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Abstract
Bias-adjusted three-step latent class analysis (LCA) is widely popular to relate covari-
ates to class membership. However, if the causal effect of a treatment on class
membership is of interest and only observational data is available, causal inference
techniques such as inverse propensity weighting (IPW) need to be used. In this article,
we extend the bias-adjusted three-step LCA to incorporate IPW. This approach sep-
arates the estimation of the measurement model from the estimation of the treatment
effect using IPW only for the later step. Compared to previous methods, this solves
several conceptual issues and more easily facilitates model selection and the use of
multiple imputation. This new approach, implemented in the software Latent GOLD,
is evaluated in a simulation study and its use is illustrated using data of prostate cancer
patients.

Keywords Latent class analysis · Causal inference · Propensity score · Average
treatment effect · Three-step modelling

Mathematics Subject Classification 62D20 · 62H30

1 Introduction

Latent class analysis (LCA) (Goodman, 1974; Lazarsfeld and Henry, 1968), a statis-
tical technique for model-based clustering, is widely used in the field of social and
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behavioral science. LCA identifies classes of people that are homogenous with respect
to their scores on a set of indicators. Covariates can be related to class membership, for
instance, by using multinomial logistic regression (Bandeen-roche et al. 1997; Day-
ton and Macready 1988). More recently, LCA is becoming more popular in medical
research, for instance, to asses health-related quality of life (HRQOL) based on patient
reported outcome measures (PROMS) (Clouth et al. 2020; Kelly et al. 2018; Larsen
et al. 2017; Miaskowski et al. 2015). Furthermore, the effect of a certain treatment
strategy on such HRQOL classes might be of interest. Such treatment effects can be
assessed with randomized controlled trials (Greenland et al. 1999; Twisk et al. 2018).
However, randomization into treatment and control groups is not always possible or
there is an explicit choice for observational studies with a non-randomized design.
Under the identifiability conditions of consistency, exchangeability, and positivity,
causal inference techniques such as inverse propensity weighting (IPW) can be used
to identify average treatment effects (ATE) (Imbens, 2000). Lanza et al. (2013) pre-
sented one approach for using IPW and matching on the propensity score in LCA and
several extensions have been proposed thereafter (Bartolucci et al. 2016; Suk and Kim
2019; Tullio and Bartolucci 2019). In this paper, we will discuss a conceptual problem
with this approach and propose an alternative strategy for including IPW in LCA.

In randomized controlled trials, assignment into treatment vs. control groups is
randomized with the effect that both groups will, at baseline, be balanced on their
covariates such as demographics and clinical characteristics. However, when random-
ization into intervention groups is not possible, causal inference techniques allow for
the identification of the ATE based on observational data under previously mentioned
identifiability conditions (Hernán and Robins, 2006). Traditionally, researchers used
to estimate the conditional treatment effect. Here, the treatment effect is adjusted for
the observational design by including all relevant observed confounders in a regres-
sion model. However, more recently, researchers prefer to use methods to estimate
the marginal treatment effect. Most commonly, direct matching (Rosenbaum 1999),
matching on the propensity score (Austin 2011), IPW (Imbens, 2000; Robins et al.,
1995), subclassification (Rosenbaum and Rubin 1984), and doubly robust methods
(Bang and Robins 2005) are used. The common idea behind these methods is to gen-
erate synthesized data as if it comes from a randomized controlled trial. Then, any
difference in the outcome between the two groups represents the marginal treatment
effect. Both, from a conceptual and practical point of view, many researchers prefer
these methods for estimating the marginal treatment effect as they separate the adjust-
ment for confounding from the estimation of the treatment effect. For an extensive
discussion on this see Austin (2011).

When data is observational rather than randomized, the selection into a treatment
group vs. control group usually follows clinical indication. E.g., for low-stage prostate
cancer patients, immediate treatment such as the resection of the tumor is not always
necessary as this particular type of cancer progresses very slowly. For many of these
patients, an active surveillance strategy is a beneficial alternative to a cancer treatment
with considerable risks of severe side effects (Mohler et al. 2019). However, patients
with a high Gleason score indicating an aggressive tumor, will usually receive treat-
ment (Cher et al. 2017). As for these patients also a worse outcome is to be expected,
the effect of the received treatment when comparing these two groups will be con-
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founded by the Gleason score. The idea of the previously mentioned causal inference
methods is to control for this confounding. For propensity score methods, a model for
predicting the probability of receiving treatment is estimated based on all observed
confounding variables. This propensity score reduces each individual’s set of covari-
ates to a single score (Imbens 2000). Most commonly, logistic or probit regression
models are used but more complex machine learning algorithms are recently explored
for this purpose as well (Austin 2011). For instance, each patient that received treat-
ment can be matched with a patient that did not receive treatment if that patient has
a similar propensity score. Alternatively, each patient can be weighted with an indi-
vidual weight based on the inverse of the propensity score (Imbens 2000). A patient
with a low probability of receiving treatment that actually received treatment (hence, a
combination that is rather uncommon in the data) will be up-weighted while a patient
with a high probability of receiving treatment that actually received treatment (hence,
a common combination) will be down-weighted. Under the identifiability conditions,
both strategies will achieve a synthesized data set where the treatment group and the
control group are balanced on the observed confounders (Austin 2011). Any differ-
ence in outcome between these groups can, hence, be attributed to the difference in
treatment. In real-life applications, there might be a substantial number of confound-
ing variables and, naturally, not all of them will be observed. This is a well-known
problem in the causal inference literature and will not be discussed here.

These causal inference methods are easily combined with standard statistical mod-
els such as generalized linear models or survival analysis. However, often the outcome
of interest is not directly observable and a measurement model for the outcome is
needed. In cancer survivorship research, patient reported outcomemeasures (PROMS)
such as the European Organisation for Research and Treatment of Cancer (EORTC)
Quality of Life Questionnaire (Sprangers et al. 1993) or the EuroQol 5D (The Euro-
Qol Group 1990) are widely used tools to asses a patient’s HRQOL. One obvious
research question in this case is to identify the effect of a certain cancer treatment on
the survivors’ HRQOL. PROMS use items to measure the construct of HRQOL and
when assessed in an observational study, a combination of LCA and causal inference
techniques is needed.

To include propensity score methods in LCA, Lanza et al. (2013) introduced an
analysis strategy consisting of variable selection, a multiple imputation step for miss-
ing covariates, estimation of the propensity scores, calculation of weights or matching
based on the propensity score, assessing balance, conducting LCA with treatment
as a covariate, and pooling of the results from the imputation steps. Crucially, this
approach consist of weighting or matching the full data set and then conducting LCA
on this weighted or matched data in one step. While this strategy should, in theory,
achieve the correct estimation of the treatment effect, it is problematic for two rea-
sons.

First, it is unknown how using IPW as proposed by these authors affects the mea-
surement model estimates in LCA. The authors indicated that by conducting a LCA
on a weighted or matched data set, they are able to deal with the fact that the mea-
surement model parameters, i.e., the item response probabilities, may be affected
by the confounders used to construct the propensity scores. That is, they seem to
claim to be able to deal with measurement non-invariance (MNI) or differential item
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functioning (DIF). However, it is unclear whether using IPW or matching resolves
MNI, since the state-of-art approach is to include covariates causing DIF in the LCA
and allow them to have direct effects on the indicators (Kankaraš et al. 2010). Sec-
ond, when estimating the LCA model on weighted or matched data, the classes can
no longer be interpreted as being based on the indicators alone as all confounders
included in a propensity score model may also affect the estimates. In fact, it is
unknown how the use of IPW affects the measurement model estimates in LCA.
In their illustrative application of the their method, the authors showed that the use
of IPW can alter the measurement model parameters substantially even in terms of
the number of classes (Lanza et al. 2013), which is problematic for the interpreta-
tion of the ATE too as it may no longer represent the effect on class membership
reflecting the outcome of interest. Furthermore, in LCA, selecting the right number
of classes is an important and far from straight forward process. Information cri-
teria such as the Bayes information criteria (BIC) (Schwarz, 1978) or the Akaike
information criteria (AIC) (Akaike, 1974) and significance testing approaches such
as the bootstrap likelihood ratio test (BLRT) (Tekle et al. 2016) are frequently used.
However, these criteria are often in disagreement with each other and domain knowl-
edge needs to be used to decide on the optimal number of classes. When conducting
LCA with covariates, the recommended strategy is to perform model selection on the
latent class model without covariates (thus, the measurement model) and, in a sec-
ond step, include the covariates in the LCA with the pre-defined number of classes
(Nylund-Gibson and Masyn, 2016). Using IPW or matching complicates this process
further. As both alter the original data set, the model selection process may result
in a different number of classes when performed on the weighted or matched data
set.

We propose an alternative strategy for incorporating IPW in LCA in which the
estimation of the measurement model is fully separated from the estimation of the
ATE. Our approach is based on a modification of the three-step approach proposed
by Vermunt (2010) by using IPW in the third step. First, the measurement model,
that is, the LCA without covariates, is estimated on the unweighted data and model
selection is performed in the usual way. Second, observations are classified based
on their posterior class membership probabilities obtained in step one and the result-
ing classification error probabilities for each class are calculated. Third, treatment as
the only covariate is related to the assigned classes, where the classification errors are
included as part of themodel to obtain unbiased estimates for the treatment effects. For
our approach, we introduce a weight, the inverse of the propensity score, in this last
step. This stepwise approach not only simplifies model selection but also resolves
several of the conceptual problems associated with the approach by Lanza et al.
and therefore allowing for a clearer interpretation of the classes and the treatment
effect.

In the following sections, we describe the new three-step approach which includes
IPW for determining treatment effects, investigate its performance in a simulation
study, and illustrate its use in a real data application. We end with a discussion and
conclusion section.
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2 Three-step LCAwith IPW

In this section, we first present the three steps of a bias-adjusted three-step LCA with
covariates, after which we show how this approach can be extended to include IPW
weighting in the third step.

2.1 Bias-adjusted three-step LCA

Let Yi j denote the response of individual i on the jth categorical response variable, J
the number of response variables, and R j the number of categories of the jth response
variable. Moreover, let X represent the discrete latent variable, t a particular latent
class, and T the number of classes. A latent class model for the response vector Yi of
individual i can be defined using the following mixture equation:

P(Yi ) =
T∑

t=1

P(X = t)P(Yi |X = t), (1)

with the fundamental local independence assumption stating that responses are inde-
pendent given class membership:

P(Yi |X = t) =
J∏

j=1

P(Yi j |X = t) =
J∏

j=1

R j∏

r=1

α
δi jr
t jr . (2)

Here,αt jr is the probability of response r on the item j givenmembership in class t and
δi jr is an indicator variable for individual i on this response. For nominal responses,
alpha can be estimated with an unrestricted multinomial logistic regression model
whereas for ordinal responses, a restricted model is used. Class proportions Θt =
P(X = t) and item response probabilities αt jr = P(Yi j = r |X = t) can be estimated
by maximum likelihood.

Estimation of the measurement model described in equations 1 and 2 defines the
first step of a three-step LCA (Vermunt 2010). In the second step, the class mem-
berships of the individuals are determined using their posterior class membership
probabilities P(X = t |Yi ). The most common methods are modal and proportional
class assignment, which involve assigning individuals to the class with the largest
posterior probability and to all classes with weights equal to the posterior probabil-
ities, respectively. We refer to the resulting class assignments as W . Essential to the
bias-adjusted three-step approach is the identification of the (imperfect) relationship
between the assigned class memberships W and the true class memberships X . The
classification error probabilities P(W = s|X = t) can be easily obtained as follows:

P(W = s|X = t) =
∑N

i=1 P(X = t |Yi )P(Wi = s|Yi )
N ∗ P(X = t)

. (3)

Here, P(Wi = s|Yi ) depends on the classification rule. Under modal assignment, it
equals 1 for the class with the highest posterior class membership probability and 0
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for all other classes, while under proportional assignment, it equals the posterior class
membership probability itself (Dias and Vermunt, 2008; McLachlan and Peel, 2000).

In the third step, the relationship between class membership and covariates is inves-
tigated. For this purpose, the class membership probabilities are modelled by means
of a multinomial logistic (MNL) regression:

P(X = t |Zi ) = Θt |Zi = exp(γ0t + ∑Q
q=1 γqt Ziq)

∑T
t=1 exp(γ0t + ∑Q

q=1 γqt Ziq)
, (4)

with Ziq being one of Q covariates and γ ′s representing free parameters. Key of the
bias-adjusted three-step approach is that this regression equation can be estimated
using the class assignments W . More specifically, Bolck et al. (2004) showed that
P(W = s|Zi ) is related to P(X = t |Zi ) as follows:

P(W = s|Zi ) =
T∑

t=1

P(X = t |Zi )P(W = s|X = t). (5)

As pointed out byVermunt (2010), themodel parameters of this model can be obtained
by maximizing the following log-likelihood function:

logLW =
N∑

i=1

T∑

s=1

P(Wi = s|Yi )ln
{

T∑

t=1

Θt |Zi P(W = s|X = t)

}
, (6)

where the P(Wi = s|Yi ) serve as weights which as discussed above depend on the
classification rule. The P(W = s|X = t) are obtained as shown in Eq. 3 and do not
need to be estimated anymore. Optimizing 6 will yield the γ parameters appearing in
the MNL regression of Θt |Zi (see Eq. 4).

2.2 Modification of the third step for the estimation of a treatment effect

Let us now look at how to modify the third step of a three-step LCA for the estimation
the ATE using IPW. Here, we define the ATE as the difference between the class
membership probabilities of a certain class when receiving treatment vs. being in the
control group. First of all, we need to obtain propensity scores, typically denoted by
π̂ , that reflect the probability of receiving a treatment conditional on a set of measured
confounders C . In this study, we derive propensity scores using logistic regression:

π̂i = exp(β0 + ∑Q
q=1 βqCiq)

1 + exp(β0 + ∑Q
q=1 βqCiq)

. (7)

However, as alternatives probit regression and machine learning algorithms are fre-
quently used (Austin, 2011). The weights for IPW equal i pwi = 1/π̂i for individuals
that received treatment and i pwi = 1/1− π̂i for individuals that did not receive treat-
ment. While these weights are used for estimating the ATE for the entire population,
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alternatively weights yielding estimates of the ATE among the treated could be used.
To derive causal relations from the estimates, it is crucial to check for assumptions
underlying these causal inference techniques such as overlap of propensity scores
and balance on the confounders for the treatment and control group (Austin, 2011).
Note that the estimation of the propensity scores and the construction of the weights
are an additional step and being done separately from the estimation of the third
step.

The inverse propensity weights i pwi can be included as fixed weights in the esti-
mation of the third step of a three-step LCA by rewriting the pseudo-log-likelihood
function as:

logLW =
N∑

i=1

T∑

s=1

i pwi P(Wi = s|Yi )ln
{

T∑

t=1

Θt |Zi P(W = s|X = t)

}
. (8)

Note that the MNL model for Θt |Zi now contains the treatment variable as the single
predictor. As can be seen, the modification compared to Eq. 6 is that the weights
used in the estimation of the parameters in Θt |Zi are now a product of the i pwi and
the class assignment weights P(Wi = s|Yi ). As in Eq. 6, this third step represents a
latent class model where the class assignment W serves as a single indicator and the
error probabilities P(W = s|X = t) are known. The estimates for the treatment effect
Θt |Zi are obtained bymaximizing the log likelihood function in Eq. 8. As in a standard
step-three LCA, cluster robust standard errors (Colin Cameron and Miller, 2015) can
be used to account for the weighting and in the case of proportional assignment also
for the fact that each person has T observations. However, in this step-wise procedure,
both the inverse propensity weights as well as the classification error probabilities
are treated as being known while they are actually estimated. Standard errors might
therefore be slightly underestimated.

3 Simulation study

We conducted a simulation study to compare the performance of our newly proposed
“three-step” method with the “one-step” method proposed by Lanza et al. (2013)
(Fig. 1b) and with a “regression-adjusted” method (Fig. 1c) for estimating the ATE.
The “regression-adjusted” method consists of a one-step LCA where the two con-
founders are entered in the model as covariates additional to the treatment variable.
This "regression-adjusted"method represents the regression adjustment for estimating
the conditional treatment effect. Essentially, it estimates the direct paths of the treat-
ment and the confounders on the outcome. It, therefore, represents the data-generating
model while ignoring the effect of the confounders on treatment allocation. However,
this does not affect the estimate of the treatment effect. In this simulation study, the
"regression-adjusted" method can be regarded the "gold standard". The performance
was assessed based on the parameter bias and variation of the ATE for varying sample
sizes, strength of the ATE, and strength of the confounding.
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(a) Data generating model:
Y1 − Y6 serve as indicators
for the latent variable X
(measurement part). The
treatment Z has a direct
effect on X and a set of con-
founders has direct effects on
both, Z and X (structural
part).

(b) One-step and three-step
method. The dashed line
from C to Z represents the
separately estimated propen-
sity model. The treatment ef-
fect (solid line for Z to X)
is estimated using IPW with
fixed weights obtained by
the propensity score model.
For the one-step method,
the measurement part and
the structural part are es-
timated simultaneously. For
the three-step method, they
are estimated separately.

(c) Regression-adjusted
method: The effect of Z on
X is adjusted for the effect
of C on X by including C
in the regression model. The
measurement part and the
structural part of the model
are estimated simultane-
ously.

Fig. 1 Graphical depiction of a the data generating model used in the simulation study, b the one-step and
three-step method using IPW, and c the regression-adjustment method

Table 1 Class membership
probabilities for the control and
treatment group and resulting
average treatment effects (ATE)
for varying levels of effect size
(γZ )

Class 1 Class 2 Class 3

γZ = 1 Control group 0.307 0.347 0.347

Treatment group 0.174 0.413 0.413

ATE −0.133 0.067 0.067

γZ = 2 Control group 0.307 0.347 0.347

Treatment group 0.113 0.239 0.649

ATE −0.194 −0.108 0.302

γZ = 3 Control group 0.307 0.347 0.347

Treatment group 0.059 0.112 0.829

ATE −0.248 −0.234 0.482

Note that changes in confounding have no effect on the ATEs

3.1 Design

As the population model (Fig. 1a), we used a latent class model with 3 classes, 6
dichotomous indicators (high/ low), one treatment variable Z (0 = control, 1 = treat-
ment), and two categorical confounders (−.5; .5 for C1 and −2; −1; 0; 1; 2 for C2).
Class 1 was most likely to give a high response on all 6 indicators (item response prob-
ability of .8) and class 3 wasmost likely to give a low response on all 6 indicators (item
response probability of .2). Class 2 was most likely to give a high response on the first
3 indicators (item response probability of .8) and most likely to give a low response
the last 3 indicators (item response probability of .2). These values were taken from
the simulation setup in Vermunt (2010) and refer to moderate class separation and
a pseudo R2 of .63. We choose this setting because moderate class separation is the
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Fig. 2 Bias of the estimate of the average treatment effect (ATE) for the regression-adjusted, one-step, and
three-step method, averaged over 1000 replications, respectively. Results are presented for three levels of
effect size, confounding, and sample size, respectively

situation in which the bias adjustment in the third step is most useful, but at the same
time has been found to be challenging for the three-step approach. With very good
class separation, the three-step approach always performs very well, while with very
poor class separation, it is questionable whether it makes sense to look at covariate
effects (here the treatment effects) on class membership in the first place.

The effect of the treatment and the confounders on the classes were modeled using
logistic regression with class 1 as the reference category:

logi t(X |C1,C2, Z) = .5 + 1 ∗ C1 + 1 ∗ C2 + γZ ∗ Z (9)

with logi t(P) = log(P/1 − P) where γZ was kept constant for class 2 (γZ=1)
and varied for class 3 (γZ=[1;2;3]). The effect of the confounders on the treatment
assignment was also modeled using logistic regression:

logi t(Z |C1,C2) = 0 + β1 ∗ C1 + 1 ∗ C2 (10)

where β1 took the values 1, 2, and 3.
The ATE can then be defined as the average difference in class proportions between

the treatment and the control group across values of C1 and C2 (Table 1). As γZ was
varied for class 3, we compared the performance of the threemethods on the parameter
for the ATE of class 3. Therefore, the effect of γZ=1 relates to class proportions of
34.7% for individuals who did not receive treatment and 41.3% for individuals who did
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Fig. 3 Standard deviation (SD) of the estimate of the average treatment effect (ATE) for the regression-
adjusted, one-step, and three-step method over 1000 replications, respectively. Results are presented for
three levels of effect size, confounding, and sample size, respectively

receive treatment and an ATE of 6.6%. For γZ=2, the ATE is 30.2% and for γZ=3, the
ATE is 48.2%.Note that the three levels for theγZ parameter yield a non-linear increase
in theATE. Furthermore, a largeATE also yieldsmore unequal class proportions (class
3 becomes larger). The bias of the ATE for class 3 is defined as the difference between
the estimate of the ATE and the true ATE. The variation of the estimate was assessed
by the standard deviation (SD) of the ATE over 1000 replications. Furthermore, the
standard error averaged over all replications was compared to the SD of the estimate
to asses bias in the SE. We used sample sizes of 500, 1000, and 2500.

3.2 Results

Figures 2 and 3 present the average bias and the SD of the estimates of the ATE
averaged over 1000 replications for the nine conditions investigated (γZ=[1,2,3] and
β1=[1,2,3]) for sample sizes of 500, 1000 and 2500.

For a small effect size, all methods produce parameter estimates with almost no
bias. For larger effect sizes, this is also true for a large sample size of N = 2500. For
smaller sample sizes and large effect sizes, the three-step approach underestimates the
ATE. However, note that the largest ATE relates to a difference of 48.2 percentage
points between the treatment and the control group. A bias of about two percentage
points might, therefore, be regarded as small. The strength of the confounding only
has a small effect for N = 500.
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Fig. 4 Bias of the standard error (SE) of the estimate of the average treatment effect (ATE) for the
regression-adjusted, one-step, and three-step method, averaged over 1000 replications, respectively. Results
are presented for three levels of effect size, confounding, and sample size, respectively

Both, the three-step and the one-stepmethod, are less efficient (show larger variabil-
ity) than the regression-adjusted method. This loss of efficiency is a well-documented
finding for estimating methods that make use of weighting of observations. Further-
more, the variability of the estimates ismainly affected by sample size. However, while
the regression-adjusted method is unaffected by varying levels of confounding, both,
the one-step and the three-step method, show higher variability for larger effects of
confounding (when more unequal weighting is needed). Effect size does not affect the
variability of the estimates. Overall, the SEs (Fig. 4) are returned without noticeable
bias for large sample sizes and with small bias for small sample sizes.

4 Real-world application using prostate cancer treatment data

Prostate cancer is the most prevalent cancer in men in the Western countries (Siegel
et al. 2020). Patients newly diagnosed with localized prostate cancer can choose
between several treatment options (such as surgical resection of the tumor, exter-
nal beam radiotherapy, brachytherapy, and active surveillance) that have equivalent
outcomes in survival but differ in their risk of adverse side effects and long-term
HRQOL (Mols et al. 2009, 2006; Thong et al. 2010). Active surveillance refers to the
systematic monitoring of patients with low-risk prostate cancer who choose against
curative treatment at diagnosis. When the tumor shows signs of progression or the
patient decides to change treatment, patients receive subsequent curative treatment
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Fig. 5 Bayesian Information Criterion (BIC) for models with 1–10 classes estimated with the one-step
method and the three-step method, respectively

(Cher et al. 2017). While active surveillance is the least invasive treatment option it
has been found to be associated with higher levels of anxiety and feelings of uncer-
tainty (Dall’Era et al. 2012). In this section, we demonstrate how our newly proposed
method can be used to estimate the ATE of receiving curative treatment vs. active
surveillance for a sample of low-risk prostate cancer patients.

4.1 Settings and participants

In 2011, a random selection of patients diagnosed with prostate cancer between 2006
and 2009 in 7 hospitals in the south of the Netherlands were invited by their medical
specialist for participation in a study. In total, 999 participants were approached and
697 patients agreed to participate (70% response rate).

Data were collected in October 2011 within Patient Reported Outcomes Following
Initial Treatment and Long-Term Evaluation of Survivorship (PROFILES) (van de
Poll-Franse et al. 2011). PROFILES is linked directly to clinical data from the Nether-
lands Cancer Registry. Urologists sent their (former) patients a letter to inform them
about the study and to invite them to complete an online questionnaire. On request,
patients received a paper questionnaire that could be returned in a pre-stamped enve-
lope. A reminder was send within two months to non-respondents. For this analysis,
only patients with tumor stage I or II were included as only for this group of patients
it is reasonable to assume both treatment strategies to be realistic options.

The study was approved by the Medical Ethics Committee of the Maxima Medical
Centre, the Netherlands.
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Fig. 6 Profiles of the three classes estimatedwith the three-stepmethod. Per class, the average score on all 15
dimensions of theEORTCQLQ-C30 are presented.Abbreviations: ql global quality of life score, pf physical
functioning, rf role functioning, ef emotional functioning, cf cognitive functioning, sf social functioning, fa
fatigue, nv nausea/vomiting, pa pain, dy dyspnea, sl insomnia, ap appetite loss, co constipation, di diarrhea,
fi financial problems

4.2 Data collection

Socio-demographic data was collected by means of questionnaires. Clinical data
was extracted from the Eindhoven Cancer Registry. HRQOL was assessed through
the European Organization for Research and Treatment of Cancer Quality of
Life Questionnaire(QLQ)-C30 (Niezgoda and Pater, 1993). The EORTC QLQ-C30
includes 30 items, divided in five functional scales (physical, role, emotional, social
and cognitive functioning), three symptom scales (fatigue, pain and nausea/vomiting)
and seven single items resulting in 15 dimensions. Scores were linearly transformed
to a 0-100 scale, with higher scores representing better HRQOL/functioning (Fayers
et al. 2001).

4.3 Analysis strategy

First, a LCAwithout covariates was estimated using the 15 EORTCQLQ-C30 dimen-
sion scores as ordinal indicators. Models with 1 to 10 classes were estimated and the
BIC was used to determine the optimal number of classes. Second, propensity scores
for all patients were estimated using logistic regression. Confounders included in this
model were age (in categories of 5 year intervals), tumor stage, and the Gleason score
(in categories, <7, 7 and 8–10). For these confounders, missing values were included
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Fig. 7 Overlap of the propensity scores for the treatment and the active surveillance group

as an additional category. Subsequently, overlap of the propensity scores and balance
on the included confounders between the treatment and active surveillance group were
assessed (Table 2). Other possible confounders such as BMI, smoking, and alcohol
consumption were included in subsequent sensitivity analyses but did not show any
improvement for achieving balance between the treatment groups. Lastly, the effect
of receiving curative treatment on class membership was estimated using the new
three-step method. Additionally, the treatment effect was estimated with the one-step
and the regression-adjusted method. Data preparation and estimation of the propensity
score model were conducted in R version 3.6.0 (R Core Team, 2019) and the latent
class models were estimated using LatentGOLD version 6.0 (Vermunt and Magidson,
2020) and the code is freely available at GitHub (Clouth, 2021). The data can be made
available upon request.

4.4 Results

In total 496 prostate cancer patients were included in this analysis. In this sample,
about 50% of the male patients were between 65 and 75 years old, 59% had a tumor
stage I, 41% tumor stage II, 60% had a Gleason score <7, 25% had a Gleason score
of 7, and 12% had a Gleason score of 8-10 (3% missing values).

Figure 5 shows the BIC for the 1 to 10 class models. The 3 class solution yielded
the lowest BIC and was selected. Note that for the approach proposed by Lanza and
colleagues, the BIC on this data was inconclusive indicating >10 classes. With 46%
the biggest class, class 1 is characterized by very good overall HRQOL. Class 2 (39%)
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Table 2 Descriptive statistics before and after weighting for the three confounders used to estimate the
propensity scores

No weighting IPW
Active surv. Treatment p SMD Active surv. Treatment p SMD

N 109 387 444.02 508.08

Stage [mean (SD)]

I 0.82 (0.39) 0.52 (0.50) <0.001 0.658 0.65 (0.48) 0.60 (0.49) 0.542 0.103

II 0.18 (0.39) 0.48 (0.50) <0.001 0.658 0.35 (0.48) 0.40 (0.49) 0.542 0.103

Gleason [mean (SD)]

2–6 0.84 (0.37) 0.57 (0.50) <0.001 0.622 0.67 (0.47) 0.63 (0.48) 0.634 0.084

7 0.13 (0.34) 0.29 (0.45) 0.002 0.397 0.28 (0.45) 0.25 (0.43) 0.709 0.072

8–10 0.03 (0.18) 0.15 (0.35) 0.003 0.407 0.05 (0.22) 0.12 (0.33) 0.034 0.261

missing 0.14 (0.35) 0.01 (0.07) <0.001 0.530 0.04 (0.19) 0.04 (0.20) 0.930 0.013

Age [mean (SD)]

<= 60 0.06 (0.25) 0.08 (0.27) 0.583 0.061 0.12 (0.32) 0.07 (0.26) 0.523 0.158

>60–<= 65 0.15 (0.36) 0.18 (0.39) 0.407 0.092 0.14 (0.35) 0.16 (0.37) 0.604 0.063

>65–<= 70 0.23 (0.42) 0.26 (0.44) 0.538 0.067 0.20 (0.40) 0.26 (0.44) 0.310 0.128

>70–<= 75 0.19 (0.40) 0.23 (0.42) 0.440 0.085 0.21 (0.41) 0.22 (0.42) 0.791 0.036

>75–<= 80 0.17 (0.38) 0.16 (0.36) 0.628 0.052 0.19 (0.40) 0.15 (0.36) 0.478 0.112

>80 0.16 (0.36) 0.04 (0.21) <0.001 0.379 0.09 (0.28) 0.09 (0.28) 0.945 0.008

missing 0.04 (0.19) 0.05 (0.23) 0.460 0.084 0.05 (0.22) 0.05 (0.22) 0.990 0.002

Differences between the active surveillance and the treatment group were assessed with the standardized
mean differences (SMD) and the p-value

is characterized by moderate to good HRQOL and class 3 (15%) is characterized by
low to moderate HRQOL (Fig. 6).

Propensity scores for the treatment and active surveillance group show sufficient
overlap (Fig. 7). Table 2 shows the standardized mean differences (SMD) on con-
founders before and after weighting. With almost all SMD below .1 in absolute value,
there is evidence that balance was achieved using IPW.

Figure 8 represents the effect of receiving curative treatment vs. active surveillance
on the probability of classmembership estimatedwith our proposed three-stepmethod.
Additionally, the figure shows the same parameters estimated with the one-step and
regression-adjusted method. For the three-step method, the probability of class mem-
bership in class 1 (44% vs. 40%) was slightly higher for the treatment group than for
the active surveillance group. For class 2, this probability was almost the same for
both groups (40% vs. 39%) and for class 3, it was higher for the active surveillance
group (16% vs. 21%). The results for the one-step method were similar in the direction
of the effect, however, the differences in class membership probabilities between the
treatment and active surveillance group were larger (48% vs. 40% for class 1, 39% vs
41% for class 2, and 14% vs. 20% for class 3). In contrast, for the regression-adjusted
method, the effect of initial treatment vs. active surveillance pointed in opposite direc-
tions (45% vs. 46% for class 1, 37% vs. 46% for class 2, and 19% vs. 8% for class 3).
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Fig. 8 Class membership probabilities for the treatment and the active surveillance group estimated with
the three-step, one-step, and regression-adjusted method

Furthermore, the treatment effects presented here did not yield statistically significant
differences.

4.5 Discussion

According to the effect sizes estimated with the one-step and three-step IPWmethods,
prostate cancer patients seemed to experience slightly lower HRQOL when following
an active surveillance regime. However, the sample size in this sample was too small to
generalize this treatment effect to the population of stage I-II prostate cancer patients.
A limitation of both IPW methods that also became apparent in this application is
the possibility of a few patients receiving extremely large weights. That is, the largest
weight observed in this study was about 36 which corresponds to about 9% of the
sample size. Single observations receiving such a great weight increases the variance
of the estimate. Trimming (Stürmer et al. 2000) of these weights can increase the
efficiency of the estimate, however, in this application, trimming also decreased the
balancing property of IPW to an unacceptable extent (results not presented). Using
stabilized weights (Robins et al. 2000) decreases variance without affecting balance
andyielded similar results as presented in this application. Furthermore, a problemwith
using the regression adjustment method in LCA became apparent in this application.
When using several categorical confounders for adjustment, some of the category
combinations might only have few or none observations. In the presence of a rather
small class, a class of 10% of the sample size is not uncommon in LCA, this scenario
is even more likely and can lead to severe problems in estimation. The effect size
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showing in the opposite direction in this application, although not significant, can,
therefore, not be trusted.

5 Discussion

In this study, we proposed a novel approach of incorporating IPW in LCA to estimate
ATEs by adjusting for confounding in observational data. This method is based on the
three-step approach (Vermunt, 2010) and separates the estimation of the measurement
model from the estimation of the ATE.We compared this new approach to the existing
one-step approach by Lanza and colleagues (Lanza et al., 2013) and a regression-
adjusted approach in which the confounders are entered in the model as covariates in
a simulation study and a real data application investigating the effect of treatment vs.
active surveillance on HRQOL classes in prostate cancer patients. Both, the one-step
and the three-step approach, performed reasonably well with a bias of mainly below
one percentage point. This result is to be expected as weighting generally does not
induce bias if the model for the weights is correctly specified. That IPW in the one-
step approach also affects the measurement model does not change this as, overall, the
average of all patient specific measurement models reflects a measurement model that
would have been estimated without weighting. Compared to the three-step approach,
this shows that altering the measurement model on average still leads to the correct
estimation of the ATE. For large effect sizes, the three-step methodmay underestimate
the ATE. This slightly higher bias, especially for small sample sizes, is to be expected
as well, as introducing an additional step of accounting for the classification errors
(additional to the IPW) when estimating the ATE may cause additional bias. Note,
that we used a simulation setting with moderate class separation because this setting
is known to be challenging for the three-step approach. With better class separation,
the ATE will be less underestimated and with worse separation, it is questionable if
covariates should be related to class membership in the first place. However, IPW does
not seem to increase this problem as long as the model for the propensity scores is
correctly specified. Introducing IPW, as introducing weights of any kind, increases the
variation of the estimates. As the one-step approach also uses the differential weighting
for the estimation of the measurement model, an additional source of variation is
introduced compared to the three-step approach where the measurement model is
estimated without weighting.

The one-step and the three-step approach use the same conceptual framework for
estimating the ATE. In both cases, weights based on the probability of receiving
treatment are used to achieve a data set that is balanced on observed confounders
at baseline and the models for estimating these propensity scores are identical. The
only difference between the two approaches is the order in which the estimation is
conducted. In the one-step approach, the data set is weighted first and the ATE is
estimated simultaneously with the measurement model of the LCA. In the three-step
approach, the measurement model is estimated first and IPW is only used to estimate
the ATE in a separate step. This difference has a major practical implication when
the data contains missing values on the observed confounders. As the propensity
score model does not allow for missing values in the predictors, an additional step
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of conducting multiple imputation is needed. However, since also the measurement
model needs to be estimated for each imputed data set, model selection might be
ambiguous as different sets might show different results for the optimal number of
classes. Even with the same number of classes, there is no guarantee that the classes
have the same interpretation over the imputed sets. As a consequence, it is impossible
to obtain a meaningful result for the ATE when pooling estimates over the imputed
data sets. The three-step approach prevents this issue by estimating the measurement
model before the missing values need to be imputed.

There are some limitations to our study worth mentioning. To draw valid conclu-
sions from results obtained with causal inference tools, a set of assumptions needs to
be met. In our simulation study, we did not investigate any consequences of violating
these assumptions. However, in our real data application, we observed different results
obtained with the IPWmethods compared to the regression-adjusted method. It is pos-
sible that these differences are due to violations of these assumptions. Furthermore,
we investigated the scenario of the confounders affecting the treatment and the class
membership but not the item response probabilities. While it is, in principal, possible
to include direct effects to account for measurement non-invariance in our three-step
method, the consequences of such effects need further research. Lastly, in this simu-
lation study, we assumed no missingness in the confounders. While it is possible to
include multiple imputation for the propensity score model in the three-step method,
the effect of missing information was not investigated.

6 Conclusion

In this study, we proposed a method for incorporating IPW in LCA using the three-
step approach. This approach separates the estimation of the measurement model from
the estimation of the ATE, which among others allows for using multiple imputation
in the propensity score model. The simulation study showed a good performance
of our three-step method and we recommend its use when estimating ATEs from
observational data. Further research on possible interesting extensions of this new
approach is needed, such as its application in the context of latent Markov models for
longitudinal data (Bartolucci et al. 2016) and its modification to deal with situations
in which there is measurement non-invariance (Vermunt and Magidson 2020).
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