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Abstract If a test consists of two parts the Spearman–Brown formula and Flanagan’s
coefficient (Cronbach’s alpha) are standard tools for estimating the reliability. How-
ever, the coefficients may be inappropriate if their associated measurement models
fail to hold. We study the robustness of reliability estimation in the two-part case to
coefficient misspecification. We compare five reliability coefficients and study vari-
ous conditions on the standard deviations and lengths of the parts. Various conditional
upper bounds of the differences between the coefficients are derived. It is shown that
the difference between the Spearman–Brown formula and Horst’s formula is negli-
gible in many cases. We conclude that all five reliability coefficients can be used if
there are only small or moderate differences between the standard deviations and the
lengths of the parts.

Keywords Spearman–Brown formula · Cronbach’s alpha · Flanagan’s coefficient ·
Angoff–Feldt coefficient · Raju’s beta · Horst’s formula

Mathematics Subject Classification 62H20 · 62P15 · 91C99

1 Introduction

In psychometrics researchers are concerned with measuring knowledge, abilities and
attitudes of persons and individuals. To measure these types of constructs investiga-
tors use measurement instruments like tests, exams and questionnaires. In this paper
we will refer to any measurement instrument as a test. In test theory, an important
concept of a test is its reliability, which indicates how precise a participant’s score
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72 M. J. Warrens

is measured. In general, a test is said to be reliable if it produces similar scores for
participants under consistent conditions. In reliability estimation a researcher wants
to reflect the impact of as many sources of measurement error as possible (Feldt and
Brennan 1989). For example, to reflect the day-to-day variation in efficiency of human
minds it is an acknowledged principle that a researcher uses at least two interchange-
able test forms (parallel-forms approach) or administers the same test twice (test–retest
approach). However, because multiple testing is often considered too demanding for
the participants, too time-consuming, or too costly, investigators usually do only one
test administration. If there is only one test administration researchers may resort to, in
the context of classical test theory (Lord and Novick 1968), internal consistency coef-
ficients for estimating the reliability of the test. The most commonly used consistency
coefficients are Cronbach’s alpha and the Spearman–Brown formula (Cortina 1993;
Osburn 2000; Hogan et al. 2000; Feldt and Charter 2003; Grayson 2004; Warrens
2014, 2015).

Internal consistency coefficients estimate reliability by dividing the total test into
parts. A test may already consist of multiple parts, for example, a multiple choice part
and an essay part. If the test consists of a set of items, the parts can be the individual
itemsor subsets of the items.All reliability coefficients are basedon the assumption that
the different parts are homogeneous in content (Feldt and Brennan 1989). However,
the coefficients are based on different conceptions of how the parts are related. For
the coefficients in this paper there are three relevant measurement models, namely,
classical parallel, essential tau-equivalence, and congeneric. The models are further
discussed in the next section.

In this paper we compare five internal consistency coefficients that can be used if
the test is divided into two parts. The coefficients are, the Spearman–Brown formula
(Spearman 1910; Brown 1910), Flanagan’s coefficient (Rulon 1939), Horst’s formula
(Horst 1951), the Angoff–Feldt coefficient (Angoff 1953; Feldt 1975), and Raju’s
beta (Raju 1977). The well-known coefficient Cronbach’s alpha reduces to Flanagan’s
coefficient if we have only two parts. There are several reasons why a test can be
divided in only two parts. Sometimes the requirement of content equivalence between
parts limits the number of parts to two. Furthermore, in performance and educational
settings tests frequently consist of a multiple choice part and an essay part. If previous
research has shown that the two parts tend to measure the same construct of interest,
it makes sense to leave the two parts intact in reliability estimation. Finally, with two
parts we have the simplest reliability formulas and only a few statistics need to be
calculated, which may also be a consideration.

The Spearman–Brown formula is based on the classical model, whereas Flanagan’s
coefficient is based on the essential tau-equivalence approach. The other three coeffi-
cients can be used if the more general congeneric model holds. If a test consists of two
parts the Spearman–Brown formula and Flanagan’s coefficient (Cronbach’s alpha) are
commonly used, even when their associated measurement models may fail to hold.
It appears that researchers are not aware that these coefficients are not universally
applicable (Feldt and Charter 2003). Since it is likely that researchers will continue
to use the Spearman–Brown formula and Flanagan’s coefficient in the near future,
it seems useful to study how robust reliability estimation in the two-part case is to
coefficient misspecification. We will do this by determining conditions under which
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the five coefficients produce (very) similar values, that is, conditions under which the
coefficients can be used interchangeably.

Using simulated data Osburn (2000) and Feldt and Charter (2003) showed that the
Spearman–Brown formula, Flanagan’s coefficient, the Angoff–Feldt coefficient and
Raju’s beta produce similar values in a variety of situations. In this paper we compare
the five coefficients analytically and derive upper bounds of the differences between the
coefficients. The upper bounds hold under certain conditions on the standard deviations
and lengths of the parts. In the process we formalize several rules of thumb presented
in Feldt and Charter (2003). The paper is organized as follows. In the next section we
introduce notation, discuss four measurement models, and define the five reliability
coefficients. Unconditional and conditional inequalities between the coefficients are
presented in Sect. 3. In Sect. 4 we study the pairwise differences between several
coefficients and derive upper bounds of the differences and associated conditions.
Section 5 contains a discussion.

2 Notation and definitions

In this section we introduce notation and define the five internal consistency coeffi-
cients. The coefficients are applicable to tests that consist of two parts, denoted by X1
and X2. Each part provides a part score for each participant. If we add the two part
scores we obtain the total score X = X1+X2. In classical test theory it is assumed that
the total score can be decomposed into a true score T and an error term E , X = T +E .
It is assumed that the error term is unrelated to the true score. The reliability of the
total score is defined as the ratio of the true score variance to the total variance:

ρ = σ 2
T

σ 2
T + σ 2

E

= σ 2
T

σ 2
X

, (1)

where σ 2
T is the variance of T , σ 2

E is the variance of E , and σ 2
X is the total variance

of X .
Because the variance of the true score is not known, Eq. (1) cannot be used to

estimate the reliability of X . The reliability can be estimated by examining the rela-
tionships among the parts. It is assumed that each part is the sum of a true score and
an error term, X1 = T1 + E1 and X2 = T2 + E2. The true score of the total score is
the sum of the true scores of the parts, T = T1 + T2, and the error term of the total
score is the sum of the error terms of the parts, E = E1 + E2. Additional assump-
tions about T1, T2, E1 and E2 define different measurement models from classical test
theory. Four measurement approaches and their assumptions are presented in Table 1.
We will briefly describe the measurement approaches. See, for example, Feldt and
Brennan (1989) or Feldt and Charter (2003) for full descriptions of the models.

In the parallel measurement approach it is assumed that each participant has the
same true score for both parts, and that the parts have equal error variances. This
parallel model is themost restrictivemodel. If the observed variances of the parts differ
extremely then the classical parallel model fails to hold. Several alternative models
relax the notion of parallelism. In the tau-equivalent approach the parts may have
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Table 1 Assumptions of four
measurement models from
classical test theory

where b1, b2 and b3 are real
numbers

Measurement model True scores Error terms

Parallel T1 = T2 var(E1) = var(E2)

var(T1) = var(T2)

Tau-equivalence T1 = T2 var(E1) �= var(E2)

var(T1) = var(T2)

Essential T1 = T2 + b1 var(E1) �= var(E2)

Tau-equivalence var(T1) = var(T2)

Congeneric T1 = b2T2 + b3 var(E1) �= var(E2)

b22σ
2
T �= b23σ

2
T

different error variances. Moreover, if the parts are essentially tau-equivalent it is also
allowed that the true scores of a participant on the parts differ by an additive constant.
This constant is the same for every participant. If the parts have substantially different
lengths it is unrealistic to assume essential tau-equivalence. Finally, the congeneric
model is the most general model. In this approach the true score variances of the parts
are also allowed to be different.

The remainder of this section is used to introduce five reliability coefficients. Each
coefficient is an estimate of the reliability of the total score (1). Let the variance of X1
and X2 be denoted by σ 2

1 and σ 2
2 , respectively, and let the covariance and correlation

between the part scores be denoted by σ12 and r , respectively. Between these statistics
and the variance of the total score σ 2

X we have the identity

σ 2
X = σ 2

1 + σ 2
2 + 2σ12, (2)

and the well-known identity

r = σ12

σ1σ2
. (3)

The Horst and Raju approaches assume that the lengths of the parts are known. This
information is often reflected in the number of items (questions, exercises) in each
part. Let n1 and n2 represent these lengths in an appropriate metric, and let p1 =
n1/(n1 + n2) and p2 = n2/(n1 + n2). Quantities p1 and p2 are the proportions of
items in part 1 and 2, respectively.

The oldest and perhaps the most well-known coefficient for two parts is the
Spearman–Brown formula (Spearman 1910; Brown 1910) defined as

SB = 2r

1 + r
. (4)

In the derivation of this coefficient it is assumed that the two parts are classically
parallel. If the variances σ 2

1 and σ 2
2 differ substantially then this model does not hold.

The second coefficient is Flanagan’s coefficient (Rulon 1939) defined as

α = 4σ12
σ 2
X

. (5)
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Coefficient (5) is denoted by α because Cronbach’s alpha reduces to this formula if
there are only twoparts. Coefficient alphawas proposed byGuttman (1945) as lambda3
and later popularized as coefficient alpha by Cronbach (1951). In the derivation of this
coefficient the essential tau-equivalencemodel is assumed, amodel that ismoreflexible
than the parallel model. If p1 and p2 differ substantially then this model does not hold.
In this case it is more appropriate to apply one of the following three coefficients.

Horst’s formula, the Angoff–Feldt coefficient, and Raju’s beta can be used if it
assumed that themost generalmeasurementmodel, the congenericmodel, holds (Feldt
and Brennan 1989). Horst’s formula is defined as

H = r
√
r2 + 4p1 p2(1 − r2) − r2

2p1 p2(1 − r2)
. (6)

Horst (1951) proposed formula (6) as an alternative of theSpearman–Brown formula. It
can be used as an estimate of the reliability when the two parts have not necessarily the
same length. In version 20 of the software package IBM SPSS Statistics this formula
is called the ‘Unequal Length Spearman–Brown’ (IBM 2011). For p1 = p2 = 1

2 the
formula reduces to the Spearman–Brown formula (Horst 1951). Thus, coefficient (4)
is a special case of coefficient (6).

The Angoff–Feldt coefficient is defined as

AF = 4σ12

σ 2
X − (σ 2

1 − σ 2
2 )2

σ 2
X

. (7)

It was proposed independently by Angoff (1953) and Feldt (1975). Since coefficient
(7) does not depend on p1 and p2, it can be used when the lengths of the parts are
unknown. If σ 2

1 = σ 2
2 the Angoff–Feldt coefficient reduces to Flanagan’s coefficient.

Thus, coefficient (5) is a special case of coefficient (7).
Finally, Raju (1977) proposed coefficient beta defined as

β = σ12

p1 p2σ 2
X

. (8)

Coefficient (8) can be used if the two parts have not necessarily the same length. If we
have p1 = p2 then Raju’s beta reduces to Flanagan’s coefficient. Furthermore, if we
set

p1 = σ 2
1 + σ12

σ 2
X

and p2 = σ 2
2 + σ12

σ 2
X

, (9)

then coefficient beta reduces to theAngoff–Feldt coefficient (Feldt andBrennan 1989).
Thus, both coefficients (5) and (7) are special cases of coefficient (8). The number of
items in each part, n1 and n2, may not be good indicators of the relative importance
of the parts. In this case the values in (9) can be used instead.
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3 Inequalities

In this section we present several inequalities between the five reliability coefficients.
It turns out that Flanagan’s coefficient is a lower bound of the other four coefficients.
Some of the inequalities below have already been demonstrated by other authors.
However, in this paper we are also interested in the conditions that specify when the
inequalities are equalities. These conditions are often not specified in the literature.
The formulations of the inequalities in this section therefore give a more complete
picture of how the reliability coefficients are related.

Raju (1977) proved the inequality α ≤ β.

Lemma 1 α ≤ β with equality if and only if p1 = p2 = 1
2 .

Proof We have α ≤ β ⇔ 4p1 p2 ≤ 1. ��
The double inequality α ≤ SB ≤ AF is demonstrated in, for example, Feldt and

Charter (2003).

Lemma 2 α ≤ SB with equality if and only if σ1 = σ2.

Proof Using identity (3) we can write the Spearman–Brown formula as

SB = 2σ12
σ1σ2 + σ12

. (10)

Using (10) we have α ≤ SB ⇔ σ 2
1 + σ 2

2 ≥ 2σ1σ2 ⇔ (σ1 − σ2)
2 ≥ 0. ��

Lemma 3 SB ≤ AF with equality if r = 1 or if σ1 = σ2.

Proof Feldt and Charter (2003, p 107) showed that we may write AF as

AF = 2r

1 + r − (1 − r)(σ1 − σ2)
2

σ 2
X

. (11)

��
Horst (1951) showed that SB is a special case of H for p1 = p2 = 1

2 . Theorem 4
shows that the inequality SB ≤ H holds.

Theorem 4 SB ≤ H with equality if and only if p1 = p2 = 1
2 .

Proof We have the identity

1

2

(
r −

√
r2 + 4p1 p2(1 − r2)

)2

= r2 + 2p1 p2(1 − r2) − r
√
r2 + 4p1 p2(1 − r2). (12)
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Furthermore, the first order partial derivative of H with respect to p1 p2 is given by

∂H

∂p1 p2
=

2p1 p2r
(
1 − r2

)

√
r2 + 4p1 p2

(
1 − r2

) − r
√
r2 + 4p1 p2

(
1 − r2

) + r2

2p21 p
2
2

(
1 − r2

) .

Multiplying all terms by
√
r2 + 4p1 p2

(
1 − r2

)
, and using identity (12), we obtain

∂H

∂p1 p2
=

−r
(
r −

√
r2 + 4p1 p2

(
1 − r2

))2

4p21 p
2
2

(
1 − r2

)√
r2 + 4p1 p2

(
1 − r2

) ≤ 0,

with equality if and only if r = 1 or r = 0. Hence, for r ∈ (0, 1) the function H is
strictly decreasing in p1 p2 = p1(1 − p1), or unimodal in p1 with a minimum value
at p1 = p2 = 1

2 and maximum values close to p1 = 1 and p1 = 0. ��
Combining some of the lemmas from this section, we obtain several interesting

corollaries. For example, if p1 = p2 = 1
2 we have the double inequality

α = β ≤ SB = H ≤ AF.

Furthermore, if σ1 = σ2 we have the inequality

α = SB = AF ≤ H, β.

4 Upper bounds of the differences

In this section we study differences between the five reliability coefficients. In the
previous section we presented several inequalities between the coefficients. These
results can be used to interpret positive differences between some of the coefficients.
For each difference we present several upper bounds and associated conditions.

It follows from Lemma 1 that the difference β − α is non-negative. We have the
following upper bounds for the difference β − α.

Lemma 5

β − α ≤

⎧
⎪⎨

⎪⎩

0.01 if |p1 − p2| ≤ 0.10;
0.04 if |p1 − p2| ≤ 0.20;
0.09 if |p1 − p2| ≤ 0.30.

Proof Using formulas (5) and (8), and the inequality β ≤ 1, we have

β − α = β(1 − 4p1 p2) ≤ 1 − 4p1 p2. (13)
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The quantity 1−4p1 p2 on the right-hand side of (13) is strictly decreasing in p1 p2 =
p1(1−p1), or unimodal in p1 withminimumvalue zero at p1 = p2 = 1

2 andmaximum
value unity if p1 = 0 or p1 = 1. For |p1 − p2| = 0.10 we have p1 p2 = 0.2475 and
4p1 p2 = 0.99, for |p1 − p2| = 0.20 we have p1 p2 = 0.24 and 4p1 p2 = 0.96, and
for |p1 − p2| = 0.30 we have p1 p2 = 0.2275 and 4p1 p2 = 0.91. This completes the
proof. ��

Lemma 5 shows that if there are only small differences between the lengths of
the parts, Raju’s beta and Flanagan’s coefficient produce very similar values. If the
longest part is one and a half times longer than the shortest part (|p1 − p2| = 0.20)
the difference is at most 0.04. In many applications a difference of this size is of no
practical significance.

For Theorems 6 and 7 below it is convenient to work with the ratio

c = max {σ1, σ2}
min {σ1, σ2} . (14)

The critical values c = 1.15 and c = 1.30 in Theorems 6 and 7 below are suggested in
Feldt and Charter (2003, p 106). It follows from Lemma 2 that the difference SB − α

is non-negative. We have the following upper bounds for the difference SB − α.

Theorem 6

SB − α ≤

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

0.0097 if c ≤ 1.15;
0.0335 if c ≤ 1.30;
0.0770 if c ≤ 1.50;
0.0065 if c ≤ 1.15 and r ≥ 0.50;
0.0110 if c ≤ 1.30 and r ≥ 0.50;
0.0527 if c ≤ 1.50 and r ≥ 0.50,

where c is defined in (14).

Proof Using formulas (5) and (10) together with equality (2), we have the identity

SB − α = SB

(

1 − 2σ1σ2 + 2σ12
σ 2
X

)

= SB
(σ1 − σ2)

2

σ 2
1 + σ 2

2 + 2σ12
.

Since SB ≤ 1 we have the inequality

SB − α ≤ (σ1 − σ2)
2

σ 2
1 + σ 2

2 + 2σ12
. (15)

The right-hand side of (15) is increasing in |σ1 − σ2|, or equivalently, increasing in c.
Using (14), or max {σ1, σ2} = c min {σ1, σ2}, in (15) we obtain the inequality

SB − α ≤ (1 − c)2 min
{
σ 2
1 , σ 2

2

}

(
1 + c2

)
min

{
σ 2
1 , σ 2

2

} + 2σ12
. (16)
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The right-hand side of (16) is decreasing in σ12. Hence, for σ12 = 0 we obtain

SB − α ≤ (1 − c)2

1 + c2
. (17)

Using c = 1.15, c = 1.30 and c = 1.50 in (17) we obtain the top three inequalities.
Next, using the identity r = 0.50, or equivalently,

σ12 = 0.50 σ1σ2 = 0.50 c min
{
σ 2
1 , σ 2

2

}
(18)

in (15) we obtain

SB − α ≤ (1 − c)2

1 + c2 + c
. (19)

Since the right-hand side of (16) is decreasing in σ12, we obtain the bottom three
inequalities by using c = 1.15, c = 1.30 and c = 1.50 in (19). ��

It follows from Lemmas 2 and 3 that the difference AF − α is non-negative. We
have the following upper bounds for the difference AF − α.

Theorem 7

AF − α ≤

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

0.0193 if c ≤ 1.15;
0.0658 if c ≤ 1.30;
0.1480 if c ≤ 1.50;
0.0111 if c ≤ 1.15 and r ≥ 0.50;
0.0384 if c ≤ 1.30 and r ≥ 0.50;
0.0884 if c ≤ 1.50 and r ≥ 0.50,

where c is defined in (14).

Proof Using (5) and (7) we have the identity

AF − α = AF

(
σ 2
1 − σ 2

2

)2

σ 4
X

.

Since AF ≤ 1 we have the inequality

AF − α ≤
(
σ 2
1 − σ 2

2

)2

σ 4
X

. (20)

Using (14), or max {σ1, σ2} = c min {σ1, σ2}, we have
(
σ 2
1 − σ 2

2

)2 =
(
1 − c2

)2
min

{
σ 4
1 , σ 4

2

}
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and

σ 4
X =

((
1 + c2

)
min

{
σ 2
1 , σ 2

2

}
+ 2σ12

)2

=
(
1 + c2

)2
min

{
σ 4
1 , σ 4

2

}
+ 4σ 2

12 + 2
(
1 + c2

)
σ12 min

{
σ 2
1 , σ 2

2

}
.

Hence, (20) can be written as

AF − α ≤
(
1 − c2

)2
min

{
σ 4
1 , σ 4

2

}

(
1 + c2

)2 min
{
σ 4
1 , σ 4

2

} + 4σ 2
12 + 2

(
1 + c2

)
σ12 min

{
σ 2
1 , σ 2

2

} . (21)

The right-hand side of (21) is decreasing in σ12. Hence, for σ12 = 0 we obtain

AF − α ≤
(
1 − c2

)2

(
1 + c2

)2 . (22)

Using c = 1.15, c = 1.30 and c = 1.50 in (22) we obtain the top three inequalities.
Next, using (18) in (21) we obtain

AF − α ≤
(
1 − c2

)2

(
1 + c2

)2 + c2 + c
(
1 + c2

) . (23)

Since the right-hand side of (21) is decreasing in σ12, we obtain the bottom three
inequalities by using c = 1.15, c = 1.30 and c = 1.50 in (23). ��

Theorem 7 shows that for small differences between the standard deviations Flana-
gan’s coefficient and the Angoff–Feldt coefficient produce very similar values. If the
larger standard deviation is no more than 15 % larger than the smaller (c ≤ 1.15)
then the difference is always less than 0.02. Since the value of the Spearman–Brown
formula is between the values of these two coefficients (Lemmas 2 and 3), we may
conclude that for c ≤ 1.15 the difference between the three coefficients is always less
than 0.02. In many cases a difference of this size is negligible.

It follows from Theorem 4 that the difference H − SB is non-negative. We have
the following upper bounds for the difference H − SB.

Theorem 8

H − SB ≤

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

0.0018 if |p1 − p2| ≤ 0.10;
0.0071 if |p1 − p2| ≤ 0.20;
0.0162 if |p1 − p2| ≤ 0.30;
0.0300 if |p1 − p2| ≤ 0.40;
0.0494 if |p1 − p2| ≤ 0.50.
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Proof Using (4) and (6) we have

H − SB =
r
√
r2 + 4p1 p2

(
1 − r2

) − r2

2p1 p2
(
1 − r2

) − 2r

1 + r
. (24)

In the proof of Theorem 4 it was shown that H is strictly decreasing in p1 p2 =
p1(1 − p1), or unimodal in p1 with a minimum value at p1 = p2 = 1

2 . Since SB is
not a function of p1 p2, difference (24) is also strictly decreasing in p1 p2 = p1(1− p1),
or unimodal in p1 with minimum value zero at p1 = p2 = 1

2 .
The first order partial derivative of (6) with respect to r is given by

∂H

∂r
=

(√
r2 + 4p1 p2

(
1 − r2

) + r2(1 − 4p1 p2)√
r2 + 4p1 p2(1 − r2)

− 2r

)
(
1 − r2

)

2p1 p2
(
1 − r2

)2

+
2r2

(√
r2 + 4p1 p2

(
1 − r2

) − r
)

2p1 p2
(
1 − r2

)2 .

Multiplying all terms by
√
r2 + 4p1 p2

(
1 − r2

)
we obtain, using identity (12),

∂H

∂r
=

r2 + 2p1 p2
(
1 − r2

) − r
√
r2 + 4p1 p2

(
1 − r2

)

p1 p2
(
1 − r2

)2 √
r2 + 4p1 p2(1 − r2)

=
(
r − √

r2 + 4p1 p2(1 − r2)
)2

2p1 p2(1 − r2)2
√
r2 + 4p1 p2(1 − r2)

. (25)

Since partial derivative (25) is strictly positive for r ∈ (0, 1) and p1 ∈ [0, 1], coefficient
H is strictly increasing in r for p1 ∈ [0, 1]. Furthermore, SB is also strictly increasing
in r . It turns out that difference (24) is unimodal in r withminimum value zero at r = 0
and r = 1. (To prove this statement one can show that the second partial derivative
of (24) with respect to r is negative. The formula is too long to present here and is
therefore omitted). Using (25) the first order partial derivative of difference (24) with
respect to r is given by

∂(H − SB)

∂r
=

(
r −

√
r2 + 4p1 p2

(
1 − r2

))2

2p1 p2
(
1 − r2

)2
√
r2 + 4p1 p2

(
1 − r2

) − 2

(1 + r)2
. (26)

To find the value of r for which difference (24) is maximal we need to solve ∂(H −
SB)/∂r = 0. However, the maximal value of r depends on the value of p1 p2. For
|p1− p2| = 0.10 we have p1 p2 = 0.2475 and 4p1 p2 = 0.99, and ∂(H−SB)/∂r = 0
becomes
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Fig. 1 Plot of the difference
H − SB as a function of r and
p1

rr

p

H
−SB

1

0

0

1

0.5

(
r −

√
r2 + 0.99

(
1 − r2

))2

0.495
(
1 − r2

)2
√
r2 + 0.99

(
1 − r2

) = 2

(1 + r)2
. (27)

The solution in the range [0, 1] of (27) is r ≈ 0.41335. Using p1 p2 = 0.2475 and
r = 0.41335 in (24) we obtain H − SB = 0.00172. Since difference (24) is unimodal
in p1 p2 it follows that H − SB ≤ 0.0018 if |p1 − p2| ≤ 0.10. The other conditional
inequalities are obtained from using similar arguments. ��

Theorem 8 shows that even with substantial differences between the lengths of
the parts the Spearman–Brown formula and Horst’s formula produce very similar
values. When the longest part is one and a half times longer than the shortest part
(|p1− p2| = 0.20) the difference is less than 0.01, a size that is negligible. Even when
the longest part is three times longer than the shortest part (|p1 − p2| = 0.50) the
difference is less than 0.05.

Figure 1 presents a 3D plot of difference (24) as a function of r and p1. The figure
visualizes some of the ideas in Theorem 8. Figure 1 shows that the difference H − SB
is small for moderate values of p1, that is, small values of the difference |p1 − p2|.
Furthermore, these small differences do not depend on the value of r .

5 Discussion

In this paper we compared five reliability coefficients for tests that consist of two
parts. The coefficients are the Spearman–Brown formula, Flanagan’s coefficient (a
special case of Cronbach’s alpha), Horst’s formula, the Angoff–Feldt coefficient, and
Raju’s beta. We first presented inequalities between the reliability coefficients. The
inequalities were then used to formulate positive differences between the coefficients.
Using analytical techniques we then derived several upper bounds of the differences
between the coefficients. The upper bounds hold under certain conditions.

Criteria for qualifying the values of the differences between the coefficients depend
on the context of the reliability estimation. In this paperwe use the following criteria. A
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difference of at most 0.04 is considered to be of no practical significance. Furthermore,
a value that is smaller than or equal to 0.02 is considered to be negligible. A difference
between coefficients is substantial if its size is bigger than or equal to 0.10. These
criteria are of course arbitrary. The reader may interpret the results using other critical
values.

An interesting relationship was found between the values of the Spearman–Brown
formula and Horst’s formula. Theorem 8 shows that even with substantial differences
between the lengths of the parts the formulas produce very similar values. When the
longest part is one and a half times longer than the shortest part the difference is less
than 0.01. A difference of this size is negligible. But even if the longest part is three
times longer than the shortest part the difference between the coefficients is always less
than 0.05. The Spearman–Brown formula is based on the classical parallel model, and
this model fails to hold with substantial differences between the lengths of the parts.
Horst (1951) proposed his formula for the case that the parts have different lengths.
However, inmany real-life situations the differencewill be negligible, althoughHorst’s
formula will always produce a (slightly) higher value.

Lemmas 2 and 3 together with Theorem 7 show that for small differences between
the standard deviations the Spearman–Brown formula, Flanagan’s coefficient and the
Angoff–Feldt coefficient produce very similar values. If the larger standard deviation
is no more than 15 % larger than the smaller then the difference is always less than
0.02. In this case all three coefficients can be used, which confirms and formalizes a
rule of thumb presented in Feldt and Charter (2003). Theorems 6, 7 and 8 together
with Lemma 5 show that for small and moderate differences between the lengths and
standard deviations of the parts all five coefficients produce very similar values. If
the larger standard deviation is no more than 15 % larger than the smaller, and if the
difference between the lengths (in proportions) is at most 0.10, then the differences
between the values is less than 0.02. In this case all five coefficients can be used.
These results partly explains why the coefficients produce very similar values for the
simulated data in Osburn (2000).

If the larger standard deviation is nomore than30% larger than the smaller, and if the
difference between the lengths is at most 0.20, then the differences between the values
is less than 0.07. If we exclude the Angoff–Feldt coefficient, the differences between
the values of the other four coefficients is less than 0.041. If, in addition, the correlation
between the parts is at least 0.50, then the differences between all five coefficients is
less than 0.04. In this case application of any coefficient will probably lead to the
same conclusion. Finally, even if the differences between the standard deviations and
lengths are relatively large, the maximum difference between the coefficients is less
than 0.10. More precisely, if the larger standard deviation is no more than 50 % larger
than the smaller, if the difference between the lengths is at most 0.30, and if the
correlation between the parts is at least 0.50, then the differences between the values
of the coefficients is at most 0.09.

Since the five coefficients produce very similar values for small and moderate dif-
ferences between the standard deviations and the lengths of the two parts, we conclude
that reliability estimation in the two-part case tends to be robust to coefficient mis-
specification. If the difference between the standard deviations and the lengths are
large the values of the reliability coefficients diverge. In this case both the classical
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parallel model and the essential-tau equivalent model fail to hold, and application
of the Spearman–Brown formula and Flanagan’s coefficient (Cronbach’s alpha) is
not appropriate. Which coefficient should be used in this case, Horst’s formula, the
Angoff–Feldt coefficient, or Raju’s beta, appears to be an open problem, and is thus a
topic for further investigation.

Open Access This article is distributed under the terms of the Creative Commons Attribution License
which permits any use, distribution, and reproduction in any medium, provided the original author(s) and
the source are credited.
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