Skip to main content
Log in

Phalangeal bone mineral density predicts incident fractures: a prospective cohort study on men and women—results from the Danish Health Examination Survey 2007–2008 (DANHES 2007–2008)

  • Original Article
  • Published:
Archives of Osteoporosis Aims and scope Submit manuscript

Abstract

Summary

This prospective study investigates the use of phalangeal bone mineral density (BMD) in predicting fractures in a cohort (15,542) who underwent a BMD scan. In both women and men, a decrease in BMD was associated with an increased risk of fracture when adjusted for age and prevalent fractures.

Purpose

The aim of this study was to evaluate the ability of a compact and portable scanner using radiographic absorptiometry (RA) to predict major osteoporotic fractures.

Methods

This prospective study included a cohort of 15,542 men and women aged 18–95 years, who underwent a BMD scan in Danish Health Examination Survey 2007–2008. BMD at the middle phalanges of the second, third and fourth digits of the non-dominant hand was measured using RA (Alara MetriScan®). These data were merged with information on incident fractures retrieved from the Danish National Patient Registry comprising the International Classification of Diseases (ICD-10). Follow-up was 27–45 months. Major osteoporotic fractures (vertebral fractures, humerus fractures, forearm fractures and hip fractures) were used in the analyses. Fracture events were calculated as “persons with fracture” and evaluated using survival analysis.

Results

A total of 307 (1.98 %) of the participants had experienced a new fracture during follow-up. BMD was significantly lower in subjects with fracture (0.32 vs. 0.34 g/cm2; p < 0.001 adjusted for age, gender, prevalent fractures, height, weight and smoking). In both women and men, a 1 SD decrease in BMD (T score units) was associated with an increased risk of fracture when adjusted for age and prevalent fractures (women: HR = 1.39, CI 1.24–1.54, p < 0.001; men: HR = 1.47, CI 1.20–1.79, p < 0.001).

Conclusion

Phalangeal BMD as measured using RA predicts the incidence of major osteoporotic fractures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Johnell O, Kanis J (2005) Epidemiology of osteoporotic fractures. Osteoporos Int 16(Suppl 2):S3–S7

    Article  PubMed  Google Scholar 

  2. Boot AM, de Ridder MA, van der Sluis IM, van Sloobe I, Krenning EP, Keizer-Schrama SM (2010) Peak bone mineral density, lean body mass and fractures. Bone 46:336–341

    Article  PubMed  Google Scholar 

  3. Johnell O, Kanis JA, Oden A, Johansson H, De LC, Delmas P, Eisman JA, Fujiwara S, Kroger H, Mellstrom D, Meunier PJ, Melton LJ III, O’Neill T, Pols H, Reeve J, Silman A, Tenenhouse A (2005) Predictive value of BMD for hip and other fractures. J Bone Miner Res 20:1185–1194

    Article  PubMed  Google Scholar 

  4. World Health Organisation (2007) Assessment of osteoporosis at the primary health care level. WHO Sientific Group, World Health Organisation, Brussel

    Google Scholar 

  5. Blake GM, Fogelman I (2009) The clinical role of dual energy X-ray absorptiometry. Eur J Radiol 71:406–414

    Article  PubMed  Google Scholar 

  6. Rejnmark L, Abrahamsen B, Ejersted C, Hyldstrup L, Jensen J, Madsen OR, Mosekilde L, Schwarz P, Vestergaard P, Langdahl B (2009) Vejledning til udredning og behandling af osteoporose [Guidance for diagnosing and treatment of osteoporosis]. Dansk Knoglemedicinsk Selskab [Danish Bonemedical Society], Denmark

  7. Frost M, Gudex C, Rubin KH, Brixen K, Abrahamsen B (2012) Pattern of use of DXA scans in men: a cross-sectional, population-based study. Osteoporos Int 23:183–191

    Article  PubMed  CAS  Google Scholar 

  8. Rubin KH, Abrahamsen B, Hermann AP, Bech M, Gram J, Brixen K (2011) Prevalence of risk factors for fractures and use of DXA scanning in Danish women. A regional population-based study. Osteoporos Int 22:1401–1409

    Article  PubMed  CAS  Google Scholar 

  9. Vestergaard P, Rejnmark L, Mosekilde L (2005) Osteoporosis is markedly underdiagnosed: a nationwide study from Denmark. Osteoporos Int 16:134–141

    Article  PubMed  Google Scholar 

  10. Curtis JR, Laster A, Becker DJ, Carbone L, Gary LC, Kilgore ML, Matthews RS, Morrisey MA, Saag KG, Tanner SB, Delzell E (2009) The geographic availability and associated utilization of dual-energy X-ray absorptiometry (DXA) testing among older persons in the United States. Osteoporos Int 20:1553–1561

    Article  PubMed  CAS  Google Scholar 

  11. Stone KL, Seeley DG, Lui LY, Cauley JA, Ensrud K, Browner WS, Nevitt MC, Cummings SR (2003) BMD at multiple sites and risk of fracture of multiple types: long-term results from the Study of Osteoporotic Fractures. J Bone Miner Res 18:1947–1954

    Article  PubMed  Google Scholar 

  12. Gluer CC, Eastell R, Reid DM, Felsenberg D, Roux C, Barkmann R, Timm W, Blenk T, Armbrecht G, Stewart A, Clowes J, Thomasius FE, Kolta S (2004) Association of five quantitative ultrasound devices and bone densitometry with osteoporotic vertebral fractures in a population-based sample: the OPUS study. J Bone Miner Res 19:782–793

    Article  PubMed  Google Scholar 

  13. Siris ES, Miller PD, Barrett-Connor E, Faulkner KG, Wehren LE, Abbott TA, Berger ML, Santora AC, Sherwood LM (2001) Identification and fracture outcomes of undiagnosed low bone mineral density in postmenopausal women: results from the National Osteoporosis Risk Assessment. JAMA 286:2815–2822

    Article  PubMed  CAS  Google Scholar 

  14. Duppe H, Gardsell P, Nilsson B, Johnell O (1997) A single bone density measurement can predict fractures over 25 years. Calcif Tissue Int 60:171–174

    Article  PubMed  CAS  Google Scholar 

  15. Huang C, Ross PD, Yates AJ, Walker RE, Imose K, Emi K, Wasnich RD (1998) Prediction of fracture risk by radiographic absorptiometry and quantitative ultrasound: a prospective study. Calcif Tissue Int 63:380–384

    Article  PubMed  CAS  Google Scholar 

  16. Miller PD, Siris ES, Barrett-Connor E, Faulkner KG, Wehren LE, Abbott TA, Chen YT, Berger ML, Santora AC, Sherwood LM (2002) Prediction of fracture risk in postmenopausal white women with peripheral bone densitometry: evidence from the National Osteoporosis Risk Assessment. J Bone Miner Res 17:2222–2230

    Article  PubMed  Google Scholar 

  17. Mussolino ME, Looker AC, Madans JH, Edelstein D, Walker RE, Lydick E, Epstein RS, Yates AJ (1997) Phalangeal bone density and hip fracture risk. Arch Intern Med 157:433–438

    Article  PubMed  CAS  Google Scholar 

  18. Ross P, Huang C, Davis J, Imose K, Yates J, Vogel J, Wasnich R (1995) Predicting vertebral deformity using bone densitometry at various skeletal sites and calcaneus ultrasound. Bone 16:325–332

    Article  PubMed  CAS  Google Scholar 

  19. Ekman A, Michaelsson K, Petren-Mallmin M, Ljunghall S, Mallmin H (2002) Dual X-ray absorptiometry of hip, heel ultrasound, and densitometry of fingers can discriminate male patients with hip fracture from control subjects: a comparison of four different methods. J Clin Densitom 5:79–85

    Article  PubMed  Google Scholar 

  20. Ohtsuka M, Michaeli D, Wasnich RD (2002) Relationship between phalangeal bone density and risk of vertebral fracture. J Clin Densitom 5:11–15

    Article  PubMed  Google Scholar 

  21. Saleh MM, Jorgensen HL, Lauritzen JB (2002) Odds ratios for hip- and lower forearm fracture using peripheral bone densitometry; a case–control study of postmenopausal women. Clin Physiol Funct Imaging 22:58–63

    Article  PubMed  CAS  Google Scholar 

  22. Marshall D, Johnell O, Wedel H (1996) Meta-analysis of how well measures of bone mineral density predict occurrence of osteoporotic fractures. BMJ 312:1254–1259

    Article  PubMed  CAS  Google Scholar 

  23. Eriksen L, Gronbaek M, Helge JW, Tolstrup JS, Curtis T (2011) The Danish Health Examination Survey 2007–2008 (DANHES 2007–2008). Scand J Public Health 39:203–211

    Article  PubMed  Google Scholar 

  24. World Health Organisation (1994) Assessment of fracture risk and its application to screening for postmenopausal osteoporosis: Report of the WHO study group, 843rd edn, WHO technical report series. World Health Organisation, Geneva

    Google Scholar 

  25. Hansen SJ, Nielsen MM, Ryg J, Wraae K, Andersen M, Brixen K (2009) Radiographic absorptiometry as a screening tool in male osteoporosis: results from the Odense Androgen Study. Acta Radiol 50:658–663

    Article  PubMed  CAS  Google Scholar 

  26. Thygesen LC, Daasnes C, Thaulow I, Bronnum-Hansen H (2011) Introduction to Danish (nationwide) registers on health and social issues: structure, access, legislation, and archiving. Scand J Public Health 39:12–16

    Article  PubMed  Google Scholar 

  27. Lynge E, Sandegaard JL, Rebolj M (2011) The Danish National Patient Register. Scand J Public Health 39:30–33

    Article  PubMed  Google Scholar 

  28. Ryg J, Rejnmark L, Overgaard S, Brixen K, Vestergaard P (2009) Hip fracture patients at risk of second hip fracture: a nationwide population-based cohort study of 169,145 cases during 1977–2001. J Bone Miner Res 24:1299–1307

    Article  PubMed  Google Scholar 

  29. Kanis JA, Johansson H, Oden A, McCloskey EV (2009) Assessment of fracture risk. Eur J Radiol 71:392–397

    Article  PubMed  Google Scholar 

  30. Kleinbaum DG, Klein M (2005) The Cox proportional hazards model and its characteristics. In: Kleinbaum DG, Klein M (eds) Survival analysis. A self-learning text, 3rd edn. Springer, New York, pp 97–160

    Google Scholar 

  31. Seeley DG, Browner WS, Nevitt MC, Genant HK, Scott JC, Cummings SR (1991) Which fractures are associated with low appendicular bone mass in elderly women? The Study of Osteoporotic Fractures Research Group. Ann Intern Med 115:837–842

    PubMed  CAS  Google Scholar 

  32. Versluis RG, Petri H, Vismans FJ, van de Ven CM, Springer MP, Papapoulos SE (2000) The relationship between phalangeal bone density and vertebral deformities. Calcif Tissue Int 66:1–4

    Article  PubMed  CAS  Google Scholar 

  33. Mosbech J, Jorgensen J, Madsen M, Rostgaard K, Thornberg K, Poulsen TD (1995) The national patient registry. Evaluation of data quality. Ugeskr Laeger 157:3741–3745

    PubMed  CAS  Google Scholar 

  34. Vestergaard P, Mosekilde L (2002) Fracture risk in patients with celiac disease, Crohn’s disease, and ulcerative colitis: a nationwide follow-up study of 16,416 patients in Denmark. Am J Epidemiol 156:1–10

    Article  PubMed  Google Scholar 

  35. Cummings SR, Kelsey JL, Nevitt MC, O’Dowd KJ (1985) Epidemiology of osteoporosis and osteoporotic fractures. Epidemiol Rev 7:178–208

    PubMed  CAS  Google Scholar 

  36. Faulkner KG, von Steeten E, Miller P (1999) Discordance in patient classification using T-scores. J Clin Densitom 2:343–350

    Article  PubMed  CAS  Google Scholar 

  37. Faulkner KG, Orwoll E (2002) Implications in the use of T-scores for the diagnosis of osteoporosis in men. J Clin Densitom 5:87–93

    Article  PubMed  Google Scholar 

  38. Christensen AI, Severin M, Eriksen L, Toftager M, Zachariassen A, Ekholm O, Tolstrup JS, Grønbæk M, Curtis T (2009) KRAM-undersøgelsen i tal og billeder [The KRAM-study in numbers and pictures]. The Danish Ministry of Health and Prevention and the. TrygFoundation, Copenhagen

    Google Scholar 

  39. Statistic Denmark (2009) StatBank Denmark http://www.statbank.dk/statbank5a/default.asp?w=1280 Accessed 5 Jun 2012

  40. Ekholm O, Kjøller M, Davidsen M, Hesse U, Eriksen L, Christensen AI, Grønbæk M (2006) Sundhed og Sygelighed i Danmark 2005 og udviklingen siden 1987 [Health and morbidity in Denmark 2005]. National Institute of Public Health, Copenhagen

    Google Scholar 

  41. Brennan SL, Pasco JA, Urquhart DM, Oldenburg B, Hanna F, Wluka AE (2009) The association between socioeconomic status and osteoporotic fracture in population-based adults: a systematic review. Osteoporos Int 20:1487–1497

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The DANHES 2007–2008 was funded by the Ministry of Health and Prevention and the TrygFoundation, Denmark. Thanks to the 13 participating municipalities and to all the participants who took part in the study by completing questionnaires and participating in health examinations. Moreover, the data collection would not have been possible without the immense effort from all the masters and students from the National Institute of Public Health and local nurses and students from the 13 municipalities. Finally, thanks to Ola Ekholm from the National Institute of Public Health, University of Southern Denmark for obtaining data from the Danish National Registers. The preparation and execution of this study was funded by the Region of Southern Denmark.

Conflicts of interest

None.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Teresa Friis-Holmberg.

Additional information

The manuscript was prepared according to the STROBE statement.

Appendix

Appendix

Table 4 Hazard ratio (HR) for fracture at different sites using T score categories from WHO

Rights and permissions

Reprints and permissions

About this article

Cite this article

Friis-Holmberg, T., Brixen, K., Rubin, K.H. et al. Phalangeal bone mineral density predicts incident fractures: a prospective cohort study on men and women—results from the Danish Health Examination Survey 2007–2008 (DANHES 2007–2008). Arch Osteoporos 7, 291–299 (2012). https://doi.org/10.1007/s11657-012-0111-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11657-012-0111-2

Keywords

Navigation