism as its
basis, Picu et al'¥ were able to capture several of the
observed characteristics of the negative SRS of the
AAS5182 material in O temper and to describe the
variation of the flow stress and hardening rate with
temperature in the negative SRS region.

The elongation at ultimate force is determined by the
onset of necking. The broken specimens hardly exhib-
ited any evidence of diffuse necking, which indicates that
local necking occurs almost immediately after reaching
the maximum force. It is seen from the force-elongation
curves in Figure 3 that the elongation at maximum force
decreases with increasing strain rate. There seem to be
two possible reasons for this observation. (1) The most
obvious is the reduction of the work-hardening rate with
increasing strain rate, which will tend to reduce the
strain to necking, according to the Considére criterion.
This tendency is at least partly counterbalanced by the
lower flow stress, since the criterion states that necking
occurs as the work-hardening rate equals flow stress. (2)
Another explanation is that the PLC bands work as
geometrical imperfections in the tensile specimen, owing

3368—VOLUME 42A, NOVEMBER 2011

to the local strain increment produced by the propagat-
ing band. This has been investigated by Kdng et al'”
The geometrical imperfection would result in lower
strain to necking. Since the strain increment produced
by the PLC bands seems to increase with increasing
strain rate, it could be that this effect becomes more
important as the deformation rate is increased.

C. Comparison of Liiders Bands and PLC Bands

One important observation in the behavior of
AAS5182 in O temper is the apparent existence of both
Liiders and PLC bands. Besides, the plateau corre-
sponding to the Liiders behavior is serrated. Further-
more, the serrations observed during the plateaus have
exactly the same characteristics as the serrations
observed for usual PLC bands. Their magnitudes
increase when the strain rate is decreased; their shape
also changes in a similar way when the strain rate is
increased. The only difference is the presence of a yield
point and that the average slope of the stress-strain
curve is approximately zero as for the Liiders bands.
Therefore, the observed bands share some properties
from the classical PLC bands and others from Liiders
bands. At first sight, the question arises whether the
serrations are associated to secondary PLC bands
superposed on a usual Liiders band or if this is some
special type of bands. It is 1nterest1ng to note that
serrated Liidering was also observed in steel.l”

Usually, when comparing PLC bands to Liiders
bands, major differences between the two types are
observed: on the one hand, Liiders bands propagate
only once in the specimen while PLC bands propagate
repeatedly; on the other hand, the slope of the stress-
strain curve is zero during the propagation of a Luders
band, while the slope of the overall stress-strain curve
during the propagation of a PLC band is positive.

These differences were extensively studied by Wijler
et al.,*¥ who reported different types of deformation
bands for a gold-copper alloy, namely, Au (14 at. pct
Cu). Their reasoning was the following: during the
propagation of the first PLC band, an almost uniform
deformation rate is maintained in front of the band.
Therefore, the band meets material, which was de-
formed to an increasing degree, and this requires an
increasing stress for the band to propagate. The strain
gradient met by the band is also enhanced by the
passage of the band. Due to this strain gradient along
the specimen, every fresh band will start at the end
where the deformation is lowest. Following this, Wijler
et alP* suggested that if one prevents the buildup of
this strain gradient, then the shape of the stress-strain
curve should be flat as in the case of a Liiders band.
When the band has passed through the specimen, the
strain is increased, and due to work hardening, the next
band requires a stress jump. This was then experimen-
tally verified. The strain gradient was suppressed by a
homogeneous prestraining of the material at a high
strain rate followed by sufficient aging in order to
anchor the dislocations, after which the material was
deformed at a relatlvely small strain rate for DSA to
occur. Wijler er al.”* also suggest that one can obtain a
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similar situation with a gradient of aging rather than a
strain gradient.

However, there are also some characteristic differ-
ences between the results obtained here for AA5182-O
and those of Wijler ez al.>* The first one is related to the
yield point. For our material, a usual yield point
followed by the plateau is observed just like in a Liiders
band if one disregards the serrations seen during the
plateau. For the gold-copper alloy investigated by Wijler
et al.*¥ a sharp vyield point is observed, which is,
however, immediately followed by a sharp increase of
the flow stress above the yield point; and only after this
is the serrated plateau observed (Figures 1 and 6 of
Reference 24). The second one is that several plateaus
were observed for the gold-copper alloy, each one
followed by a stress jump and corresponding to a new
band, while for AA5182-0, only one plateau is observed
followed by normal PLC behavior. We note, however,
that Wijler er al®* mention that they also observed
situations where only one plateau was seen followed by
normal PLC behavior, and this was attributed to the
experimental conditions (prestrain, aging temperature,
and aging time).

The nature of the strain gradients in the specimens of
AAS5182-O can be evaluated from the curves shown in
Figure 6. Except for the test P2 (note that the same
figure is not available for P1), in the three other tests, the
plastic strain rate is almost zero outside the band.
Hence, the strain gradient is negligible, leading to the
plateau behavior.

V. CONCLUSIONS

Using tensile tests at different strain rates in combi-
nation with digital image correlation (DIC) and digital
infrared thermography (DIT), the spatial and temporal
characteristics of Liiders and Portevin—-Le Chatelier
bands in the Al-Mg alloy AA5182 in O temper were
studied. The tests were performed at strain rates
between 107> and 10~ s~'and at room temperature.

The material exhibited a sharp yield point, and
Liiders band propagation was observed at all the strain
rates. Jerky flow occurred all along the Liiders plateau
and into the hardening region of the stress-strain curve.
It thus seems that the material exhibits negative SRS at
room temperature, and no critical strain is required for
the onset of jerky flow. At the end of the Liiders plateau,
Portevin—Le Chatelier bands immediately started to
propagate across the gage length of the specimen. The
work hardening of the material was found to diminish
consistently with increasing strain rate, while the flow
stress on the Liiders plateau was less affected by the
strain rate. This indicates that the dynamic strain ageing
mainly affects the strength of the interaction between
mobile and forest dislocations. The strain to necking
was found to decrease gradually with increasing strain
rate, which is consistent with the lower work-hardening
rate at the higher strain rates.

The combined use of DIC and DIT allowed a more
precise investigation of the Liiders and PLC bands from
the mechanical and thermal points of view. It provides,
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in particular, better measures of all the characteristics of
the bands (the width, orientation, and velocity of the
bands; the strain rate inside the bands; and the strain
and temperature increments induced by the passing of
the bands), and also their morphology. One particular
observation was the correlation between the tempera-
ture increase and the strain increment caused by the
Liiders and PLC bands and how the strain rate affects
this correlation. In perspective, the thermal analysis
allows for energetic considerations, which will facilitate
enhanced modeling of static and DSA processes through
dissipation analysis. The spatiotemporal analysis also
gives direct insight into the fracture process following
the DSA phenomenon.
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