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Abstract: This paper considers the problem of delay-dependent robust stability for uncertain systems with interval time-varying

delays. By using the direct Lyapunov method, a new Lyapunov-Krasovskii (L-K) functional is introduced based on decomposition

approach, when dealing with the time derivative of L-K functional, a new tight integral inequality is adopted for bounding the cross

terms. Then, a new less conservative delay-dependent stability criterion is formulated in terms of linear matrix inequalities (LMIs),

which can be easily solved by optimization algorithms. Numerical examples are given to show the effectiveness and the benefits of the

proposed method.
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1 Introduction

Time-delay phenomena are ubiquitous in many practical

systems such as chemical engineering systems, biological

systems, economic systems and networked control systems,

which are often major sources of instability and poor per-

formance. Hence, stability analysis and stabilization of sys-

tems with time-delays have received considerable attention

in the past few years (see e.g. [1−24], and the references

therein). Very recently, systems with time-varying delay

in a known interval have been studied in [3, 7−15, 20−22],

wherein the time-delay may vary in a range for which the

lower bound is not restricted to being zero.

The existing stability criteria are usually classified into

the delay-independent ones and the delay-dependent ones.

Since the delay-dependent ones are generally less con-

servative than the delay-independent ones, especially for

small delays, much attention has been paid to the delay-

dependent ones. An important issue in this field is to en-

large the feasible region of stability criteria. For this pur-

pose, many approaches have been developed in the past few

years, among which the free-weighting matrix method and

Jensen′s integral inequality method are widely used and ob-

tained plentiful results (see e.g. [2−14], and the references

therein). For the purpose of reducing the conservatism

caused by the use of system transformations and bounding

techniques, the free-weighting matrix method was first pro-

posed in [2, 3] to investigate the stability of systems with

time-varying delay. By employing a convex combination
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technique, Park and Ko[4] further extended the free weight-

ing matrix method to a new Lyapunov functional. Re-

cently, motivated by the idea of L-K functional with triple-

integral terms, an extended free-weighting matrix method,

i.e., double-integral inequality method was proposed in [5].

Although the free-weighting matrix method can effectively

reduce the conservatism, it can also lead to the increase

of computational complexity since many slack variables are

introduced.

Jensen′s integral inequality approach is another impor-

tant one, which was first introduced by Gu[6] for stability

analysis of time-delay systems. Soon afterwards, many re-

searchers, such as Han[7], Zhang and Han[8], Sun et al.[9],

Kwon et al.[10] , Ramakrishnan and Ray[11] further extended

the Jensen′s integral inequality to some new forms. Jensen′s
integral inequality approach can provide a simple form of

stability conditions without introducing redundant vari-

ables. However, how to construct a less conservative in-

equality is a difficult problem. Recently, a novel tech-

nique called delay-central point method was proposed in

[16], by employing a central point of variation about the

delay range, the time-interval is divided into two segments

of equal length, and the time variation of a candidate L-K

functional is evaluated individually in each subinterval. In

order to further reduce the conservatism, the delay decom-

position approach was proposed in [17−20], and show its

improvement of maximum delay bounds. Based on decom-

position technique, Ramakrishnan and Ray[21, 22] further

extended the delay-central point method and proposed a

less conservative stability criteria. Nevertheless, there still

exists room for further improvements.

Motivated by the above discussions, we further discuss

the stability of uncertain linear systems with interval time-

varying delays. Based on the direct L-K approach and linear
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matrix inequality, new less conservative delay-dependent

stability criteria for computing the maximum allowable

bound of the delay range is formulated in terms of linear

matrix inequalities. Less conservative results are mainly at-

tributed to the decomposition technique for designing the

L-K functional and tighter bounding technique for dealing

with the cross-terms. Numerical examples are given to illus-

trate the effectiveness and less conservatism of the proposed

method.

Notations. Throughout this paper, Rn denotes the n-

dimensional Euclidian space, Rn×m is the set of n×m real

matrices, the notation X > 0, for X ∈ Rn×m means that

the matrix X is a real symmetric positive definite. For an

arbitrary matrix B and two symmetric matrices A and C,

[ A B
∗ C ] denotes a symmetric matrix, where ∗ denotes the en-

tries implied by symmetry.

2 Problem description and preliminar-

ies

Consider the following time-varying delay system:

{
ẋ(t) = (A + ΔA(t))x(t) + (B + ΔB(t))x(t− h(t))

x(t) = ϕ(t), t ∈ [−h2, 0]

(1)

where x(t) ∈ Rn is the state vector, A and B are con-

stant matrices with appropriate dimensions, h(t) is a time-

varying delay satisfying the following two categories:

Case 1: 0 ≤ h1 ≤ h(t) ≤ h2, ḣ(t) ≤ μ, ∀t ≥ 0 (2)

Case 2: 0 ≤ h1 ≤ h(t) ≤ h2,∀t ≥ 0. (3)

ΔA(t) and ΔB(t) denote the parameter uncertainties sat-

isfying the following condition:

[
ΔA(t) ΔB(t)

]
= DF (t)

[
Ea Eb

]
(4)

where D, Ea and Eb are constant matrices with appropriate

dimensions, and F (t) is an unknown time-varying matrix,

which is Lesbesgue, satisfying, F (t)TF (t) ≤ I .

Before moving on, the following lemma is necessary in

the proof of the main results.

Lemma 1. For any scalar h(t) ≥ 0, and any constant

matrix Q ∈ Rn×n, Q = QT > 0, the following inequality

holds:

−
∫ t

t−h(t)

ẋT(s)Qẋ(s)ds ≤ h(t)ζT(t)V Q−1V Tζ(t)+

2ζT(t)V [x(t) − x(t − h(t))]

where

ζT(t) =
[

xT(t) xT(t − h1) ΓT
a (t) xT(t − h(t))

ΓT
2 (t) ẋT(t)

]
ΓT

a (t) =

[
xT

(
t − ha

N

)
xT

(
t − 2

ha

N

)
· · ·

xT

(
t − (N − 1)

ha

N

)
xT(t − ha)

]

ΓT
2 (t) =

[
xT

(
t − h2

N

)
xT

(
t − 2

h2

N

)
· · ·

xT

(
t − (N − 1)

h2

N

)
xT(t − h2)

]

in which ha = (h1+h2)
2

, V is free weighting matrix with

appropriate dimensions, and N is a given positive integer.

Proof. For any real vectors a, b and any matrix Q > 0

with appropriate dimensions, we know that the following

inequality holds

±2aTb ≤ aTQa + bTQ−1b. (5)

From (5), we obtain

− 2

∫ t

t−h(t)

(V Tζ(t))Tẋ(s)ds ≤
∫ t

t−h(t)

ẋT(s)Qẋ(s)ds+

∫ t

t−h(t)

ζT(t)V Q−1V Tζ(t)ds.

So we have

−
∫ t

t−h(t)

ẋT(s)Qẋ(s)ds ≤ 2

∫ t

t−h(t)

(V Tζ(t))Tẋ(s)ds+

∫ t

t−h(t)

ζT(t)V Q−1V Tζ(t)ds =

h(t)ζT(t)V Q−1V Tζ(t) + 2ζT(t)V [x(t) − x(t − h(t))] .

�
Lemma 2[25]. Suppose γ1 ≤ γ(t) ≤ γ2, where γ(·) :

R+ → R+. Then, for any constant matrices Ξ1, Ξ2 and Ω

with proper dimensions, the following matrix inequality

Ω + (γ(t) − γ1)Ξ1 + (γ2 − γ(t))Ξ2 < 0

holds, if and only if

Ω + (γ2 − γ1)Ξ1 < 0, Ω + (γ2 − γ1)Ξ2 < 0.

Lemma 3[26]. Given matrices Q = QT, H , E and

R = RT with appropriate dimensions, the inequality

Q + HFE + ETFTHT < 0

for all F satisfying FTF ≤ R, if and only if there exists

some scalar ε > 0, such that

Q + εHHT + ε−1ETRE < 0.
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3 Main results

In this section, we shall establish our main results based

on LMI framework. First, we will consider nominal system,

whereafter, we study the robust stability of the uncertain

system. Consider the nominal system of (1):

{
ẋ(t) = Ax(t) + Bx(t − h(t))

x(t) = ϕ(t), t ∈ [−h2, 0].
(6)

Theorem 1. For given values of h1, h2 and μ, system

(6) is asymptotically stable, if there exist real symmetric

positive definitive matrices P1, P2, P3, Z1, Z2; symmet-

ric matrices Q, S and free matrix variables Lj , Mj , Vj , Tj

(j = 1, 2) with appropriate dimensions such that the fol-

lowing LMIs hold:

⎡
⎢⎢⎢⎣

Φ

√
ha

N
L

√
hδM

∗ −Z1 0

∗ ∗ −Z2

⎤
⎥⎥⎥⎦ < 0 (7)

⎡
⎢⎢⎢⎣

Φ

√
ha

N
L

√
hδV

∗ −Z1 0

∗ ∗ −Z2

⎤
⎥⎥⎥⎦ < 0 (8)

and

Q =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

Q11 Q12 · · · Q1N

∗ Q22 · · · Q2N

...
...

. . .
...

∗ ∗ QN−1,N−1 QN−1,N

∗ ∗ ∗ QNN

⎤
⎥⎥⎥⎥⎥⎥⎥⎦
≥ 0

S =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

S11 S12 · · · S1N

∗ S22 · · · S2N

...
...

. . .
...

∗ ∗ SN−1,N−1 SN−1,N

∗ ∗ ∗ SNN

⎤
⎥⎥⎥⎥⎥⎥⎥⎦
≥ 0

where

Φ =

⎡
⎢⎢⎢⎣

Φ11 Φ12 Φ13 Φ14

∗ Φ22 Φ23 BTTT
2

∗ ∗ Φ33 0

∗ ∗ ∗ Φ44

⎤
⎥⎥⎥⎦

Φ11 =⎡
⎢⎢⎢⎢⎢⎣

Φ1 0 Φ2 Q13 ··· Q1N 0
∗ P3−P2 0 0 ··· 0 0
∗ ∗ Φ3 Q23−Q12 ··· Q2N−Q1,N−1 −Q1N

∗ ∗ ∗ Q33−Q22 ··· Q3N−Q2,N−1 −Q2N

...
...

...
...

. . .
...

...
∗ ∗ ∗ ∗ ∗ QNN−QN−1,N−1 −QN−1,N

∗ ∗ ∗ ∗ ∗ ∗ V1+V T
1 −QN,N

⎤
⎥⎥⎥⎥⎥⎦

Φ33 =⎡
⎢⎢⎢⎢⎣

S22−S11 S23−S12 ··· S2N−S1,N−1 −S1N

∗ S33−S22 ··· S3N−S2,N−1 −S2N

∗ ∗
. . .

...
...

...
... ··· SNN−SN−1,N−1 −SN−1,N

∗ ∗ ∗ ∗ −SNN−M2−MT
2

⎤
⎥⎥⎥⎥⎦

Φ13 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

S12 S13 · · · S1N 0

0 0 · · · 0 0

0 0 · · · 0 0
...

...
. . .

...
...

0 0 · · · 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

Φ1 = P2 + Q11 + S11 + L1 + LT
1 + T1A + ATTT

1

Φ2 = Q12 − L1 + LT
2 , Φ3 = Q22 − Q11 − L2 − LT

2

Φ12 =
[

(T1B)T 0 · · · 0 (−V1 + V T
2 )T

]T

Φ14 =
[

(P1 − T1 + ATTT
2 )T 0 · · · 0

]T

Φ22 = −(1 − μ)P3 − V2 − V T
2 + M1 + MT

1

Φ23 =
[

0 · · · 0 −M1 + MT
2

]
Φ44 =

ha

N
Z1 + hδZ2 − T2 − TT

2

ha =
(h1 + h2)

2
, hδ =

(h2 − h1)

2

L =
[

LT
1 0 LT

2 0 0 · · · 0 0
]T

V =
[

0 · · · 0 V T
1 V T

2 0 · · · 0
]T

T =
[

TT
1 0 0 0 · · · 0 0 TT

2

]T

M =
[

0 · · · 0 MT
1 0 · · · MT

2 0
]T

.

Proof. Construct an L-K functional candidate as

V (t) = V1(t) + V2(t) + V3(t) (9)

where

V1(t) = xT(t)P1x(t) +

∫ t

t−h1

xT(s)P2x(s)ds+

∫ t−h1

t−h(t)

xT(s)P3x(s)ds

V2(t) =

∫ t

t−ha
N

ξT
1 (s)Qξ1(s)ds +

∫ t

t− h2
N

ξT
2 (s)Sξ2(s)ds

V3(t) =

∫ 0

− ha
N

∫ t

t+θ

ẋT(s)Z1ẋ(s)dsdθ+

∫ −ha

−h2

∫ t

t+θ

ẋT(s)Z2ẋ(s)dsdθ

ξ1(t)=

[
xT(t) xT

(
t − ha

N

)
· · · xT

(
t − (N − 1)

ha

N

) ]T

ξ2(t)=

[
xT(t) xT

(
t − h2

N

)
· · · xT(t − (N − 1)

h2

N
)

]T

.

The time-derivative of the L-K functional along the tra-
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jectory of (6) is given by

V̇ (t) = V̇1(t) + V̇2(t) + V̇3(t) (10)

where

V̇1(t) ≤ 2xT(t)P1ẋ(t) + xT(t)P2x(t)+

xT(t − h1)(P3 − P2)x(t − h1)−
(1 − μ)xT(t − h(t))P3x(t − h(t))

V̇2(t) = ξT
1 (t)Qξ1(t) − ξT

1

(
t − ha

N

)
Qξ1

(
t − ha

N

)
+

ξT
2 (t)Sξ2(t) − ξT

2

(
t − h2

N

)
Sξ2

(
t − h2

N

)

V̇3(t) =
ha

N
ẋT(t)Z1ẋ(t) + (h2 − ha)ẋT(t)Z2ẋ(t)−∫ t

t−ha
N

ẋT(s)Z1ẋ(s)ds −
∫ t−ha

t−h2

ẋT(s)Z2ẋ(s)ds.

Note that

−
∫ t−ha

t−h2

ẋT(s)Z2ẋ(s)ds = −
∫ t−h(t)

t−h2

ẋT(s)Z2ẋ(s)ds−
∫ t−ha

t−h(t)

ẋT(s)Z2ẋ(s)ds.

Using Lemma 1, one can obtain

−
∫ t

t− ha
N

ẋT(s)Z1ẋ(s)ds ≤ ha

N
ζT(t)LZ−1

1 LTζ(t)+

2ζT(t)L

[
x(t) − x(t − ha

N
)

]
(11)

−
∫ t−ha

t−h(t)

ẋT(s)Z2ẋ(s)ds ≤ (h(t)−ha)ζT(t)V Z−1
2 V Tζ(t)+

2ζT(t)V [x(t − ha) − x(t − h(t))] (12)

−
∫ t−h(t)

t−h2

ẋT(s)Z2ẋ(s)ds≤ (h2 − h(t))ζT(t)MZ−1
2 MTζ(t)+

2ζT(t)M [x(t − h(t)) − x(t − h2)] . (13)

On the other hand, for any matrices T with appropriate

dimensions, and from system (6), we have

0 = 2ζT(t)T [Ax(t) + Bx(t − h(t)) − ẋ(t)] (14)

by substituting (11)–(14) in (10), the time derivative V̇ (t)

can be expressed as

V̇ (t) ≤ ζT(t)Λζ(t) (15)

where

Λ = Φ +
ha

N
LZ−1

1 LT + (h2 − h(t))MZ−1
2 MT+

(h(t) − ha)V Z−1
2 V T.

If ∀h(t) ∈ [h1, h2]

Λ < 0. (16)

Then V̇ (t) < −ε ‖x(t)‖2 for some scalar ε > 0, from which

we conclude that the nominal system (6) is asymptotically

stable according to Lyapunov stability theory.

Now, we apply Lemma 2 to (16) to yield the following

inequalities:

Φ +
ha

N
LZ−1

1 LT + (h2 − ha)MZ−1
2 MT < 0 (17)

Φ +
ha

N
LZ−1

1 LT + (h2 − ha)V Z−1
2 V T < 0. (18)

Schur complement on (17) and (18) yields the LMIs

stated in the Theorem 1. �
Remark 1. Different from the decomposition ap-

proach used in [22], when dealing with the time derivative

of L-K functional, we proposed a new tight integral in-

equality (Lemma 1) for bounding the cross terms, hence,

it yields a less conservative result. The comparisons of con-

servatism with some existing methods will be presented in

Section 4.

Remark 2. When the information of the time derivative

h(t) is unknown, by choosing P3 = 0, we can get delay-

dependent and rate-independent stability criterion from

Theorem 1.

Next, we study the robust stability of the uncertain sys-

tem (1).

Theorem 2. For given values of h1, h2 and μ, sys-

tem (1) is asymptotically stable, if there exist a scalar

εi > 0 (i = 1, 2), and real symmetric positive definitive

matrices P1, P2, P3, Z1, Z2, symmetric matrices Q, S

and free matrix variables Lj , Mj , Vj , Tj (j = 1, 2),

with appropriate dimensions such that the following LMIs

hold:

⎡
⎢⎣ Φ̂1 ΓT

1 D ε1Γ
T
2

∗ −ε1I 0

∗ ∗ −ε1I

⎤
⎥⎦ < 0 (19)

⎡
⎢⎣ Φ̂2 ΓT

1 D ε2Γ
T
2

∗ −ε2I 0

∗ ∗ −ε2I

⎤
⎥⎦ < 0 (20)

and

Q =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

Q11 Q12 · · · Q1N

∗ Q22 · · · Q2N

...
...

. . .
...

∗ ∗ QN−1,N−1 QN−1,N

∗ ∗ ∗ QNN

⎤
⎥⎥⎥⎥⎥⎥⎥⎦
≥ 0

S =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

S11 S12 · · · S1N

∗ S22 · · · S2N

...
...

. . .
...

∗ ∗ SN−1,N−1 SN−1,N

∗ ∗ ∗ SNN

⎤
⎥⎥⎥⎥⎥⎥⎥⎦
≥ 0
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where

Φ̂1 =

⎡
⎢⎢⎢⎣

Φ

√
ha

N
L

√
hδM

∗ −Z1 0

∗ ∗ −Z2

⎤
⎥⎥⎥⎦

Φ̂2 =

⎡
⎢⎢⎢⎣

Φ

√
ha

N
L

√
hδV

∗ −Z1 0

∗ ∗ −Z2

⎤
⎥⎥⎥⎦

Γ1 =
[

TT
1 0 · · · 0 TT

2 0 0
]

Γ2 =
[

Ea 0 · · · 0 Eb 0 · · · 0
]
.

Proof. Replacing A and B in Theorem 1 with A + ΔA,

B + ΔB, respectively, and using Lemma 3 completes the

proof. �

4 Numerical examples

In this section, three numerical examples are given

to show that the proposed approach reduces the con-

servativeness compared with some of the existing

ones.

Example 1[3]. Consider a nominal time-delay system

with the following parameters:

A =

[
−2 0

0 −0.9

]
, B =

[
−1 0

−1 −1

]
. (21)

For given μ and unknown μ, Tables 1 and 2 provides the

maximal allowable bounds of the delay h2 for given lower

bounds h1, respectively. From the tables, it is clear that the

proposed stability criterion is less conservative than those

in [3, 14, 16, 19−22] even when we use small delay parti-

tioning number. Furthermore, with the increase of the de-

lay partitioning number, the conservatism will gradually

reduce. The less conservative results are mainly attributed

to the use of the tighter integral inequalities (Lemma 1) for

dealing with the cross-terms.

Example 2[13]. Consider an uncertain system described

by the matrices as

A =

[
−2 + δ1 0

0 −1 + δ2

]
, B =

[
−1 + δ3 0

−1 −1 + δ4

]

(22)

where

|δ1| ≤ 1.6, |δ2| ≤ 0.05, |δ3| ≤ 0.1, |δ4| ≤ 0.3.

Table 1 Maximum allowable delay bound h2 for given h1 and µ

µ Method h1 = 0 h1 = 1 h1 = 2 h1 = 3 h1 = 4 h1 = 5

0.5

[3] 2.0439 2.0764 2.4328 3.2234 4.0643 −
[14] 2.0723 2.1276 2.5048 3.2591 4.0744 −
[16] 2.0801 2.1513 2.7113 3.3839 4.1136 −
[21] 2.1484 2.3239 2.8630 3.5729 4.3343 5.1306

[22] (N = 2) 2.2022 2.3912 2.9578 3.6384 4.3736 5.1463

Theorem 1 (N = 2) 2.3367 2.5627 3.1084 3.7402 4.4340 5.1703

Theorem 1 (N = 3) 2.3485 2.5829 3.1371 3.7770 4.4779 5.2207

Theorem 1 (N = 4) 2.3526 2.5898 3.1469 3.7895 4.4928 5.2377

0.9

[3] 1.3789 1.7424 2.4328 3.2234 4.0643 −
[14] 1.5304 1.8737 2.5048 3.2591 4.0744 −
[16] 1.6654 2.1251 2.7113 3.3839 4.1136 −
[21] 1.7157 2.2302 2.8630 3.5729 4.3343 5.1306

[22] (N = 2) 1.8828 2.3585 2.9578 3.6384 4.3736 5.1463

Theorem 1 (N = 2) 2.1377 2.5627 3.1084 3.7402 4.4340 5.1703

Theorem 1 (N = 3) 2.1486 2.5829 3.1371 3.7770 4.4779 5.2207

Theorem 1 (N = 4) 2.1524 2.5898 3.1469 3.7895 4.4928 5.2377

Table 2 Maximum allowable delay bound h2 for given h1 and unknown µ

µ Method h1 = 0 h1 = 1 h1 = 2 h1 = 3 h1 = 4 h1 = 5

Any µ

[3] 1.3454 1.7424 2.4328 3.2234 4.0643 −
[14] 1.5296 1.8737 2.5049 3.2591 4.0744 −
[16] 1.6654 2.1251 2.7113 3.3839 4.1136 −

[19] (Corollary 2) 1.868 2.120 2.724 3.458 4.257 5.097

[20] (Theorem 1 Nv = 4) 2.11 2.20 2.65 − − −
[21] 1.7157 2.2302 2.8630 3.5729 4.3343 5.1306

[22] (N = 2) 1.8828 2.3585 2.9578 3.6384 4.3736 5.1463

Theorem 1 (N = 2) 2.1377 2.5627 3.1084 3.7402 4.4340 5.1703

Theorem 1 (N = 3) 2.1486 2.5829 3.1371 3.7770 4.4779 5.2207

Theorem 1 (N = 4) 2.1524 2.5898 3.1469 3.7895 4.4928 5.2377
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Table 3 Upper delay bound h2 for given h1

Method
h1

0 0.2 0.4 0.6 0.8 1.0

[13] 0.9442 0.9757 1.0208 1.0795 1.1500 1.2308

[21] 1.0571 1.0953 1.1385 1.1865 1.2392 1.2966

[22] (N = 2) 1.1030 1.1337 1.1703 1.2123 1.2594 1.3111

Theorem 2 (N = 2) 1.1510 1.1783 1.2123 1.2527 1.2993 1.3515

Theorem 2 (N = 3) 1.1557 1.1851 1.2214 1.2645 1.3140 1.3693

Theorem 2 (N = 4) 1.1573 1.1875 1.2246 1.2686 1.3191 1.3755

When there is no restriction on the delay derivative, Ta-

ble 3 shows the obtained maximum allowable delay bound

for a varying h1. From the table, it is clear to see that for

this example, some existing results have been improved.

Example 3[16]. Consider another uncertain system de-

scribed by the matrices

A =

[
−0.5 −2

1 −1

]
, B =

[
−0.5 −1

0 0.6

]
,

D =

[
1 0

0 1

]
, Ea =

[
0.2 0

0 0.2

]
,

Eb =

[
0.2 0

0 0.2

]
.

When h1 = 0, Table 4 lists the maximum allowable

delay bounds for different values of the delay derivative.

It is found that the maximum allowable upper bounds of

time-delay are 0.5594, 0.5599, 0.5601 respectively when

N = 2, 3, 4, which are larger than those in [16, 21, 22]. Ob-

viously, our criterion leads to much less conservative results.

Table 4 Maximum allowable delay bound h2 for h1 = 0

Method
µ

0.5 0.9 Any µ

[16] 0.4760 0.4760 0.4760

[21] 0.4783 0.4783 0.4783

[22] (N = 2) 0.5151 0.5151 0.5151

Theorem 2 (N = 2) 0.5594 0.5594 0.5594

Theorem 2 (N = 3) 0.5599 0.5599 0.5599

Theorem 2 (N = 4) 0.5601 0.5601 0.5601

5 Conclusions

This paper proposes a new approach for delay-dependent

robust stability analysis of uncertain system with interval

time-varying delay. The key features of the approach in-

clude delay decomposition technique for designing the L-K

functional and a tighter integral inequality for bounding

the cross-terms. As a result, less conservative results are

achieved. Numerical examples have illustrated the effec-

tiveness of the proposed method.
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