Skip to main content
Log in

Mechanical performance of the Al x CoCrCuFeNi high-entropy alloy system with multiprincipal elements

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

The Al x CoCrCuFeNi alloys with multiprincipal elements (x=the aluminum content in molar ratio, from 0 to 3.0) were synthesized using a well-developed arc-melting and casting method, and their mechanical properties were investigated. These alloys exhibited promising mechanical properties, including excellent elevated-temperature strength and good wear resistance. With the addition of aluminum from x=0 to 3.0, the hardness of the alloys increased from HV 133 to 655, mainly attributed to the increased portion of strong bcc phase to ductile fcc phase, both of which were strengthened by the solid solution of aluminum atoms and the precipitation of nanophases. The alloys exhibited superior high-temperature strengths up to 800 °C, among which the Al0.5CoCrCuFeNi alloy, especially, had enhanced plasticity and a large strain-hardening capacity. Moreover, the wear resistance of these alloys was similar to that of ferrous alloys at the same hardness level, while the alloys with lower hardness exhibited relatively higher resistance because of their large strain-hardening capacity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Handbook Committee: Metals Handbook, 10th ed., ASM INTERNATIONAL, Metals Park, OH, 1990, vol. 1, pp. 3–949.

    Google Scholar 

  2. Handbook Committee: Metals Handbook, 10th ed., ASM INTERNATIONAL, Metals Park, OH, 1990, vol. 2, pp. 3–757.

    Google Scholar 

  3. C.T. Sims: in The Superalloys, C.T. Sims and W.C. Hagel, eds., John Wiley & Sons, New York, NY, 1972, pp. 3–284.

    Google Scholar 

  4. Handbook Committee: Metals Handbook, 10th ed., ASM INTERNATIONAL, Metals Park, OH, 1990, vol. 2, pp. 913–42.

    Google Scholar 

  5. A. Takeuchi and A. Inoue: Mater. Trans. JIM, 2000, vol. 41, pp. 1372–78.

    CAS  Google Scholar 

  6. A. Inoue: Bulk Amorphous Alloys—Preparation and Fundamental Characteristics, Materials Science Foundations, Trans Tech Publications, Aedermannsdorf, Netherlands, 1998, vol. 4, pp. 1–116.

    Google Scholar 

  7. H.W. Kui, A.L. Greer, and D. Turnbull: Appl. Phys. Lett., 1984, vol. 45, pp. 615–16.

    Article  CAS  Google Scholar 

  8. A. Inoue, K. Ohtera, K. Kita, and T. Masumoto: Jpn. J. Appl. Phys., 1988, vol. 27, pp. L2248-L2251.

    Article  CAS  Google Scholar 

  9. A. Inoue, T. Zhang, and T. Masumoto: Mater. Trans. JIM, 1989, vol. 30, pp. 965–72.

    CAS  Google Scholar 

  10. A. Inoue, T. Zhang, and T. Masumoto: Mater. Trans. JIM, 1990, vol. 31, pp. 177–83.

    CAS  Google Scholar 

  11. A. Peker and W.L. Johnson: Appl. Phys. Lett., 1993, vol. 63, pp. 2342–44.

    Article  Google Scholar 

  12. R. Akatsuka, T. Zhang, M. Koshiba, and A. Inoue: Mater. Trans. JIM, 1999, vol. 40, pp. 58–261.

    Google Scholar 

  13. T. Zhang and A. Inoue: Mater. Trans. JIM, 1998, vol. 39, pp. 857–62.

    CAS  Google Scholar 

  14. B. Cantor, K.B. Kim, and P.J. Warren: Mater. Sci. Forum, 2002, vol. 386, pp. 27–31.

    Article  Google Scholar 

  15. K.B. Kim, P.J. Warren, and B. Cantor: Mater. Trans., 2003, vol. 44, pp. 411–13.

    Article  CAS  Google Scholar 

  16. K.B. Kim, P.J. Warren, and B. Cantor: J. Non-Crystal. Solids, 2003, vol. 317, pp. 17–22.

    Article  CAS  Google Scholar 

  17. K.B. Kim, Y. Zhang, P.J. Warren, and B. Cantor: Phil. Mag., 2003, vol. 83, pp. 2371–81.

    Article  CAS  Google Scholar 

  18. S. Ranganathan: Curr. Sci., 2003, vol. 85, pp. 1404–06.

    Google Scholar 

  19. P.K. Huang, J.W. Yeh, T.T. Shun, and S.K. Chen: Adv. Eng. Mater., 2004, vol. 6, pp. 74–78.

    Article  CAS  Google Scholar 

  20. C.Y. Hsu, J.W. Yeh, S.K. Chen, and T.T. Shun: Metall. Mater. Trans. A, 2004, vol. 35A, pp. 1465–69.

    CAS  Google Scholar 

  21. J.W. Yeh, S.K. Chen, S.J. Lin, J.Y. Gan, T.S. Chin, T.T. Shun, C.H. Tsau, and S.Y. Chang: Adv. Eng. Mater., 2004, vol. 6, pp. 299–303.

    Article  CAS  Google Scholar 

  22. J.W. Yeh, S.K. Chen, J.Y. Gan, S.J. Lin, T.S. Chin, T.T. Shun, C.H. Tsau, and S.Y. Chang: Metall. Mater. Trans. A, 2004, vol. 35A, pp. 2533–36.

    Article  CAS  Google Scholar 

  23. C.J. Tong, Y.L. Chen, S.K. Chen, J.W. Yeh, T.T. Shun, C.H. Tsau, S.J. Lin, and S.Y. Chang: Metall. Mater. Trans. A, 2005, vol. 36A, pp. 881–93.

    CAS  Google Scholar 

  24. A. Lindsay Greer: Nature, 1993, vol. 366, pp. 303–04.

    Article  Google Scholar 

  25. R.A. Swalin: in Thermodynamics of Solids, 2nd ed., E. Burke, B. Chalmers, and J.A. Krumhansl, eds., John Wiley & Sons, New York, NY, 1991, pp. 21–87.

    Google Scholar 

  26. W.D. Callister, Jr.: Materials Science and Engineering, 6th ed., John Wiley & Sons, New York, NY, 2003, pp. i-ii and pp. 18–19.

    Google Scholar 

  27. H. Bakker: Enthalpies in Alloys, Materials Science Foundations, Trans Tech Publications, Netherlands, 1998, vol. 1, pp. 1–78.

    Google Scholar 

  28. C. Kittel: Introduction to Solid-State Physics, 7th ed., John Wiley & Sons, New York, NY, 1996, p. 23.

    Google Scholar 

  29. M.M. Khruschov: Wear, 1974, vol. 28, pp. 69–88.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tong, CJ., Chen, MR., Yeh, JW. et al. Mechanical performance of the Al x CoCrCuFeNi high-entropy alloy system with multiprincipal elements. Metall Mater Trans A 36, 1263–1271 (2005). https://doi.org/10.1007/s11661-005-0218-9

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-005-0218-9

Keywords

Navigation