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Abstract: We present an adaptive control scheme of accumulative error to stabilize the unstable fixed point for chaotic systems
which only satisfies local Lipschitz condition, and discuss how the convergence factor affects the convergence and the characteristics of
the final control strength. We define a minimal local Lipschitz coefficient, which can enlarge the condition of chaos control. Compared
with other adaptive methods, this control scheme is simple and easy to implement by integral circuits in practice. It is also robust
against the effect of noise. These are illustrated with numerical examples.
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1 Introduction

Since Ott et al.[1] firstly proposed the method of chaos
control in 1990, chaos control has attracted great attention
and lots of successful experiments have been reported[2−17],
such as feedback control[5, 6], impulsive control[7], back-
stepping method[8], adaptive control[9−14], sliding mode
control[15,16], fuzzy control[17], finite-time control and so on.
However, most methods aim at a kind of chaotic system
and they are complex both in design and implementation.
How to realize the control of chaotic systems by designing a
simple, physically available and general controller is partic-
ularly significant both for theoretical research and practical
applications[18].

One practicable method is the linear feedback, but it is
difficult to find the suitable feedback constant[10]. Recently,
Huang proposed an adaptive feedback control method to ef-
fectively synchronize two almost arbitrary identical chaotic
systems in his series of papers[9, 13, 19−21] . However, a
uniform Lipchitz condition on the nonlinear vector field
is always assumed in advance, and these papers could
not guarantee the feasibility of the adaptive control tech-
niques (ACT, where the control strength ε̇i = −riei

2, i =
1, 2, · · · , n with ei being the error) in those non-uniform
Lipschitz systems[11]. Lin[11] generalized the ACT to the
systems which only satisfy local Lipschitz condition. In fact,
the above methods[9, 11, 13, 19−21] are speed-gradient meth-
ods in essence. The initial value of the control strength εi

is difficult to choose, and the square of error is not easy to
implement in practice.

Besides, they all did not study the effect of the conver-
gence factor. In fact, the convergence factor has a range,
and the choice of convergence factor is of great importance
to ensure a limited convergence time, which has great prac-
tical significance. It also affects the property of final control
strength that helps us understand the essence of chaos con-
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trol. However, there are few research on how the conver-
gence factor affects the convergence time and the property
of the final control strength.

Inspired by these discussions, we represent a novel control
strength calculated by accumulative error without difficulty
in choosing initial values, and discuss how the convergence
factor affects the convergence of systems and the character-
istics of the final control strength. The rest of the paper
is organized as follows. The algorithm of accumulative er-
ror and its mathematical proof are given in Section 2. In
Section 3, two methods of choosing convergence factor are
discussed. The control scheme is applied to three examples
in Section 4. Finally, the conclusions are drawn in Section
5.

2 Control scheme of accumulative error

Considering the following n-dimensional continuous
chaotic system,

ẋ = f(x) (1)

where x = [x1, x2, · · · , xn]T ∈ Rn is the state variable, and
f(x) = [f1(x), f2(x), · · · , fn(x)] ∈ Rn is n-dimensional con-
tinuous differentiable nonlinear vector function which sat-
isfies local Lipchitz condition, i.e., for any compact set S,
there exists a positive constant li(S) such that

| fi(x) − fi(y) |� li(S) ‖ x − y ‖, ∀x, y ∈ S (2)

where ‖ · ‖ denotes the Euclidean norm and the existence
of li(S) is related to the choice of the compact set S. There
exists a minimal coefficient l(x,y) for a certain point (x, y).

Definition 1. For a certain point (x, y), the minimal
local Lipchitz coefficient l(x,y) is a constant satisfying

n∑

i=1

(xi − yi)(fi(x) − fi(y)) = l(x,y) ‖ x − y ‖2�

(
n∑

i=1

li(S)) ‖ x − y ‖2, ∀x, y ∈ S.

(3)

The minimal local Lipchitz coefficient l(x,y) is a function
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of (x, y), and it may be negative, positive or zero. Its upper-
bound is

n∑

i=1

li(S).

Systems in the form of (1) satisfying (2, 3) include all the
well-known chaotic and hyperchaotic systems.

The unstable fixed point is denoted as x∗ =
[x∗

1, x
∗
2, · · · , x∗

n]T which satisfies f(x∗) = 0. To stabilize
this equilibrium, we design the controlled system as

ẋ = f(x) + ε(x − x∗) (4)

ε̇i = γi(xi − x∗
i ), i = 1, 2, · · · , n (5)

where γi is the convergence factor. It may be negative or
positive. The value of γi is related to initial points and
decides the convergence time.

Because of the negative feedback, the initial value of
ε(t) is a non-positive constant vector with a small absolute
value. For simplicity, setting ε(0) = 0, we get the control
strength from (5) as

εi(t) = γi

∫ t

0

(xi(ω) − x∗
i )dω, i = 1, 2, · · · , n. (6)

It means the controlling term changes with error, starting
from zero and ending with zero. It can be regarded as a non-
invasive control. It is the product of error and its integral in
essence, but not the proportional integral (PI) control. It is
significantly different from the usual linear feedback in [5,
12], where εi is a constant or piecewise constant. Especially,
the fixed control strength is used in linear feedback wherever
the initial points start, thus the strength must be maximal,
which means a kind of waste in practice[13].

Definition 2. The control strength εi(t) in (6) is a linear
function of the integration of error (accumulative error in
essence) in the past time. Therefore, we call this control
method (4, 5, 6) as accumulative error control (AEC).

The control strength (6) is different from the following
control strength in [11, 13, 14],

εi(t) = −ri

∫ t

0

(xi − x∗
i )2dt, i = 1, 2, · · · , n (7)

where ri is an arbitrarily positive constant.
Remark 1. The control strength (6) is a linear func-

tion of accumulative error, which possesses certain physical
meaning in real systems and can be realized by integral cir-
cuits, such as ordinary resistance-capacitance (RC) circuits.
Therefore, it is simpler and much easier to implement than
(7).

Remark 2. The control strength (6) does not require
calculation of initial value, while the initial value of εi(t) in
(7) is difficult to choose[11].

In fact, the control strength (7) can be deduced by the
speed-gradient method. We take the error criterion function
as

Q(x, t) =
1

2

n∑

i=1

(xi − x∗
i )

2 (8)

and its time derivative is

dQ(x, t)

dt
=

n∑

i=1

(xi − x∗
i )(fi(x) + ε(xi − x∗

i )). (9)

According to the speed-gradient method, the change of
εi is opposite to the gradient direction of dQ(x,t)

dt
. So we

obtain the adaption rule

ε̇i = −ri(xi − x∗
i )2. (10)

Therefore, the control strength (6), rather than (7), is a
novel control method. Next we will verify its stability.

Noticing that the boundedness of every trajectory pro-
duced by system (4) is crucial to the achievement of chaos
control, we are to investigate under what kind of condition
those trajectories of system (4) are always bounded.

We introduce a Lyapunov function as

V (x, t) = (x − x∗)T(x − x∗). (11)

Select an arbitrary initial point

x = [x1(0), x2(0), · · · , xn(0)]T ∈ Rn. (12)

Set a constant as

p =
n∑

i=1

(xi(0) − x∗
i )2

and construct a closed ball by

Φ√
σp(x

∗) = {x ∈ Rn|
n∑

i=1

(xi − x∗
i )2 � σp} (13)

where σ is an arbitrarily positive constant lager than 1. It
follows from (3) that there exists a minimal local Lipchitz
coefficient l(x, x∗) for any x ∈ Φ√

σp(x
∗) satisfying

n∑

i=1

(xi − x∗
i )(fi(x) − fi(x

∗)) = l(x,x∗) ‖ x − x∗ ‖2�

(

n∑

i=1

li(Φ)) ‖ x − x∗ ‖2, ∀x, x∗ ∈ Φ.

(14)

Due to the local Lipschitz condition, the solution of
system (4), denoted by x(t) = x(t; 0, x(0)), is unique on
its maximal existent interval [0, t1). Next, it is to prove
that the ending point t1 is infinity. First, we claim that
x(t) ∈ Φ√

σp(x
∗) for any t ∈ [0, t1] , and we perform the

reasoning by contradiction. If this claim is not true, there
exists a time constant

t2 = inf{t ∈ (0, t1)|V (x, t) � σp} (15)

which is the first time trajectory x(t) hits the boundary of
the ball. The derivative of function V (x, t) for t ∈ [0, t2] is

V̇ (x, t) = 2
n∑

i=1

(xi − x∗
i )(fi(x) − fi(x

∗))+

2
n∑

i=1

εi(xi − x∗
i )2 =

2l(x, x∗) ‖ x − x∗ ‖2 +2(x − x∗)T

diag{ε1, ε2, · · · , εn}(x − x∗) =

2(x − x∗)Tdiag{l(x, x∗) + ε1, l(x, x∗)+

ε2, · · · , l(x, x∗) + εn}(x − x∗) �

2(x − x∗)Tdiag{
n∑

i=1

li(Φ) + ε1,
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n∑

i=1

li(Φ) + ε2, · · · ,

n∑

i=1

li(Φ) + εn}(x − x∗) � 0 (16)

under the condition that

l(x, x∗) + εi �
n∑

i=1

li(Φ) + ε1 < 0. (17)

For any t ∈ [0, t2] , each xi(t) is bounded, so there exists
γi satisfying

γi

∫ t

0

(xi − x∗
i )dt < −

n∑

i=1

li(Φ) � −l(x, x∗) (18)

where −l(x, x∗) is shorted as the opposite of Lipchitz co-
efficient. It is a function of variable x. The range of

εi < −l(x, x∗) is larger than that of εi < −
n∑

i=1

li(Φ), which

enlarges the condition of chaos control.
In fact, the sign of γi makes εi < 0 , and the value of

γi makes εi < −l(x, x∗) . Although εi and l(x, x∗) vary
with x, εi(t) = γi

∫ t

0
(xi − x∗

i )dt is the integration of error
and the sign of (xi − x∗

i ) changes at some moments may
not affect the truth of εi < −l(x, x∗). However, for the
situation that the sign of (xi − x∗

i ) change frequently, such
as some trigonometric functions, we adopt

γi = γi0 sgn(xi − x∗
i ) or γi = −γi0 sgn(xi − x∗

i ) (19)

where γi0 is a constant. Therefore, the value of εi with an
appropriate γi is always less than that of −l(x, x∗) for the
same variable x.

Obviously, it follows that V (x(t), t) is decreasing on
[0, t2], which leads to

σp � V (x(t2), t2) � V (x(0), 0) � σp. (20)

This is a contradiction, which consequently validates our
assertion. Trajectory x(t)|[0,t1], starting inside the bounded
ball, does not leave this ball yet. Thus, by virtue of the
theory of ordinary differential equations, we can extend
the ending point t1 to +∞, and consequently prove that
x(t)|[0,+∞) is bounded under condition (18).

The largest invariant set of

E = {x|x ∈ Φ√
σp(x

∗), V̇ = 0} (21)

only has one element x = x∗. In light of the LaSalle invari-
ance principle[22], we conclude that trajectory x(t) starting
from x(0) surely approaches x∗ as t → +∞. Therefore,
the controlled system (4) is asymptotically stable at x∗. It
means there exists a finite time tf such that ‖ x − x∗ ‖< δ
for t ∈ [tf , +∞), where δ is an arbitrarily small positive
constant or accuracy demand. Therefore, εi(t) approaches
a negative constant ε∗i at t = tf .

Furthermore, condition (18) is not necessarily true for
any t ∈ [0, +∞). We assume xi(t) is bounded for any t ∈
[0, t3], and

pmax = max
t∈[0,t3]

n∑

i=1

(xi(t) − x∗
i )2. (22)

Then, for any t ∈ [t3, +∞], if there exists γi satisfying con-
dition (18), x(t) asymptotically approaches x∗ as t → +∞.

Theorem 1. For the continuous chaotic system (4)
with accumulative error control in the form of (5), x(t) is
bounded for any t ∈ [0, t3]. If there exist γi, i = 1, 2, · · · , n
which meet condition (18) for any t ∈ [t3, +∞], then x(t) is
asymptotically stable at x∗ starting from any initial point
x(0) ∈ Φ√

σpmax . At the same time, ε arrives at a negative
constant vector ε∗.

Therefore, the essence of chaos control is the negative
feedback. The convergence factor γi in (6) satisfying con-
dition (18) assures the negative feedback. The chaotic sys-
tems that can be stabilized by the control strength (7) are
also stabilized by (6). However, (6) has a simpler structure
than (7), and it is easy to implement in practice. It can be
directly extended to the time-varying system in the form
of ẋ = f(x, t), which will be illustrated in the following
simulations.

In particular, some initial points which are far from the
fixed point and generate unbounded trajectories through
chaotic systems can be stabilized by this control method.
It indicates there exists a large attractive region of x∗, which
implies that such chaos control is quite robust against the
effect of noise. It will also be explained in the following
simulations.

In what follows, we are to discuss some characteristics of
ε∗.

Setting e = x − x∗, we linearize (4) at the equilibrium
point x∗ and get

ė = (Dfx∗ + G∗)e (23)

where Dfx∗ = ∂f
∂x

|x=x∗ is the Jacobi matrix at x∗, and
G∗ = diag{ε∗1, ε∗2, · · · , ε∗n}.

As system (1) at x∗ is unstable, not all eigenvalues of
Dfx∗ have negative real parts. From Theorem 1, we know
ε∗i < 0. Therefore, according to the linear control theory
and linear algebra, we have the following remarks.

Remark 3. All eigenvalues of Dfx∗ + G∗ lies in the left
of corresponding eigenvalues of Dfx∗ . Under the premise of
convergence, the larger the absolute value of γi is, the more
the eigenvalues of linearized system matrix are moved to the
left. If the absolute of γi is large enough, all eigenvalues of
Dfx∗ + G∗ have negative real parts. Therefore, the effect
of the controlling term is to make the eigenvalues of the
system matrix move to the left in the complex plane.

Remark 4. The final matrix ε∗ can be used as a lin-
ear feedback constant for the control of continuous chaotic
systems.

As the stability of the controller (7) has been proved in
those papers[9, 11, 13, 19−21] , from (18), there exists ri satis-
fying

ri

∫ t

0

(xi − x∗
i )2dt >

n∑

i=1

li(Φ). (24)

It can be seen from (24) that ri cannot be arbitrarily small.
However, if ri is too large, the trajectory produced by sys-
tem (4) may be unbounded. Therefore, ri has a range for
convergence, too.

It is easily concluded that Theorem 1, Remark 3 and
Remark 4 are also true for the control strength (7).
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3 Two methods for choosing conver-
gence factor

Although we have verified the existence of γi, it is difficult
to confirm their special values for different initial points.
The numerical simulation and estimation of various char-
acteristics remains the main method to study the chaotic
systems[2]. Therefore, we choose the values of γi by the
following two methods.

The first method adopts the gradient descent algorithm
to search γi online or off-line. According to the first-order
sampling system of (4), we have

xi(k + 1) =xi(k) + [fi(x(k)) + εi(xi(k) − x∗
i )]Δt =

xi(k) + [fi(x(k))+

γi

k−1∑

j=1

(xi(j) − x∗
i )Δt(xi(k) − x∗

i )]Δt (25)

where Δt denotes the time interval. We set the error crite-
rion function of each component as

qi(k + 1) =
1

2
(xi(k + 1) − x∗

i )
2. (26)

From the gradient descent algorithms, we get

γi(k + 1) =γi(k) − ηi
∂qi

∂γi
=

γi(k) − ηi(xi(k + 1) − x∗
i )(xi(k) − x∗

i )Δt×
(

k−1∑

j=1

(xi(j) − x∗
i )Δt

)
(27)

where ηi is a positive constant. For simplicity, the initial
values of γi are zero.

The second method is the rough estimation and trial-
and-error method. It is a simple yet reliable strategy in
order to choose the appropriate γi. We simplify condition
(18) as γi

∫ t

0
(xi −x∗

i )dt < 0 according to negative feedback.
For an arbitrary initial point x(0), we choose γi according
to

γi(xi(0) − x∗
i )Δt < 0. (28)

If the trajectory escapes to infinity, it indicates the ab-
solute value of γi is too small to satisfy condition (18), and
we should increase the absolute value of γi or employ (19).
However, if the absolute value of γi is large enough to cause
oscillation, the convergence time is likely to increase. It is
recommended that different values of γi be chosen for dif-
ferent initial points to achieve the best convergence effect.

4 Numerical simulations

In this section, we adopt three examples to show the
effectiveness of this method and verify the above theoretical
results.

Example 1. The Rossler system.
The Rossler system[21, 23] is depicted as

⎧
⎪⎨

⎪⎩

ẋ1 = −(x2 + x3)

ẋ2 = x1 + αx2

ẋ3 = β + x3(x1 − τ )

where x1, x2, x3, α, β, τ ∈ R. The system with α = 0.2, β =
0.2, τ = 5.7 is chaotic. Its unstable fixed points are (0.007,
−0.0351, 0.0351) and (5.693, −28.4648, 28.4648). We uti-
lize the fourth-order Runge-Kutta scheme with Δt = 10−3.
The initial point is (200, −200, 200).

When (0.007, −0.0351, 0.0351) is the controlling goal, ac-
cording to (28), we choose different convergence factors and
get the phase diagram, trajectory diagram and the curves
of ε1, ε2, ε3 as shown in Figs. 1 and 2, respectively. It can
be seen that ε(t) satisfies condition (18) from t > 0.06 in
Fig. 1 (c) and that from t > 0.01 in Fig. 2 (c).

(a) Phase diagram

(b) Trajectory diagram

(c) Curves of ε(t)

Fig. 1 The Rossler system is driven to (0.007, −0.0351, 0.0351)

starting from (200, −200, 200) with γ1 = γ3 = −2 and γ2 = 2
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(a) Phase diagram

(b) Trajectory diagram

(c) Curves of ε(t)

Fig. 2 The Rossler system is driven to (0.007, −0.0351, 0.0351)

starting from (200, −200, 200) with γ1 = γ3 = −2000 and

γ2 = 2000

In Fig. 1, the convergence time is 0.8 and ε∗ =
[−18.4213, −28.0899,−262.3980]T while they are 0.017 and
ε∗ = [−1251.7, −1250.5,−1547.6]T in Fig. 2. The eigen-
values of Dfx∗ + G∗ are −18.5283, −27.7831,−268.0909
and −1251+0.7 i,−1251−0.7 i,−1553.3, respectively, both
of which have negative real parts. Compared with the
eigenvalues of Dfx∗ , which are 0.0970 + 0.9952 i, 0.0970 −
0.9952 i,−5.6870, it is easily concluded that under the
premise of convergence for the same initial point, the larger
the absolute value of γi is, the more the eigenvalues of the
linearized system matrix are moved to the left, and the
faster the convergence is. There exists a wide range of γi

to guarantee the convergence of system like this example.
As for the fixed point (5.693, −28.4648, 28.4648), we

choose γ1 = γ3 = −20, γ2 = 20 according to (28). The
trajectory x(t) reaches the fixed point at t = 0.19, and ε(t)
arrives at (−87.8591, −84.3045, −338.6637) satisfying con-
dition (18) from t > 0.03, as shown in Fig. 3. All of the
eigenvalues of Dfx∗ + G∗ have negative real parts, too.

(a) Phase diagram

(b) Trajectory diagram

(c) Curves of ε(t)

Fig. 3 The Rossler system is driven to (5.693, −28.4648,

28.4648) starting from (200, −200, 200) with γ1 = γ3 = −20

and γ2 = 20

To display the robustness of the proposed method, we
add a uniformly distributed random noise in the range [−20,
20] to x(t). Fig. 4 indicates that x(t) eventually approaches
the fixed point and ultimately fluctuates slightly around it.

In order to illustrate the differences of (6) and (7), we
adopt (7) to simulate the above example. The trajectory
from the initial point (200, −200, 200) diverges as shown
in Fig. 5. We find ri cannot be arbitrarily large. As for the
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initial point which is far from x∗, especially the absolute
value of error is much larger than 1, the convergence of (7)
is faster and ri cannot be too large while for the initial
points near x∗, the convergence of (6) is faster as shown in
Fig. 6. The gains of convergence factor of γi and ri are the
same, but the sign of γi is decided by condition (28).

(a) Phase diagram

(b) Trajectory diagram

(c) Curves of ε(t)

Fig. 4 The Rossler system is driven to (0.007, −0.0351, 0.0351)

starting from (2, −10, 20) with γ1 = γ3 = −20 and γ2 = 20

Example 2. Lorenz system.
We consider the Lorenz system[13, 24]

⎧
⎪⎨

⎪⎩

ẋ1 = θ1(−x1 + x2)

ẋ2 = θ2x1 − x2 − x1x3

ẋ3 = x1x2 − θ3x3

and the corresponding receiver system
⎧
⎪⎨

⎪⎩

ẏ1 = θ1(−y1 + y2) + ε1(y1 − x1)

ẏ2 = θ2y1 − y2 − y1y3 + ε2(y2 − x2)

ẏ3 = y1y2 − θ3y3 + ε3(y3 − x3)

with the control strength (6),where x1, x2, x3, θ1, θ2, θ3∈R.

Fig. 5 The Rossler system is driven to (5.693, −28.4648,
28.4648) by the control strength (7) starting from (200,
−200, 200) with r1 = r2 = r3 = 30

(a) γ1 = γ3 = 200, γ2 = −200

(b) r1 = r2 = r3 = 200

Fig. 6 The Rossler system is driven to (0.007, −0.0351, 0.0351)

by the control strengths (6) and (7) respectively starting from

(0, 0, 0)
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(a) Using the first method to choose γ2, ε2 is stable at −0.2367

with η = 0.1

(b) Using the second method to choose γ2, ε2 is stable at

−0.0061 with γ2 = −0.1

(c) Fig. 1 in [13] with r2 = 0.1

Fig. 7 The synchronization of two Lorenz systems achieved by

only the signal x2. Here the initial values of (x; y) are set as (2,

3, 7; 3, 4, 8)

Let θ1 = 10, θ2 = 28, θ3 = 8
3

and ε1 = ε3 = 0. We repeat
the simulation in [13] and obtain the synchronization of two
Lorenz systems as shown in Fig. 7. It can be seen that the
fastest of convergence is (a), and the smallest oscillation is
(b), which indicate the control strength (6) is superior to
(7) in many aspects.

Example 3. A simple pendulum.
We consider a simple planar pendulum[20] whose motion

is governed by

{
ẋ1 = x2

ẋ2 = −sin(x1)(1 − sin(t)).

The unstable fixed point is (0, 0) and the initial values
are (0.2, 0.1). The controlled system is

{
ẋ1 = x2 + ε1(x1 − 0)

ẋ2 = −sin(x1)(1 − sin(t)) + ε2(x2 − 0).

According to (19) and (28), we employ γ1 =
−100 sgn(x1−0) and γ2 = −100 sgn(x2−0). The numerical
results in Figs. 8 and 9 show that the system is stabilized to
the fixed point (0,0) by the control strengths (6) and (7),
respectively. This implies that the control strengths (6) is
faster than (7). At the same time, the example indicates
control strength (6) and (7) can be applied to ẋ = f(x, t)
when f(x, t) is bounded for t.

(a) Trajectory diagram

(b) Curves of ε (t)

Fig. 8 The pendulum system is driven to (0, 0) by the

control strength (6) with γ1 = −100 sgn(x1 − 0) and

γ2 = −100 sgn(x2 − 0)
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(a) Trajectory diagram

(b) Curves of ε (t)

Fig. 9 The pendulum system is driven to (0, 0) by the control

strength (7) with r1 = r2 = 100

5 Conclusions

We present the adaptive control method of accumula-
tive error (AEC), which is quite robust against the effect
of noise. The question about how the convergence factor
affects the convergence is studied, and the property of the
final control strength is given. As the control strength is
a linear function of accumulative error, which can be real-
ized by ordinary RC circuits, we conclude that the proposed
method is simpler and easier to implement in practice than
many other adaptive methods.

In addition, the control idea can be generalized to dis-
crete chaotic systems, but the choice of convergence factor
is more difficult. The control strength changes with error,
and reaches a constant vector, which makes the eigenvalues
of linearized system matrix at the fixed point move to the
left for continuous systems or move into the unit circle for
discrete systems.

References

[1] E. Ott, C. Grebogi, J. A. Yorke. Controlling chaos. Physical
Review Letters, vol. 64, no. 11, pp. 1196–1199, 1990.

[2] B. R. Andrievskii, A. L. Fradkov. Control of chaos: Meth-
ods and applications. I. Methods. Automation and Remote
Control, vol. 64, no. 5, pp. 673-713, 2003.

[3] A. L. Fradkov, R. J. Evans, A. L. Fradkov. Control of chaos:
Methods and applications in engineering. Annual Reviews
in Control, vol. 29, no. 1, pp. 33–56, 2005.

[4] S. A. Sarra, C. Meador. On the numerical solution of chaotic
dynamical systems using extend precision floating point
arithmetic and very high order numerical methods. Nonlin-
ear Analysis: Modelling and Control, vol. 16, no. 3, pp. 340–
352, 2011.

[5] H. Richter, K. J. Reinschke. Local control of chaotic
systems–A Lyapunov approach. International Journal of Bi-
furcation and Chaos, vol. 8, no. 7, pp. 1565–1573, 1998.

[6] T. Li, A. G. Song, S. M. Fei. Master-slave synchronization
for delayed Lur′e systems using time-delay feedback control.
Asian Journal of Control, vol. 13, no. 6, pp. 879–892, 2011.

[7] D. Chen, J. Sun, C. Huang. Impulsive control and syn-
chronization of general chaotic system. Chaos, Solitons &
Fractals, vol. 28, no. 1, pp. 213–218, 2006.

[8] H. Wang, X. J. Zhu, Z. Z. Han, S. W. Gao. A new stepping
design method and its application in chaotic Systems. Asian
Journal of Control, vol. 14, no. 1, pp. 230–238, 2012.

[9] D. B. Huang. Stabilizing near-nonhyperbolic chaotic sys-
tems with applications. Physical Review Letters, vol. 93,
no. 21, Article. 214101, 2004.

[10] R. W. Guo. A simple adaptive controller for chaos and
hyper-chaos synchronization. Physics Letters A, vol. 372,
no. 17, pp. 5593–5597, 2008.

[11] W. Lin. Adaptive chaos control and synchronization in only
locally Lipschitz systems. Physics Letters A, vol. 372, no. 18,
pp. 3195–3200, 2008.

[12] A. B. Huberman, E. Lumer. Dynamics of adaptive systems.
IEEE Transactions on Circuits and Systems, vol. 37, no. 4,
pp. 547–550, 1990.

[13] D. Huang. Simple adaptive-feedback controller for identical
chaos synchronization. Physical Review E, vol. 71, no. 3, Ar-
ticle. 037203, 2005.

[14] G. Chen. A simple adaptive feedback control method for
chaos and hyper-chaos control. Applied Mathematics and
Computation, vol. 217, no. 17, pp. 7258–7264, 2011.

[15] R. F. Zhang, D. Y. Chen, J. G. Yang, J. Wang.
Anti-synchronization for a class of multi-dimensional au-
tonomous and non-autonomous chaotic systems on the ba-
sis of the sliding mode with noise. Physica Scripta, vol. 85,
no. 10, pp. 065006, 2012.

[16] M. C. Pai. Adaptive sliding mode observer-based synchro-
nization for uncertain chaotic systems. Asian Journal of
Control, vol. 14, no. 3, pp. 736–743, 2012.

[17] K. Tanaka, T. Ikeda, O. H. Wang. A unified approach to
controlling chaos via an LMI-Based fuzzy control system
design. IEEE Transactions on Circuits Systems I: Funda-
mental Theory and Applications, vol. 45, no. 10, pp. 1021–
1040, 1998.

[18] N. J. Corron, S. D. Pethel, B. A. Hopper. Controlling
chaos with simple limiters. Physical Review Letters, vol. 84,
no. 17, pp. 3835–3838, 2000.

[19] D. Huang. Synchronization-based estimation of all param-
eters of chaotic systems from time series. Physical Review
E, vol. 69, no. 6, pp. 067201, 2004.

[20] D. Huang. Adaptive-feedback control algorithm. Physical
Review E, vol. 73, no. 6, pp. 066204, 2006.



F. F. Zhang et al. / Adaptive Control of Accumulative Error for Nonlinear Chaotic Systems 535

[21] D. Huang. Synchronization in adaptive weighted networks.
Physical Review E, vol. 74, no. 4, pp. 046208, 2006.

[22] J. P. LaSalle. Stability theory for ordinary differential equa-
tions. Journal of Differential Equations, vol. 4, no. 1, pp. 57–
65, 1968.

[23] O. E. Rossler. An equation for continuous chaos. Physics
Letters A, vol. 57, no. 5, pp. 397–398, 1976.

[24] E. N. Lorenz. Deterministic nonperiodic flow. Journal of the
Atmospheric Sciences, vol. 20, no. 2, pp. 130–141, 1963.

Fang-Fang Zhang graduated from
Northeast Petroleum University, China in
2003. She received her M. Sc. degree from
Beijing University of Technology, China in
2006. Then she worked for five years as an
associate professor in Binzhou University.
She is currently a Ph.D. candidate of
Shandong University.

Her research interests include adaptive
control, chaos control and intelligent con-

trol.
E-mail: zhff4u@163.com (Corresponding author)

Shu-Tang Liu received his Ph. D. de-
gree in control theory and control engineer-
ing from South China University of Tech-
nology and City University of Hong Kong,
China in 2002. From 2003 to 2005, he was
doing postdoctoral research at Academy of
Mathematics and Systems Science, Chinese
Academy of Sciences, China. Presently, he
is a professor and doctoral supervisor at
College of Control Science and Engineering,

Shandong University, China.
His research interests include spatial chaotic theory of nonlin-

ear dynamical systems and its application, qualitative theory and
qualitative control of complex system, control and applications
of fractals and so on.

E-mail: stliu@sdu.edu.cn

Ke-Xin Liu graduated from Shandong
University, China in 2010. He received his
M. Sc. degree from Shandong University in
2013. He is currently a Ph.D. candidate of
Chinese Academy of Sciences.

His research interests include adaptive
control, chaos control and multi-agent sys-
tem.

E-mail: skrzn2.0@163.com


