Expressing Crystallographic Textures through the Orientation
Distribution Function: Conversion between Generalized
Spherical Harmonic and Hyperspherical Harmonic Expansions

J.K. MASON and C.A. SCHUH

In the analysis of crystallographic texture, the orientation distribution function (ODF) of the
grains is generally expressed as a linear combination of the generalized spherical harmonics.
Recently, an alternative expansion of the ODF, as a linear combination of the hyperspherical
harmonics, has been proposed, with the advantage that this is a function of the angles that
directly describe the axis and angle of each grain rotation, rather than of the Euler angles. This
article provides the formulas required to convert between the generalized spherical harmonics
and the hyperspherical harmonics, and between the coefficients appearing in their respective
expansions of the ODF. A short discussion of the phase conventions surrounding these

expansions is also presented.
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I. INTRODUCTION

THE availability of an analytical form for an
orientation distribution function (ODF), which de-
scribes a distribution of crystal orientations, is funda-
mental to the field of texture analysis. Analytical forms
of the ODF are used, for example, in extractin
orientation statistics from diffraction measurements,!
in studying the effect of processing history on the
statistical evolution of microstructures,™ as an input to
crystal plasticity models that examine the effect of
mechanical amsotropy during deformation,” and in the
design of materials using spectral methods to identify a
desired ODF on the basis of the properties of interest.!*!
Despite the development of various direct methods for
the calculation and representation of an ODF,>” the
prevailing mathematical treatment of the ODF contin-
ues to be by means of a series expansion over the
generalized spherical harmonics, as introduced into the
field of texture analysis more than 40 years ago for this
purpose.®?! This situation appears to be principally due
to the propagation of conventions followed by Bunge in
his semlndl contributions to the field of texture analy-
sis.l'% These conventions notably include the description
of an orientation by the Euler angles ¢, ®, and ¢», and
the consequent series expansion of the ODF as a linear
combination of generalized spherical harmonics
T7""™(¢,, ®, ¢») in the form
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where the coefficients of the expansion are determined
by the inner product
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Despite the utility of this expansion, the use of Euler
angles as a parameterization of rotations is not necessar-
ily ideal. For example, one inevitable difficulty with this
method is the existence of certain singular orientations
that do not correspond to a unique set of Euler angles.!'!
These orientations correspond to an infinite number of
pomts in the orientation space, and give rise to singular-
ities in the equations of motlon[”] and in the formulas
used to determine the result of sequential rotations.!'>!?
Furthermore, the description for the boundaries of the
asymmetric domains in the orientation space is notablgl
more complex for the Euler- an% arameterlzatlon
than for some of the alternatives."

These disadvantages of Euler angles are certainly not
inherent to the study of orientation information; to be
convinced of this, one needs merely to consider the
properties of the normalized quaternion parameterization*

*Throughout the remainder of this article, the reader should
understand all quaternions to be normalized, i.e., of unit length.

of rotations.'® A quaternion, in this context, is a normal-
ized four-vector with components given by

qo = cos(w/2)
q1 = sin(w/2

(w/2)sin O cos ¢
¢>» = sin(w/2) sin Bsin ¢
(w/2)

g3 = sin(w/2) cos 0
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where o is the angle of rotation and 6 and ¢ are the polar
and azimuthal angles of the rotation axis, respectively.
The rotation corresponding to a quaternion is readily
apparent from the final three components, which form a
vector that points along the axis of rotation and scales
monotonically in length with the rotation angle.!"”! This
close relationship of a quaternion with the axis and angle
of a rotation further permits the construction of an
orientation space that is substantially simpler to visualize
and interpret than that of the Euler-angle parameteriza-
tion.?”) With regard to the manipulation of the orienta-
tion information, the most familiar example of the
advantage of quaternions is given by the formula for the
multiplication of rotations, which involves onl%/ a bilin-
ear combination of the quaternion components.*!) Other
instances in which the use of quaternions simplifies
calculations related to the analysis of orientation infor-
. . [11,15,22,23]
mation appear throughout the literature.

Despite these advantages, a significant portion of the
crystallography community continues to use Euler
angles instead of quaternions to describe crystallo-
graphic texture. While this preference for Euler angles
may historically be attributed to the absence of a series
expansion by which to represent an ODF in the
quaternion grou(}]) space, we have recently provided such
an expansion.”” The motivation for this expansion
relies on the observation that normalized quaternions
may be considered as vectors identifying points on S°
(the unit sphere in four-dimensional space). Analogous
to the expansion of a square-integrable function on S*
(the unit sphere in three-dimensional space) as an
infinite linear combination of the spherical harmonics,
a square-integrable function on S* may be expanded as
an infinite linear combination of the hyperspherical
harmonics Z7,,.(w, 0, ¢), or

00 n !
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where the coefficients of the expansion are found from
the inner product
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and n is restricted to even integers by the trivial
symmetry of three-dimensional space. This expansion
is discussed in more detail elsewhere.*”)

Because the physical significance of orientation infor-
mation does not depend on the means by which it is
described, the expansions given in Egs. [1] and [4] may in
principle be used interchangeably. However, there is
presently no means of converting an ODF expressed in
the form of the generalized spherical harmonic expan-
sion of Eq. [1] to one in the form of the hyperspherical
harmonic expansion of Eq. [4]. With this in mind, the
purpose of this article is principally to provide continu-
ity with the existing literature by deriving a simple linear
transformation to relate the coefficients of these two
expansions. Our expectation is that this will allow extant
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published results in texture analysis formulated by
means of the traditional series expansion to be con-
verted to, and presented in, a more intuitive and readily
accessible form. This result is then harnessed to apply a
mathematical technique in common use with the
generalized spherical harmonic expansion to the hyper-
spherical harmonic expansion.

II. PROBLEM FORMULATION

The group of primary concern to the study of
crystallographic orientations is SO(3), the group of
rotations of three-dimensional space. While the impor-
tance of this group to the physical sciences has encour-
aged many authors to investigate its properties, the
resulting treatments do not always follow a consistent
set of conventions.!>'$2%351 At least for the current
authors, this situation has caused a certain degree of
confusion and inconvenience, as the conventions used in
deriving many of the results available in the literature
are not always explicitly stated. To our knowledge, the
results contained in this article do not appear anywhere
else in the literature with a consistent set of conventions.

We follow the same conventions in the interpretation
and use of a rotation matrix as does Altmann.!"® That
is, a rotation operation is viewed as an active rotation of
configuration space rather than as a passive rotation of
the coordinate system, unless explicitly stated otherwise.
A rotation matrix left-multiplies the column vector of
the coordinates of a point, and right-multiplies the row
vector of the components of a basis. This interpretation
allows one to identify a crystal orientation with the
rotation operation required to bring a reference crystal
into coincidence with the actual crystal. The ODF is
then interpreted as a function of rotations of three-
dimensional space or, more often, as a function of some
set of parameters that clearly define a rotation.

This article makes use of two parameterizations. The
first of these is the Euler angles ¢, ®, and ¢,, which
define a general rotation as the result of three consec-
utive active rotations by the angles —¢;, —®, and —¢»
about the z, x, and z axes, respectively (from the point of
view of an observer attached to the coordinate system,
this active rotation sequence is identical to the passive
rotation sequence defining the Euler angles as described
by Bunge!'”)). The second rotation parameterization is
by the axis-angle parameters w, 6, and ¢, as described
earlier. The relationship of the Euler angles to the axis-
angle parameters is visible from the explicit conversion
formulas provided in Appendix A.

The analytical form of the ODF used by the majority
of the crystallography community is provided in Eq. [1],
in which rotations are parameterized as sets of Euler
angles. This equation actually derives from one of the
consequences of the Peter—Weyl theorem, namely that
the matrix elements of the irreducible representations
of SO(3) provide a complete, orthogonal basis for the
expansion of a square-integrable function of three-
dimensional rotations.* While many equivalent expres-
sions for the irreducible representations of SO(3) appear
in the literature, they often differ from one another by
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similarity transformations.!'*'%?*23 Once a set of con-
ventions is specified and a consistent expression is found,
the Peter—Weyl theorem allows the ODF to be written as
an infinite linear combination of the matrix elements of
these irreducible representations. For example, the
expansion in Eq. [1] is found by following the phase
convention of Bunge.!'” expressing the matrix elements
of the irreducible representations of SO(3) as functions
of the Euler angles, and denoting the matrix element in
row m’ and column m of the (2/+1)-dimensional
irreducible representdtlon by T/ (¢, @, $»).

The expansion provided in Eq. [4] follows more
directly from a consideration of SO(4), the group of
rotations of four-dimensional space, than from SO(3). A
well-known result of group theory states that the basis
elements of the irreducible representations of a group of
operators provide a complete, orthogonal basis for the
expansion of a functlon to which an operation of the
group may be applied.*¥ Because sets of the hyper-
spherical harmonics Z7,,,(w, 0, ¢) transform as the bases
of the irreducible representations of SO(4), the hyper-
spherical harmonics form a complete, orthogonal basis
for the expansion of a square-integrable function on S°.
Considering points on S* to correspond to normalized
quaternions, Eq. [3] suggests that the axis-angle param-
eters identify points on S” in a manner dndlogous to that
of the spherlcal angles on S°. That is, exactly as a
function on S is more naturally written as a function of
the spherical angles than of Cartesian coordinates, a
function on S° is more naturally written as a function of
the axis-angle parameters than of quaternion coordi-
nates. The axis-angle parameterization is therefore
entirely compatible with the 1nterpretat10n of the ODF
as a square-integrable function on S°, which allows the
ODF to be written as an infinite hnear combination of
the hyperspherical harmonics in Eq. [4].

Regardless of the different motivations for the
generalized spherical harmonic and the hyperspherical
harmonic expansions, they contain the same orientation
information. As such, there must be a method to convert
from one expansion to the other. This expansion is
found by comparing the expressions for the matrix
elements of the irreducible representations of SO(3) in
the Euler-angle and axis-angle parameterizations. When
written using the Euler angles, the expression for these
matrix elements gives the formula for the generalized
spherical harmonics. When written using the axis-angle
parameters, the same expression becomes a linear
combination of the hyperspherical harmonics. Equating
these forms gives the conversion of the basis functions in
Eq. [1] to the basis function in Eq. [4], and the
conversion from the coefficients in Eq. [1] to the
coefficients in Eq. [4] as well. We develop this approach
further in Sections I1I to V.

III. ROTATION CONVENTIONS
AND THE GENERALIZED SPHERICAL
HARMONICS

There are many mathematical results in the literature
that are useful and relevant for the present problem.
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However, incorporating or referring to them without
establishing a consistent set of conventions is quite
hazardous. In particular, the conversion from the
generalized spherical harmonics to the hyperspherical
harmonics is nonsensical unless a consistent set of
conventions is used to derive the expressions for the
matrix elements of the irreducible representations of
SO(3) as functions of the Euler-angle and axis-angle
parameters. We therefore devote a significant portion of
this article to the consideration of this issue.

The definition of the generalized spherical harmonics
m[oos]t frequently used by the crystallography community
is

Tlﬂl’m(¢1 @, ¢,) = eiMI%PTI’m(COS D)™ (6]
where the function P;""(cos ®) is defined as

P (cos @)

(=) (I+m)!
B 2 (I = "I+ m")(I — m)!

X (1 — COS (D)(m’_m)/Z(l + cos (D)_<m/+m>/2
dlfm
d(cos @) "

X [(1 — cos @) (1 + cos @) [7]

The generalized spherical harmonic may be considered
as the matrix element in row m’ and column m of the
(2/+ 1)-dimensional irreducible representation of SO(3).
Therefore, Eq. [6] de;gends implicitly on the conventions
adopted by Bunge!" during the construction of the
irreducible representations. Generally speaking, the
range of conventions that must be specified include the
selection of the basis elements, the choice of the active or
passive rotation convention, and the parameterization
used to write the formulas for the resulting matrix
elements.

The vast majority of literature on the subject,
including that by Bunge!'” and the current article,
selects the set of spherical harmonics with a particular
value of [/ as the basis clements of the (2/+1)-
dimensional irreducible representation of SO(3).
Because the basis is consistent throughout, the issue
is not discussed further. As for the remaining conven-
tions enumerated earlier, Bunge!'” uses the passive
convention and the Euler-angle parameterization, while
the current article uses the active convention and the
axis-angle parameterization. The comparison of matrix
elements apparently requires that the relationship of
the representations constructed following these differ-
ent conventions be clearly established. We address
these differences individually for the sake of clarity,
with the difference in rotation convention first and the
difference in parameterization second.

Regarding the difference in rotation convention,
consider that the elements of a rotation matrix depend
only on the selection of an initial coordinate system
and the apparent rotation of space from the perspec-
tive of an observer rigidly attached to that coordinate
system. If two matrices that effect the same apparent
transformation of space share a single basis, then
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corresponding matrix elements of the two matrices
should be the same, independent of the rotation
convention followed. In particular, sequential active
rotations by —¢; about the z-axis, —® about the
x-axis, and —¢, about the z-axis effect the same
apparent transformation of space as sequential pas-
sive rotations by ¢; about the z-axis, by @ about the
x’-axis, and by ¢, about the z”-axis. Therefore, the
elements of the matrix describing the active rotation
sequence should be the same as the elements of the
matrix describing the pdSSlVC rotation sequence.

Define the function D', m(P1, ©, ¢o) as the matrix
element in row m’ and column m of the (2/+1)-
dimensional irreducible representation of SO(3), in
which the representation is considered to describe the
active rotation sequence referred to earlier, i.e., to follow
the active convention. The explicit formula for this
function is derived in Appendix B. Because the general-
ized spher1cal harmonic 77""(¢,, @, ¢») apparently
differs only in that the corresponding representation is
considered to describe the passive rotation sequence
referred to earlier, these functions should be identical,
i@., T/m Jﬂ(d)l’ (I)a ¢2) = Din',m(¢lo (I)a ¢2)

Unfortunately, this is not found to be the case. As
indicated by Eq. [B6], the relationship between the two
nominally equivalent matrix elements of the irreducible
representations is found to be

Tm m((pl’q) ¢2) ( )m " Df'n’m(d)l’q)’ ¢2) [8]

where there is an unexpected difference of phase
between the two functions. Furthermore, it is not pos-
sible to directly compare the derivations of these
expressions in order to 1dent1fy the source of the dis-
parity, because Bunge!'” does not provide a derivation
of the formula for the generalized spherical harmonics.
Rather, he indicates that more detailed accounts of the
representations and properties of the generalized
spherical harmonics aH)ear in Gelfand, Minlos, and
Shapiro,?” Vilenkin,"? and Wigner.® The same
ambiguity of conventions appears there as well, how-
ever; while functions related to the generalized spheri-
cal harmonics do appear in these references, none of
these is identical to the generalized spherical harmon-
ics. These authors indicate their assorted expressions
for the matrix elements of the 1rreduc1ble representa-
tions of SO(3) by Ty (@1, 0. $2).°7 (9, 0, ).
and DO({a, P, y})mgm,m] respectively. Inserting ¢, @,
and ¢, for the angles of the first, second, and third
rotations, respectively, of these functions, we find that

their relationships to the generalized spherical harmon-
ics T7""(¢1, @, ¢) are

7%%@@¢ﬂ=%ﬁ“”ﬁﬂ%ﬁ@ﬁ
(2, D, 1) 9]

= m mD ({(,172,(1) ¢1})m’,m

where * is the complex conjugate. Examining Eq. [9], we
see that none of these expressions matches another, or
the form provided by Bunge. The reason is that simply

METALLURGICAL AND MATERIALS TRANSACTIONS A

inserting ¢, @, and ¢, for the angles of the first, second,
and third rotations, respectively, of these functions does
not adequately address the conventions concerning the
use of these functions. We therefore find that the ques-
tion of consistency of conventions pervades the litera-
ture and that it is quite difficult to resolve the difference
between 77" (¢1, @, ¢) and Dy (b1, @, ¢o) in Eq. [8]
without clearly establishing the source of the generalized
spherical harmonics.

Regardless of the conventions followed in deriving the
traditional form of the generalized spherical harmonics,
the expansion in Eq. [1] remains a valid expansion of the
ODF; changing the generalized spherical harmonics by a
constant factor amounts to pulling a constant factor out
of the coeflicients in the expansion. Because Bunge used
the generalized spherical harmonics almost exclusively
in the context of Eq. [1], the question of the constant
factor appearing in Eq. [8] is virtually irrelevant to his
subsequent results. For the purposes of the present
article, however, a constant factor represents a change in
the values of the matrix elements of the irreducible
representations of SO(3). Equating expressions for the
matrix elements in different parameterizations certainly
gives nonsensical results when the express1ons are not
equal. Within this article, the functions D/, (1, D, P2)
will therefore be considered as more fundamental from
the standpoint of calculations, although the majority of
our equations will be formulated using the functions
T7""(¢y, ®, ¢») in order to relate our results more
directly to the literature.

IV. ROTATION CONVENTIONS
AND HYSPHERICAL HARMONICS

While definitions of the hyperspherical harmonics
may be found throughout the literature,*® 3! there is no
general agreement on the phase. The definition and
phase convention followed here is given by

lm(w 0 d))

26172 / ! D(n—1)!
L 2+ =i+ D= )
2r ({+m) (n+1+1)
X (sin(w/2))lCZtll(cos(w/2))P§”(cos 0)e™?

[10]
with 1nteger indices 0<n, 0</<n, and —/<m< [
The C,-} is a Gegenbauer polg/nom1al and P/" is an
associated Legendre function.l® Complex conjuga-

tion of Eq. [10] reveals one of the properties of the
hyperspherical harmonics to be

Z}(0,0,¢) = (=1)""Z]_

n(@,0,¢) [11]

With the definition of the hyperspherical harmonics in
hand, the matrix element in row m” and column m of the
(2/+ 1)-dimensional irreducible representation of SO(3)
may be written as a linear combination of the hyper-
spherical harmonics™*3!
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where Cf;ﬁzm is a Clebsch-Gordan coefficient, as
defined in Appendix C, and vanishes unless the sum-
mation indices satisfy the conditions 0 < 4 <2/ and
u = m —n’. The irreducible representation corre-
sponding to Um mlw, 0, ¢) is considered to describe an
active rotation in the axis-angle parameterization.

The arrangement of indices on the hyperspherical
harmonics as used here differs from that of Reference
20, in consideration that the index n identifies the set of
hypers ;)herical harmonics that form a basis for the
(n+ 1)"-dimensional irreducible representation of SO(4),
while the indices / and m identify a single member of this
set. The difference in the significance of these indices
encourages that they be separated accordingly. The
phase of the hyperspherical harmomc differs from that
of our previous work as well;?” some motivation for
this departure will be given presently.

A. Phase of Hyperspherical Harmonics

A reasonable condition that the phase of the hyper-
spherical harmonics defined in Eq. [10] must satisfy is
revealed by investigating the properties of SO(3). While
not necessarily obvious, the irreducible representations
of SO(3) as presented in the literature are entirely
compatible with the canonical representation of three-
dimensional rotations as three-by-three real orthogonal
matrices of the determinant one. That is, there exists a
similarity transformation that brings the three-by-three
irreducible representation of SO(3) into the familiar
canonical form. Furthermore, the linear transformation
effecting this similarity transformation, when right-
multiplying the row vector of the basis elements of the
three-by-three irreducible representation, brings the
basis into a form that behaves identically to the usual
unit vectors of three-dimensional space. Although
requiring that this similarity transformation exist places
a certain constraint on the relationship of the irreducible
representation to the basis elements, the ability to freely
select the similarity transformation permits an infinite
number of equivalent forms for the irreducible repre-
sentations and the basis elements. The Condon—Shortley
phase convention uniquely determines a standard sim-
ilarity transformation, however, and allows the irreduc-
ible representations of SO(3) to be given in a consistent
form throughout the literature.

The situation is rather different with irreducible
representations of SO(4) and the hyperspherical har-
monics. There does not appear to be any counterpart to
the Condon—Shortley phase convention to uniquely
specify the form of the irreducible representations of
SO(4) and the phase of the hyperspherical harmonics, as
is reflected in the Vdrlety of phases for the hg/ﬁerspherical
harmonics appearing in the literature.”? Neverthe-
less, the requirement that the four-by-four irreducible
representation of SO(4) and the four hyperspherical
harmonics for which n = 1 be related in the manner
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described earlier is certainly reasonable. That is, we
require that there exist an invertible linear transforma-
tion of the hyperspherical harmonics that makes the
resulting basis behave identically to the orthogonal unit
vectors along the w, x, y, and z axes of four-dimensional
space and that simultaneously defines a similarity
transformation of the four-by-four irreducible represen-
tation that brings the representation into the canonical
form.

Of course, this raises the question of what the
canonical form is for the representations of SO(4),
which is, generally speaking, not as familiar as for
SO(3). We consider the canonical form for these
representations as deriving from the multiplication rule
for normalized quaternions. Given a rotation repre-
sented by the quaternion ¢ that is followed by a rotation
represented by the quaternion g, there exists a single
equivalent rotation represented by the quaternion u.
One of the particularly convenient properties of the
qudternlon parameterization is that this multlphccmon
rule is bilinear,"') which means that there is a four-by-
four real orthogonal matrix of determinant one, G, that,
when left-multiplying the column vector of the compo-
nents of the quaternion ¢, returns the column vector of
the components of the quaternion u, or*'

go —&1 —8& —4&3 4o Uo
g 8 —& & Qi) _ | 13]
g &3 g —&i q2 u
g3 —& i 8o q3 us

Alternatively, given a rotation represented by the qua-
ternion ¢ that is preceded by a rotation represented by
the quaternion /, there exists a single equivalent rota-
tion represented by the quaternion v. There is then a
four-by-four real orthogonal matrix of determinant
one, H, that, when left-multiplying the column vector
of the components of the quaternion ¢, returns the
components of the quaternion v, or!

hy —h —hy —h3| | qo Vo
hy ho h3 —hy q1 V1

= 14
hy —hy h q2 V2 [ ]
hy hy —hi  hy 93 V3

While the matrices G and H separately perform distinct,
constrained four-dimensional rotations, the matrix
formed by their product is a general four-by-four real
orthogonal matrix of the determinant one and performs
a general four-dimensional rotation. Because G and H
commute, the order of application of these matrices does
not change the result. This provides a canonical form for
four-dimensional rotations.

Define the irreducible representations of SO(4) by a
similarity transformation of the direct ?roduct of
irreducible representations of SO(3), that is,***%

R/y /)#(w2792’ ¢27(L)1,91, d)l)

DDl

m" m" m m

/ a
X Um’,m (CU] ) 91 bl d)l ) C/,;:j/u’/,m

m’”,m”(w27 027 ¢2) [15]
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Indicate the four-by-four irreducible representation with
rows ordered in increasing values of 2" and in decreasing
values of y’ for a particular A’, and with columns ordered
similarly, by R. The basis of this representation is formed
by the four hyperspherical harmonics for which n = 1.
We require then that there exists an invertible linear
transformation B of the hyperspherical harmonics that
defines functions that behave analogously to the unit
vectors along the w, x, y, and z axes, and that B
simultaneously defines a similarity transformation that
brings the matrix R into the canonical form. A suitable
linear transformation exists, and is defined by the
relation

[Z30 21

The basis functions on the right of Eq. [16] differ by a
constant positive coefficient from w, x, y, and z,
respectively. The matrix B~'RB is equivalent to G when
w> = 0, and to H when w; = 0, that is, this similarity
transformation brings the irreducible representation into
canonical form.

While these developments are not intended as a
rigorous justification for the choice of phases for the
hyperspherical harmonics, the hyperspherical harmonics
defined in Eq. [10] and the irreducible representations of
SO(4) defined in Eq. [15] appear to be reasonable
inasmuch as they satisfy the compatibility condition
outlined earlier.

B. Relationship of Basis Functions

With the relationship of T7""(¢,, ®, ¢,) and
D, w1, @, ¢,) established by Eq. [8], there remains
the question of the relationship of D!, m(P1, @, ¢o) and
U, m(w, 0, ¢). For this, an inspection of the rotatlon
operations correspondlng to T/ (1, @, ¢2)s Dhy (1,
@O, ¢,) and Um m(w, 0, ¢) is useful. According to
Bunge, 'Y 77" m((;’)l, @, ¢,) identifies a crystal orienta-
tion with the passive rotation that brings the sample
coordinate system into coincidence with the crystal
coordinate system, in which the crystal is in the actual
orientation throughout. This operatlon is shown at the
top of Figure 1. As discussed in Section III, D, (b1,
D, ¢») identifies a crystal orientation with the active
counterpart to T7" (¢, ®, ¢»), ie., with the active
rotation that brings the crystal from the actual
orientation into coincidence with the reference orien-
tation, in which the coordinate system is aligned with
the sample throughout. This operation is shown in the
middle of Figure 1. By definition,** U/, (w, 0, $)
identifies a crystal orientation with the active rotation
that brings the crystal from the reference orientation
into coincidence with the actual orientation, in which
the coordinate system is aligned with the sample
throughout. This operation is shown at the bottom of
Figure 1.
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Zyy Zi.)B=[2 i(-Z,+71) /V2

Reference to Figure 1 clearly indicates that the active
rotation corresponding to D', m(P1, D, (/)z) is the inverse
of the active rotation correspondmg to U, ml(e, 0, ¢).
That is, the unltary matrix constructed from Dfn ,,,((j)l,
D, ¢o) 1s the inverse of the unitary matrix constructed
frorn U, m(w, 0, ¢), or

D}[11’,m(¢l7q)7 ¢2) Uﬁzm (w707¢) [17]
Applying Eq. [8] to Eq. [17] gives

T (1, @, y) = (—1)" " Ul (0,0,¢)  [18]

_(Z%,l +Z%,71)/\/§ iZ%,o} [16]

T m',m
!

A
Qy
X

I}m‘,m — (_ l)m m' D;

m.m

Z u Z

!
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Fig. 1—The physical mterpretatlon and reldtlonshlp of the quanti-
tleS 7—7’ (¢1> (I) ¢2) Dm m(¢17 (I) ¢2) and Um m((u 9 ¢) The

T/"(¢y, ®, ) is considered to passively bring the coordmate sys-
tem into coincidence with an oriented crystal. The D, (@1, D, P2)
is considered to actively bring an oriented crystal into com(:ldence
with the coordinate system; this is identical to the effect of T7"" (¢,
@, ¢,) from the perspective of an observer attached to the coordi-
nate system. The U,’,,/’m(w, 0, ¢) is considered to actively bring a ref-
erence crystal into coincidence with the oriented crystal; this is the
inverse of the effect of Df,,,"m((]b], D, h,).
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This equation relates T7""(¢1, ®, ¢»), formulated with
the passive conventlon dnd the Euler-angle parameter-
ization, to U., m(w, 0, ¢), formulated with the active
convention and the axis-angle parameterization, and is
the basis for the conversion formulas presented in
Section V.

V. CONVERSION FORMULAS

The conversion from the generalized spherical har-
monics to the hyperspherical harmonics proceeds
according to the prescription mentioned in Section IV-B;
because the value of the matrix elements of the
irreducible representations of SO(3) must be indepen-
dent of the parameterization, the formulas for these
matrix elements in the Euler-angle and axis-angle
parameterizations may be equated. Inverting Eq. [18]
and inserting Eq. [12] indicates that

(=1 T (), D, o)
DRI

2[+1

By relabeling the indices m and m’, complex-conjugat-
ing both sides and applying Eq. [11], this becomes

m (]51,(13 ¢>2 ZZ /1+,u+m—m’
2027+ D
Jm’ 21
Cln;)/c 21+ 1 ZA ,u( a9a¢)

[20]

Changing the summation over u to a summation
over —u and applying the symmetry properties of the
Clebsch—Gordan coefficients gives the result

Tm m ¢1,(D ¢2 ZZ

lm (2/1 + 1) 21
Lm' J,p 2]+ 1 Z/ ,u(

/mLm—m’

.0, )
21]

This establishes the formula to convert from the
generalized spherical harmonics to the hyperspherical
harmonics.

The inverse expression is found by exploiting the
unitarity relations of the Clebsch—Gordan coefficients.
This procedure is simplified by initially applying the
symmetry properties of the Clebsch—Gordan coefficients
to obtain

T;nlm(d’l ; @, ¢)

=S Y N A 08) 2

Multiplying through by C,‘:';‘ﬁ;»,l,m, summing over the
indices —m’” and m, and rearranging the summations
then gives

2596—VOLUME 40A, NOVEMBER 2009

ZZ o mc?/ r;1’/m \2/[—+ I’m(qsl?q)vd)Z)
_ZZZ (})9¢ chiﬂm’/m m’lm

—-m' m
23]

The quantity in brackets is 6, 10,/ , by the unitarity of
the Clebsch—Gordan coefficients, simplifying the equa-

tion to
ZZI w 9 ¢ ZZ - mC?Mm’lm
\/21+
7" (¢, D, 24
\/‘2‘ (¢l ¢)2) [ ]

Applying the symmetry properties of the Clebsch—Gor-
dan coefficients and replacing the summation over —m’
with a summation over m’ gives

Zﬁlu o, 0 ¢ § :2 : )+m mC;Z;/;'u
V2/1+ ' \m
X T" (¢17q) ¢2) [25]
V2n

where the indices of summation satisfy the constraint
m—m’ = u. This is the counterpart to Eq. [21], and
establishes the formula to convert from the hyperspher-
ical harmonics to the generalized spherical harmonics.

The conversion of the basis functions in Egs. [1] and
[4] is not as useful as a direct conversion between the
expansion coefficients. Calculation of these formulas
requires one to account for the fact that the values of
these ODFs are different, however. This is simplest to
observe for the case of a uniform distribution, for which
the value of the ODF in Eq. [1] is unity everywhere,
while the value of the ODF in Eq. [4] is 1/27°
everywhere. As with the matrix elements of the irreduc-
ible representations of SO(3), equating expansions of the
ODF when the values of the ODFs at corresponding
points are not equal is nonsensical. This disparity is
resolved by multiplying one of the expansions by the
appropriate coefficient, or

f(¢17(D> ¢2) = 27‘62f((1),9,(f)) [26]

Multiplying this by the complex conjugate of Eq. [21]
and integrating by means of Eq. [A7] results in

2n n 2n

0/ 0/ O/ (1, ®, §2) TV sin by, dbd,

8m3\/2(27 + 1)

A+m—nt Cl,m
L' Jp 21+ 1

:;Z(—l)

X O/ 0/ / A, 0,$)Z3" sin®(/2) sin 0d(w/2)d0ddp

27]
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where an additional factor of 1/2 is introduced on the
right side to account for the fact that every orientation
is included in the integrated volume twice. The inte-
grals in this expression may be evaluated using Eqgs. [2]
and [5]. Simplifying this gives

g =300 ()G 200+ 1, 2]
Aoou

The inverse expression may be found either by a simi-
lar integration, or by inverting Eq. [28] directly, with
the result that

22.1 = Z Z (_1)/1+m'—mcl,m/ \% 2/.+1 tm’,m
Al L Lm ’)"#\/ETC(ZZ—F 1) !

Equations [28] and [29] provide the linear transforma-
tions to convert an ODF written in the form of Eq. [1]
directly into the form of Eq. [4] and vice versa; the
required Clebsch—Gordan coefficients are given in
Appendix C.

29]

VI. EXAMPLE

In this section, we validate the results of the previous
sections by applying them to the ODF of a copper
sample, as determined experimentally by electron back-
scatter diffraction (EBSD). For reference, the normal
direction inverse pole figure map is given in Figure 2.
We validate the conversion formulas by comparing the
coefficients zj,, of the hyperspherical harmonic expan-
sion as calculated directly from fitting the experimental
data with Eq. [5], and as calculated by first fitting for the
coefficients 77" of the generalized spherical harmonic
expansion from Eq. [2] and then converting them to the
z/.,m by means of Eq. [29]. The analytical expression for

Fig. 2—The normal-direction inverse pole figure map of a copper
sample, as measured experimentally by EBSD.
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an ODF should be independent of the calculation
method, so the equivalence of these sets of coefficients
provides evidence for the accuracy of the formulas
derived in the Section V.

The expansion of the ODF given by the coefficients
calculated directly from the experimental data appears
in Figure 3(a), and that given by the coefficients
calculated indirectly through conversion from the
generalized spherical harmonics using Eq. [29] appears
in Figure 3(b). The infinite summation in the hyper-
spherical harmonic expansion of Eq. [4] is limited to
n < 30, and the procedure used to display the hyper-
spherical harmonic expansions graphically is described
elsewhere.”” Blue and red regions correspond to
positive and negative probability density, respectively.
The presence of a few clearly distinguishable probability
density peaks reflects that the observed region contained
only a few grains, while the resemblance of Figure 3(a)
to Figure 3(b) indicates that the directly calculated
coefficients match well with those calculated by means of
the conversion formulas. Although not practical to
present in print, we have directly compared the numer-
ical values of the 5456 coefficients in the two expansions
as well, and they are equal to within one part per 10%,
i.e., to within the error of the numerical calculations.
These results convincingly validate the mathematical
conclusions in the Section V.

VII. POSITIVITY CONSTRAINT

We anticipate that the conversion formulas presented
in Section V will allow existing texture information to be
translated easily into the new hyperspherical harmonic-
based representation. Beyond texture information, how-
ever, the conversion formulas carry the broader impli-
cation that mathematical methods and tools developed
for use with the generalized spherical harmonics do not
need to be rederived for the hyperspherical harmonics.
One example is provided by the positivity method for
the correction of the ghost error, which was handled in
the context of the generalized spherical harmonic
expansion by prior researchers.*¢ 38

The regions of negative probability density appearing
in Figure 3 are unphysical, and result from the trunca-
tion of the infinite expansion to a finite number of terms.
Historically speaking, regions of negative probability
density often appeared in the generalized spherical
harmonic expansion of the ODF, although this phe-
nomenon was generally attributed to the inherent
limitations on the information obtained from conven-
tional diffraction experiments (i.e., the so-called ‘““ghost
error’’) rather than truncation error. Many of the same
techniques developed in the literature to correct for the
ghost error may be used to correct for the truncation
error as well. Roughly, these include the positivity
method,** 3% the quadratic method,?”#% and the max-
imum entropy method.*'"™* Of these, the positivity
method is arguably the simplest to implement. This
traditionally involves finding an approximation for the
odd / coefficients in Eq. [1] by enforcing the non-
negativity of the ODF.
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0710 15% 15° t0 30° 300 1 45°

45° to 60°
60° to 75° 75°t090°  90° to 105°
LY : .

105° t0 120° 120° to 135° 135° to 150°

L ] .

150°to 165° 165°to 180°
(a)

0°to 15° 1500 30° 30° to 45° 450 to 60°

60° to 75° 75° to 90°

90° to 105°

105°t0 120° 120° to 135° 135° to 150°

150°to 165° 165° to 180°
(b)

Fig. 3—The ODF of the copper sample in Fig. 2, expressed via the hyperspherical harmonic expansion given in Eq. [4]. Here, a set of concentric
spheres at prescribed values of rotation angle w are presented in the area-preserving projection. Blue and red indicate regions of positive
and negative probability density, respectively. (a) Coefficients of the expansion are calculated using Eq. [5]. (b) Coefficients of expansion are
calculated using Egs. [2] and [29], i.e., by means of the coefficient conversion formulas. Inspection of the figures reveals that the expansions are

identical.

Explicitly, given a reduced ODF fy(g) that is calcu-
lated using only the even / coefficients, define a function

it ={ 7 L] 30)

otherwise

Find the expansion coeflicients of fi(g) from Eq. [2], and
use the even [ coefficients of fy(g) and the odd !/
coefficients of fi (g) to define the function fi(g). From
this point on, the positivity method follows an iterative
procedure. Insert fi(g) into Eq. [30] to define a function
_ﬁ+1(g), and find the expansion coefficients of this
function from Eq. [2]. Define the function f;; (g) from
the even [/ coefficients of f,(g) and the sum of the odd /
coefficients of fi11(g) and f{g), and repeat the procedure
until the magnitude of the negative probability density
in fi+1(g) falls below a set threshold. The function
fi+1(g) is called the complete ODF.

The same general principle, with minor modifications,
may be used to reduce the extent of the truncation error
in Figure 3. Indicate the hyperspherical harmonic
expansion of the ODF by f((g). Insert this function into
Eq. [30] to find fl (g), and calculate the expansion
coefficients of £ (g) from Eq. [5]. Form the sum of every
coefficient of fy(g) with the corresponding coefficient of
fi(g), and normalize the result by multiplying each
coefficient by the constant that brings 28,0 to the value
1 / v2n. This collection of coefficients defines the func-
tion fi(g), which is a normalized approximation to

Jfo(g) + fi(g). This procedure is iteratively repeated,
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0°to 15° 1509 30° 30° t0 45° 450 t0 60°

60°to 75°  75°t0 90° 90° to 105°
\ -
. . .

105° t0 120° 120° to 135° 135° to 150°

150° to 165° 165° to 180°

Fig. 4—ODF given in Fig. 3(a), constrained to positive values by the
procedure described in Section VII. Apart from the removal of the
regions of negative probability density and a slight broadening of
the peaks, the distribution function is nearly identical.

using Eq. [30] to find fi;1(g) from f(g), until the
magnitude of the negative probability density in
fi+1(g) falls below a set threshold. (The difference
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between this method and the positivity method outlined
earlier is the fact that EBSD measurements provide
information about all the coefficients in the expansion;
this removes the need to preserve the values of some
coefficients while selectively changing others.)

This method is applied to the hyperspherical har-
monic expansions appearing in Figure 3, with the result
shown in Figure 4. The procedure markedly reduces the
magnitude of the negative probability density regions,
although it broadens the peaks in the probability
distribution function as well.

VIII. CONCLUSIONS

While the importance of the generalized spherical
harmonic expansion of an ODF to the historical
development of texture analysis is undeniable, exclusive
reliance on a single series expansion is inherently
limiting. This is quite clear from an examination of the
literature, in which discrete orientations are routinely
manipulated with multiple parameterizations (rotation
matrices, Rodrigues vectors, Euler angles, etc.) to
leverage their complementary strengths, but series
expansions of orientation distributions in the past were
restricted to this single representation. The absence of an
alternative to the generalized spherical harmonic expan-
sion essentially required that every operation on the
ODF be performed in the Euler-angle parameterization,
regardless of its suitability. The hyperspherical har-
monic expansion of an ODF provides the missing
alternative, although the utility of this series expansion
relies on the existence of a means by which to efficiently
and easily convert from one representation to the other;

0 w,0.6) =

this article provides the equations effecting this conver-
sion for the first time.

The ramifications of these conversion formulas are
expected to extend further than the ability to express a
particular ODF by a series expansion in the axis-angle
parameterization. Specifically, these formulas provide
continuity of the hyperspherical harmonic expansion
with the existing literature and allow mathematical
results derived using the generalized spherical harmonic
expansion (or programs written using this expansion) to
be used with a minimum of modification. As a simple
example, the fact that the conversion of the expansion
coefficients is a linear transformation enables one of the
procedures existing in the literature to enforce a
positivity condition on the generalized spherical har-
monic expansion of the ODF to be applied directly to
the hyperspherical harmonic expansion of the ODF. We
hope that these results significantly increase the acces-
sibility and utility of the hyperspherical harmonic
expansion in the field of texture analysis.
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cos(w/2) — isin(w/2) cos 0
—isin(w/2) sin Oe'®
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APPENDIX A

Cayley—Klein, Euler-angle, and axis-angle parameters

One method of determining the relationships be-
tween different descriptions of a rotation is to compare
the matrix elements of a single representation, ex-
pressed using the different descriptions. The simplest
matrix that may be used for this purpose is the two-
dimensional complex representation of SU(2). The
requirements that this matrix be unitary and of unit
determinant constrain the representation to be of the
form

R = (5 0) AT

a

where the complex Cayley—Klein parameters ¢ and b
satisfy the condition |a|*+|b|’= 1. The Cayley-Klein
parameters may instead be written as simple linear
combinations of the components of a normalized
quaternion by the relations a = g9 — ig3 and
b = —g¢> — iq,."® Along with the polar parameteriza-
tion of Eq. [3], this allows the representation to be
written as a function of the rotation angle 0 < w < wand
the spherical coordinates 0 <0 <7 and 0 < ¢ <27 of
the axis of rotation, giving the matrix

—isin(w/2) sin fe~ > A2]

cos(w/2) + isin(w/2) cos 0

for the same representation. This matrix describes an
active rotation, which is interpreted as the rotation that
brings a crystal aligned with the coordinate system to
the observed orientation.

The construction of the corresponding matrix
according to the conventions of Reference 10 requires
more consideration, because this matrix is interpreted
following the passive convention. Now, independent
of the rotation convention followed, the construction
of rotation matrices reflects the apparent rotation of
space from the perspective of an observer attached to
the coordinate system. From this vantage point,
sequential passive rotations by ¢, about the z-axis,
by @ about the x’-axis, and by ¢, about the z”-axis
are indistinguishable from sequential active rotations
by —¢; about the z-axis, by —® about the x-axis, and
by —¢», about the z-axis. Because the apparent effect
of these rotation sequences is the same, the corre-
sponding matrices should be the same. That is, the
matrix eclements of the irreducible representations
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describing the passive rotation sequence should be the
same as those describing the active rotation sequence.
Expressing the active rotation sequence by repeated
use of U"*(w, 0, ¢) allows the corresponding repre-
sentation to be given as a function of the Euler angles
0<¢<2m, 0D 7, and 0 < ¢, < 2m by

Dl/2(¢1 ) q)> ¢2)
[ e 0 cos(®/2) isin(P/2)
S0 it (isin(d)/2) cos(®/2) )

ei¢l/2 0
x 0 e~ ih1/2

- ( Cos((l)/z) ¢l+¢2>/

isin(®/2)e!1=¢2)/2

isin(®/2)e " (¢1=2)/2
Cos((D/Z)e*"(d)lde’z)/z

[A3]

This matrix describes an active rotation, with matrix
elements that should be identical to those given by the
construction in Reference 10. As for the interpretation
of this matrix, recall that in the passive convention, a
crystal orientation is described as the passive rotation
that brings the sample coordinate system into coinci-
dence with the crystal coordinate system. From the
perspective of an observer attached to the coordinate
system, this operation is identical to the active rotation
that brings the crystal from the observed orientation to
the reference orientation, aligned with the sample
coordinate system. Therefore, the rotation described
by the matrix in Eq. [A3] is the inverse of the rotation
described by the matrix in Eq. [A2], and these matrices
are related by the complex conjugate transpose. The
relationship of these matrices is outlined graphically in
Figure 1.

Comparing the real and complex parts of the matrix
in Eq. [A2] and the complex conjugate transpose of the
matrix in Eq. [A3] provides a variety of formulas to
convert from the angles w, 0, and ¢ to the Euler angles
¢1, @, and ¢, describing the equivalent rotation. For
example, three of these formulas are

tan ¢ + tan(w/2) cos 0
t =
an ¢, 1 — tan(w/2) cos Otan ¢
cos(®) = 1 — 2sin*(w/2) sin” O [A4]
tan ¢y = — tan ¢ + tan(w/2) cos 0

1 4 tan(w/2) cos O tan ¢

although these do not uniquely determine the Euler
angles as functions of the axis-angle parameters due to
the trigonometric functions involved. Nevertheless,
these formulas are sufficient to calculate the Jacobian
determinant relating the product of the differentials of
the Euler angles to the product of the differentials of
the axis-angle parameters, or

a(¢1 ) (D, ¢2)

Do 0 ) A@/2d0dp (A3

apdods; ~
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This calculation is straightforward, although lengthy.
We provide only the result, namely that the Jacobian
determinant is

Ay, ®, ¢y)|  8sin’(w/2)sin 0
‘6(@/2,0,(1)) B sin @

Applying this result to Eq. [A5] and separating the
terms that depend on the Euler angles from the terms
that depend on the axis-angle parameters gives

sin ®d¢, d®dp, = 8 sin*(w/2) sin Od(w/2)d0dp  [AT)]

[A6]

which is useful when finding the formulas to convert
from the coefficients of the generalized spherical har-
monic expansion in Eq. [1] to the coefficients of the
hyperspherical harmonic expansion in Eq. [4] and vice
versa.

APPENDIX B

Determination of the functions Dby (¢, @, ¢>)

The functions Dﬁn»ﬂm(q{)], ®, ¢,) derive from the
matrix elements of the (2/+ 1)-dimensional irreducible
representation of SU(2). Analytical expressions for
these functions may be found by converting an
expression for the matrix elements in terms of the
Cayley—Klein parameters into an equivalent expression
in terms of the angular quantities w, 6, and ¢, or the
Euler angles ¢, ®, and ¢,, respectively. The matrix
elements of the irreducible representations of SU(2)

are given in terms of the Cayley—Klein parameters
pyl12:18:24.25]

Rm,ﬁm(a,b)
= /(L + (I —m (I +m)(I— m)!
atm- k(a*)/ ' kbm m+k( b*)k
NI —m! = k) (m' — m + k)lk!
[B1]

The meaning and use of the representation constructed
from these matrix elements varies among the cited
references; our interpretation follows that of Reference
18. The dimension of the representation is (2/+1), in
which [ is restricted to non-negative integral or half-
integral (half of an odd integer) values. Restricting / to
integral values gives the representations of SO(3). The
index m’ labels the rows of the matrix sequentially from /
to —/, and m labels the columns sequentially from / to
—[. The index k ranges over all values for which the
factorials are finite.

The functions D’y 'm(P1, ©, ) may be found by
simply substituting the quantltles a = cos(®/2)é d"“f’Z)/ 2
and b = isin(®/2)e (#1=$2)/2 as determined by a com-
parison of the matrix elements of Egs. [Al] and [A3],
into the expression given in Eq. [Bl]. After some
rearrangement, this results in
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Dy (b1, D, $,)

= |+ m) ([ — !

8 1 +cos®\'/1—cos®\ "™/
2 1 +cos®

W+ m)i(I — m)!

(=1
xzk:(H—m—k)!(l—m’—k)!(m’—m+k)!k!
1—cos®\ | .
- im' ¢y ,ime,
% <1 + cos (I)> ¢ e [B2]

C:;Tmuzﬂ?z = 5ﬂ1‘m|+mz[(2j+ 1)(/1 +)2

—m)!(j2 + m2)!(jo —

That is, the representations of SU(2) consistent with the
conventlons of this article differ from those used by
Bunge!'” and by the texture community in general, by a
similarity transformation.

APPENDIX C

Clebsch—Gordan coefficients

Although formulas for the Clebsch—Gordan coeffi-
cients may be found throughout the physics litera-
ture,'>?*23%1 one of these is provided here for

reference 461

DG+ =G+ j2 =i Gi o+ + DI

ma)\(j + m)\(j — m)1]"/? [C1]

(=1)[(1 4+ mi)'(1
8 Zz!m -2

The quantity in brackets (or a closely related quantity)
appears in References 12,24,25, and 27, although there is
considerable variation in the phase and notation, and
none of these references provides this quantity with a
name. This quantity is, in fact, exactly equal to one
appearing in Reference 12, in which it is denoted as the
function P, m(cos @), a notation that we shall adopt.

One of the symmetries of the P, m(cos @) is revealed
by introducing k" = k — m as the summation index
instead of k. Inspection of the result indicates that

P, m(cos @) is symmetrrc with respect to the exchange
of the indices m’ and m, or that P, m(cos D) =

ﬁmm (cos ®@). An alternate expression for P, ,(cos @)
is provided in Reference 12 as

P,ln, n(cos D)
_ e (14 m)!
= 21 1_ | l l_ oY
(= m)id+ m)i(f = ) (B3]
X (1 -+ cos (I))—(m +n1)/2(1 — cos (D)—(m —m)/2
1—m'
X d—[_r |:(1 — COS (I))Zim (] + cos q))/+m]
d(cos @)

Exchange of the indices m" and m in this expression,
and comparison with the function P}""(cos ®) of Eq.

[7], then reveals that
Pin/_’m(COS (D) = (_1)m’,m});ﬂ”}’}1(cos (D) [B4]

With this equivalence, the function ny,f,m(qbl, D, ¢y)
may be written as

(91,9, 92) = (1) [ P (cos @) |
BS

The quantrty 1n brackets is the generalized spherical
harmonic 77" (¢;, ®, ¢») of Eq. [6], providing the
relation

Dy (b1, ®,¢5) = (1) " T (), @, 4y)  [BE]
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—my —2)l(ja +my — )G —jo + 111 + 2)I(j — j1 —ma2 + z2)!

The index z ranges over all integer values for which the
factorials in the summation are finite. The Clebsch—
Gordan coefficients vanish unless the indices satisfy the
conditions m = m; + my and |j; — jo| <j <Jji + ).
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