Skip to main content
Log in

On Factors Affecting the Phase Transformation and Mechanical Properties of Cold-Rolled Transformation-Induced-Plasticity–Aided Steel

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

Two Mo-Nb microalloyed transformation-induced-plasticity (TRIP) steels, with Al contents of 0.23 and 0.65, were subjected to several hot-rolling conditions designed to generate different ferrite morphologies and grain sizes. These structures were then cold rolled and TRIP annealed under different heat-treatment conditions. To further develop TRIP steel in terms of strength and ductility, stabilizing retained austenite by isothermal bainitic transformation was studied in detail. Microstructure observation and tensile tests were conducted, and volume fractions of retained austenite were measured. It was observed that increasing the aluminum content enhances the transformation rate and increases the total amount of bainite fraction at the expense of retained austenite. The latter effect enhances formability by increasing ductility. Furthermore, it was observed that the hot-rolling schedule, prior to cold rolling and heat treatment, has a decisive effect on structure refinement, which enhances the strength-ductility balance of the final product. To study the transformation behavior, dilatometer testing was conducted under conditions similar to that of the heat treatment. Thermodynamic calculations were used to verify the results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21

Similar content being viewed by others

Notes

  1. Durferrit GS 540/R2 and Durferrit AS 140 are trademarks of Durferrit GmbH, Mannheim, Germany.

  2. Baehr Dilatometer DIL 805A/D is a trademark of Bähr-Thermoanalyse GmbH, Huellhorst, Germany.

  3. THERMO-CALC is a trademark of Thermo-Calc software AB, Stockholm, Sweden.

References

  1. V.F. Zackay, E.R. Parker, D. Fahr, R. Busch: Trans. ASM, 1967, vol. 60, pp. 252–59

    CAS  Google Scholar 

  2. O. Matsumura, Y. Sakuma, H. Takechi: Iron Steel Inst. Jpn., 1987, vol. 27, pp. 570–79

    CAS  Google Scholar 

  3. W.C. Jeong and J.H. Chung: HSLA Steels: Processing, Properties and Applications, TMS, Warrendale, PA, 1992, pp. 305–11

  4. J. Maki, J. Mahieu, B.C. De Cooman, S. Claessens: Mater. Sci. Technol., 2003, vol. 19, pp. 125–31

    Article  CAS  Google Scholar 

  5. L. Tosal-Martiez, D. Vanderschueren, S. Jacobs, S. Vandeputte: Steel Res., 2001, vol. 72 (10), pp. 412–15

    Google Scholar 

  6. E. Girault, A. Metens, P. Jacques, Y. Houbaert, B. Verlinden, J. Van Humbeeck: Scripta Mater., 2001, vol. 44, pp. 885–92

    Article  CAS  Google Scholar 

  7. P.J. Jacques, E. Girault, A. Mertens, B. Verlinden, J. van Humbeek, F. Delannay: ISIJ Int., 2001, vol. 41, pp. 1068–74

    Article  CAS  Google Scholar 

  8. M. De Meyer, D. Vanderschueren, B.C. De Cooman: ISIJ Int., 1999, vol. 39, pp. 813–22

    Article  Google Scholar 

  9. W. Bleck, E. Kechagias, J. Ohlert, J. Christen, A. Moulin, H. Hofmann, and T.W. Schaumann: Optimisation of Microstructure in Multiphase Steels Containing Retained Austenite, Final Report, Technical Steel Research Series, RFCS Publications, Luxembourg, 2004, pp. 29–73

  10. E. Emadoddin, A. Akbarzadeh, G. Daneshi: Mater. Charact., 2006, vol. 57, pp. 408–13

    Article  CAS  Google Scholar 

  11. W. Bleck: Proc. Int. Conf. TRIP-Aided High Strength Ferrous Alloys, Gent, Steel GRIPS, Bad Harzburg, Germany, 2002, pp. 13–23

  12. M. Bouet, J. Root, E. Es-Sadiqi, S. Yue: Mater. Sci. Forum, 1998, vols. 284–286, pp. 319–26

    Google Scholar 

  13. S. Jiao, F. Hassani, R.L. Donaberger, E. Essadiqi, S. Yue: ISIJ Int., 2002, vol. 42, pp. 299–303

    Article  CAS  Google Scholar 

  14. C. Capdevila, F.G. Caballero, C. García De Andrés: ISIJ Int., 2005, vol. 45, pp. 238–47

    Article  CAS  Google Scholar 

  15. Quantitative Measurement and Reporting of Hypoeutectoid Carbon and Low-Alloy Steel Phase Transformations, ASTM Standard A-1033-04, ASTM, Philadelphia, PA, 2004

  16. E. Girault, P. Jacques, P. Harlet, K. Mols, J. Van Humbeeck, E. Aernoudt, F. Delannay: Mater. Charact., 1998, vol. 40, pp. 111–18

    Article  CAS  Google Scholar 

  17. F.S. LePera: J. Met., 1980, vol. 32, pp. 38–39

    CAS  Google Scholar 

  18. E. Wirthl, A. Pichler, R. Angerer, P. Stiaszny, K. Hauzenberger, Y.F. Titovets, and M. Hackl: Proc. Int. Conf. TRIP-Aided High Strength Ferrous Alloys, Gent, Steel GRIPS, Bad Harzburg, Germany, 2002, pp. 61–64

  19. J.Z. Zhao, C. Mesplont, B.C. De Cooman: ISIJ Int., 2001, vol. 41, pp. 492–97

    Article  CAS  Google Scholar 

  20. L.P. Karjalainen, T.M. Maccagno, J.J. Jonas: ISIJ Int., 1995, vol. 35, pp. 1523–31

    Article  CAS  Google Scholar 

  21. D.Q. Bai, S. Yue, W.P. Sun, J.J. Jonas: Metall. Trans. A, 1993, vol. 24A, pp. 2151–59

    CAS  Google Scholar 

  22. H. Palkowski, M. Soliman, and G. Kugler: Proc. TMS Ann. Mtg. Exhib., Orlando, FL, TMS, Warrendale, PA, 2007

  23. X.D. Wang, B.X. Hunag, L. Wang, Y.H. Rong: Metall. Trans. A, 2008, vol. 39A, pp. 1–7

    Article  CAS  Google Scholar 

  24. B. Dutta, C.M. Seller: Mater. Sci. Technol., 1987, vol. 3, pp. 197–207

    CAS  Google Scholar 

  25. L.P. Karjalainen: Mater. Sci. Technol., 1995, vol. 11, pp. 557–65

    Google Scholar 

  26. R.W. Cahn, P. Haasan: Physical Metallurgy, 4th ed., North-Holland, Amsterdam, Netherlands, 1996, p. 1601

    Google Scholar 

  27. H.K.D.H. Bhadeshia: Bainite in Steel, 2nd ed., IOM Commercial, Ltd., London, 2001, pp. 122–26

    Google Scholar 

  28. J.R. Bradley, J.M. Rigsbee, H.I. Aaronson: Metall. Trans. A, 1977, vol. 8A, pp. 323–33

    CAS  Google Scholar 

  29. H. Beladi, G.L. Kelly, A. Shokouhi, and P.D. Hodgson: Mater. Sci. Eng. A, 2004, vol. 371A, 343–52

    Google Scholar 

  30. J.B. Qu, Y.Y. Shan, M.C. Zhao, K. Yang: Mater. Sci. Technol., 2002, vol. 18, pp. 145–50

    Article  CAS  Google Scholar 

  31. B. Eghbali, A. Abdollah-zadeh: J. Mater. Process. Technol., 2006, vol. 180, pp. 44–48

    Article  CAS  Google Scholar 

  32. F.C. García de Andrés, F.G. Caballero, C. Capdevila, L.F. Alvarez: Mater. Charact., 2002, vol. 48, pp. 101–11

    Article  Google Scholar 

  33. W.C. Jeong, C.H. Kim: J. Mater. Sci., 1985, vol. 20, pp. 4392–98

    Article  CAS  Google Scholar 

  34. M. De Meyer, J. Mahieu, B.C. De Cooman: Mater. Sci. Technol., 2002, vol. 18, pp. 1121–32

    Article  CAS  Google Scholar 

  35. M. Soliman, H. Palkowski: ISIJ Int., 2007, vol. 47, 1703–10

    Article  CAS  Google Scholar 

  36. M.D. Geib, D.K. Matlok, G. Krauss: Metall. Trans. A, 1980, vol. 11, pp. 1683–89

    Article  Google Scholar 

  37. M.K. Manna, P.C. Chakraborti: Trans. Ind. Inst. Met., 2004, vol. 57, pp. 149–56

    CAS  Google Scholar 

  38. J. Ohlert, W. Bleck, and K. Hulka: Proc. Int. Conf. TRIP-Aided High Strength Ferrous Alloys, Gent, Steel GRIPS, Bad Harzburg, Germany, 2002, pp. 199–206

  39. W. Shi, L. Li, C. Yang, R. Fu, L. Wang, P. Wollants: Mater. Sci. Eng., A, 2006, vol. 429, pp. 247–51

    Article  CAS  Google Scholar 

  40. R. Petrov, L. Kestens, Y. Houbaert: ISIJ Int., 2001, vol. 41, pp. 883–90

    Article  CAS  Google Scholar 

  41. Y. Sakuma, D.K. Matlock, G. Krauss: Metall. Trans. A, 1992, vol. 23A, pp. 1221–32

    CAS  Google Scholar 

  42. S. Hashimoto, S. Ikeda, K. Sugimoto, S. Miyake: ISIJ Int., 2004, vol. 44, pp. 1590–98

    Article  CAS  Google Scholar 

  43. S. Traint, A. Pichler, K. Hauzenberger, P. Stiaszny, and E. Werner: Proc. Int. Conf. TRIP-Aided High Strength Ferrous Alloys, Gent, Steel GRIPS, Bad Harzburg, Germany, 2002, pp. 121–27

  44. S.-J. Kim, C.-G. Lee, I. Choi, S. Lee: Metall. Mater. Trans. A, 2001, vol. 32A, pp. 505–14

    Article  CAS  Google Scholar 

  45. H. Matsuda, H.K.D.H. Bhadeshia: Proc. R. Soc. London, Ser. A, 2004, vol. 460, pp. 1707–22

    Article  CAS  Google Scholar 

  46. P. Jacques: Curr. Opin. Solid State Mater. Sci.., 2004, vol. 8, pp. 259–65

    Article  CAS  Google Scholar 

  47. G.I. Rees, H.K.D.H. Bhadeshia: Mater. Sci. Technol., 1992, vol. 8, pp. 985–93

    CAS  Google Scholar 

  48. K. Sugimoto, T. Muramatsu, S. Hashimoto, Y. Mukaid: J. Mater. Process. Technol., 2006, vol. 177, pp. 390–95

    Article  CAS  Google Scholar 

  49. L.B. Timokhina, P.D. Hodgson, E.V. Pereloma: Metall. Mater. Trans. A, 2004, vol. 35A, pp. 2331–42

    Article  CAS  Google Scholar 

  50. L. Barbé, L. Tosal-Martínez, and B.C. De Cooman: Proc. Int. Conf. TRIP-Aided High Strength Ferrous Alloys, Gent, Steel GRIPS, Bad Harzburg, Germany, 2002, pp. 147–51

  51. M.L. Brandt, G.B. Olson: Ironmaking Steelmaking, 1993, vol. 20 (5), pp. 55–60

    CAS  Google Scholar 

  52. Y. Sakuma, D.K. Matlock, G. Krauss: Metall. Trans. A, 1992, vol. 23, pp. 1233–41

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohamed Soliman.

Additional information

Manuscript submitted February 24, 2008.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Soliman, M., Palkowski, H. On Factors Affecting the Phase Transformation and Mechanical Properties of Cold-Rolled Transformation-Induced-Plasticity–Aided Steel. Metall Mater Trans A 39, 2513–2527 (2008). https://doi.org/10.1007/s11661-008-9594-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-008-9594-2

Keywords

Navigation