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Abstract: This paper considers the problem of simulating the humidity distributions of a grain storage system. The distributions
are described by partial differential equations (PDE). It is quite difficult to obtain the humidity profiles from the PDE model. Hence, a
discretization method is applied to obtain an equivalent ordinary differential equation model. However, after applying the discretization

technique, the cost of solving the system increases as the size increases to a few thousands. It may be noted that after discretization,
the degree of freedom of the system remain the same while the order increases. The large dynamic model is reduced using a proper
orthogonal decomposition based technique and an equivalent model but of much reduced size is obtained. A controller based on optimal
control theory is designed to obtain an input such that the output humidity reaches a desired profile and also its stability is analyzed.

Numerical results are presented to show the validity of the reduced model and possible further extensions are identified.
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1 Introduction

In recent years modeling, simulation and control of phys-
ical systems or processes have become crucial areas of ac-
tive research. Increasing demands for reliable and detailed
analysis of various practical problems has made numeri-
cal modeling and simulation of physical systems an im-
portant area of research. This is true for both analyses
of the systems themselves through simulations, as well as
for design of associated controllers for system or process
control[1]. Moreover, most practical physical systems are
governed by partial differential equations (PDEs) and are of
high-dimensional in nature. They appear in various appli-
cation areas, such as thermal processes, chemical processes,
agricultural & biological systems, etc.[2, 3] These systems
involve strong or weak interactions between different phys-
ical phenomena. Hence, lots of challenges are involved in
modeling, simulation and controller design. In this work,
modeling of a grain storage system is considered. Also, we
have designed a controller to obtain an optimal input tem-
perature such that the output humidity reaches to a desired
profile.

The main objective of a good storage is to create suitable
environmental conditions that provide protections to the
grains or food products to maintain its quality and quantity.
Health and quality of stored grain is mostly affected by
attacks of insects, fungi, etc. The growth of insects can
be controlled by controlling temperatures while controlled
humidity can prevent the growth of mite, fungi. Hence,
temperature as well as humidity plays very important role
in storage systems[4]. Therefore, accurate predictions of
them are quite necessary so that proper corrective actions
can be taken.

Conducting experiments to study the moisture distri-
butions in grain storage systems are expensive and time-
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consuming. Hence, numerical simulations can be performed
to predict them. There are several numerical tools avail-
able for this purpose like, finite difference (FD), finite el-
ement (FE), boundary element (BE) methods, etc. The
most popular method is FE method because of its sev-
eral advantage[5]. However, this procedure is also time-
consuming as the simulation time depends upon the num-
ber of nodes of the discretized model. To reduce the sim-
ulation time for this application, an equivalent model of
reduced size can be developed which has almost same dy-
namic properties as the original one. Consequently model
order reduction (MOR) is presently a very active area of
recent research[6], for both linear as well nonlinear sys-
tems. The area of MOR for practical distributed systems
has been extensively developed. Several reduction tech-
niques are available for them like, singular value decom-
position (SVD)[7], balanced truncation, Krylov subspace
projection[8−11] , proper orthogonal decomposition (POD)
approach[12−15], etc.

In this work, dynamic equations for moisture of a grain
storage system are simulated and an equivalent model
with lesser number of variables is obtained. The ap-
proach involved discretization of governing equations with
FE method and obtaining a reduced nonlinear dynamic sys-
tem of much smaller size with almost same dynamic prop-
erty as the original using POD method. A controller based
on optimal control theory[16] is designed for the reduced
model so that the output reaches to a desired profile. It
has also been shown that the controller acts fairly good for
the original model as well. The paper is organized in the
following way. In Section 2, the geometrical characteristics
of the storage system are discussed in detail. FE model-
ing of the system is given in Section 3 and a reduced order
model is developed in Section 4. A controller is designed
in Section 5 and its stability is analyzed using Lyapunov
stability criteria[17]. In Section 6, the numerical results are
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given and finally the paper is concluded with Section 7.

Table 1 Notations

Parameters Description Unit

[C], [K] Coefficient matrices

D Moisture diffusion coefficient (m2/s)

E Modulus of elasticity (N/m2)

Eb Activated energy (kJ/mol)

F̄ Input vector

F1 Positive definite matrix

k Permeability of the medium (m2)

km∗ Coefficient of diffusion

M∗ Activated moisture (kgwater/kggrain)

μw Dynamic viscosity of the (m2)

moisture

∇P Pressure gradient (Pa/m)

Q Positive semidefinite matrix

R Gas constant (J/(molK))

r Dimension of reduced model

σ Singular values

S Snapshot matrix

U Moisture concentration (kgwater/kggrain)

Ū0 Initial humidity (kg/m3)

Ū∗ Desired humidity (kg/m3)

Ueq(T ) Equilibrium water (kgwater/kgdry air)

holding capacity

u1 Input function K

u∗
1 Optimal input function K

uw Water velocity (m/s)

t Time d

t0 Initial time d

tf Final time d

z0 Initial reduced states

z∗ Desired reduced humidity

2 Geometry and problem description

For the present work, we have considered a three dimen-
sional grain storage system as shown in Fig. 1, similar to
that considered in [18]. The axisymmetrical view can be
obtained if the system is cut along z-axis. The total ca-
pacity of the system is about 1.25 tones and its dimensions
are given in Fig. 1. The storage system is made of galva-
nized iron. The simulations are performed for environmen-
tal conditions of Konkan region where humidity levels are
quite high. Special care should be taken while controlling
the moisture levels. Hence, proper predictions of them are
very important.

3 Finite element modeling

The governing equation for moisture transport[19] within
the storage system is given by

∂U

∂t
+ ∇(Uuw) = ∇D∇U. (1)

The velocity uw can be written as

uw = − k

μw
∇P. (2)

The pressure can be rewritten as[19]

P = E(U − Ueq(T )). (3)

The function Ueq(T ) can be taken as

Ueq(T ) ∝ T. (4)

Fig. 1 Three dimensional problem domain

The proportionality constant can be obtained using [20].
Hence, from (1)−(3), we can write

∂U

∂t
=

kE

μw
∇(U∇(U − Ueq(T ))) + ∇D∇U =

kE

μw
∇2U + ∇D∇U. (5)

The gradient of moisture diffusion coefficient can be writ-
ten as[21]

∇D = −km∗
dM∗

dx
. (6)

The activated moisture content M∗ can be calculated
from Boltzmann distribution as

M∗ = U exp

(
− Eb

RT

)
. (7)

Here Eb is calculated as

Eb = 35 800 − 290U. (8)

Further,

dM∗

dx
≈∂M∗

∂U
|T=const

dU

dx
=(

RT + 290U

RT

)
exp

(
− Eb

RT

)
. (9)

Now, combining (5) and (9)

∂U

∂t
=

(
kE

μw
− km∗(

RT + 290U

RT
) exp(− Eb

RT
)

)
∇2U. (10)
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After applying FE method, a simplified model can be
obtained as[5]

[C]
∂Ū

∂t
+ [K]Ū = F̄ u1 (11)

where u1 is an input function dependent on temperature
(T ).

4 Model order reduction

After obtaining the time-simulation of the system, a
“snapshot matrix” S is formed. Response states of the sim-
ulated data are collected as columns of S. An orthogonal
basis for this matrix is obtained through singular value de-
composition (SVD), given as

V ′
1SV2 = Σ

where V m×m
1 is an orthogonal matrix whose columns con-

stitute an orthonormal “output” basis vector of the ma-
trix Sm×n. Similarly, columns of orthogonal V n×n

2 matrix
form orthonormal “input” basis vector of S and diagonal
matrix gives the singular values arranged in decreasing or-
der. If the first r singular values σ1, σ2, · · · , σr are con-
sidered significant, then the first r columns of V1 taken as
Vr = [v1, v2, · · · , vr] form an orthogonal basis of the range
space of the snapshot matrix S. As expected, the dimen-
sion r of this subspace is found to be much smaller than the
number of state variables. Projecting the overall dynamics
on this subspace, given by[22]

X̄ = Vrz̄r (12)

leads to a much smaller nonlinear model that captures most
of the significant dynamics. The reduced model is given by

[Cr]
∂z̄

∂t
+ [Kr]z̄ = F̄ru1 (13)

where Cr = V ′
rCVr, Kr = V ′

r KVr and F̄r = V ′
r F̄ .

5 The control problem

Here we consider a control problem which transfers the
initial humidity Ū0 to a desired humidity profile represented
by a nodal vector Ū∗. As the vector Ū0 and Ū∗ lie in the
span of projection matrix Vr, the corresponding reduced
states z0 and z∗ can be derived using respectively.

Ū0 = Vrz0 (14)

Ū∗ = Vrz
∗. (15)

In case, the vectors Ū0 and Ū∗ do not lie in the span of
V̄r, then z0 and z∗ will imply their respective least square
approximations in the projected subspace.

5.1 Controller design

An optimal control based performance index can be taken
as[23−25]

J =
1

2
e′(tf )F1(tf )e(tf ) +

1

2

∫ tf

t0

[
z′(t)Q(t)z(t) + u2

1(t)
]
dt.

(16)

Here error between the actual and desired states is given
as

e(t) = z(t) − z∗. (17)

The optimal control input can be obtained as

u∗
1 = −F̄ ′

rP̂ z∗ (18)

where P̂ is an n×n symmetric positive definite matrix with
t ∈ [t0, tf ], given as

ˆ̇P (t) = −P̂ (t)Kr − K′
rP̂ (t) − Q(t) + P̂ (t)F̄rF̄rP̂ (t). (19)

The above equation is solved using backward difference
method with P̂ (t → ∞) = 0.

5.2 Stability analysis

A Lyapunov function in terms of error e(t) can be chosen
as

Φ(t) =
1

2
e′(t)e(t) (20)

which is positive definite. For the stability analysis, the
first order derivative of Φ(t) is calculated.

Φ̇(t) = e′(t)ė(t) = e′(t)ż(t). (21)

Now, using (18), (19) and (22)

Φ̇(t) = [z′(t) − z′∗][−Krz(t) + F̄ru
∗] =

− z′(t)Krz(t) + z′∗Krz(t) + z′∗F̄ru
∗
1(t)−

z′∗F̄ru
∗
1(t) =

− (z′(t) − z∗)Krz(t) =

− e′(t)Kr(e(t) + z∗) =

− e′(t)Kre(t) − e′(t)Krz
∗ � 0. (22)

6 Numerical results and discussion

The proposed methodology is applied to a two-
dimensional axisymmetric geometry. The geometry can be
obtained by taking an intersection of Fig. 1 along z-axis.
The domain is discretized using triangular FE mesh with
7 050 nodes excluding the boundary. Here the number of
elements is 15 008. The meshed domain is shown in Fig. 2.
The size of the ordinary differential equation (ODE) model
is same as the number of nodes inside the geometry. Hence,
size of the ODE model will be 7 050. Standard values of
constants are taken and ambient conditions are taken for
the simulation purpose. Rice is kept inside the storage sys-
tem for the analysis purpose. The simulation time is taken
from 1st March to 4th April for Konkan region, Maharash-
tra, India. The initial value of moisture is taken as 60% at
25◦C. Zero boundary conditions are applied here. However,
it can be verified that this methodology can be applied for
any other boundary conditions.

To generate the reduced model, the original model (12)
is simulated with an impulse input. Here, in order to cap-
ture the widest frequency characteristics, the above input
condition is taken. For simulations, backward difference is
used, with 40 time steps are chosen for the computation
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and each step is taken as 1 d. At each time-step, matrix K
is dependent on humidity and the resulting nonlinear alge-
braic equation system is solved using the Newton-Raphson
method. Finally, those 40 humidity profiles for the time-
steps or humidity snapshots are stored as columns of ma-
trix S. Rank of the matrix S is found as 18, beyond which
the magnitudes of the singular values are negligible. This
leads to the reduction of original nonlinear model to an-
other model of (14) but with a much reduced size of 18. As
a validation, the reduced model of the form (14) was again
simulated with an impulse input δ(t) and the nodal hu-
midity profiles were recomputed using (13). The humidity
profiles were found to agree satisfactorily with those com-
puted originally from the unreduced model given by (12).
It has been observed that at t = 40d, the error is around
1.15 %. The errors are due to the neglected higher order
dynamics. The humidity profiles for both original and re-
duced models at an arbitrary point P1 are given in Fig. 3.
The humidity profiles are obtained with an initial value of
relative humidity is 60% and temperature is kept at 25◦C.

Fig. 2 Meshed domain

Fig. 3 Humidity profiles at P1 point

The time taken to simulate the original model for 40 s is
around 4.30 min, while the reduced model takes 50 s. The
simulations are performed on 1GB, 1.85 GHz, core-2 duo
machines. Absolute time and their comparisons would be
clear if the entire implementation is done in C/Fortan. For
the purpose of simulation of the process Scilab[26] software

implementation is used. For the discretization purpose,
Gmsh[27] software is used. A comparison between the pro-
posed and conventional methods can be done in terms of
the size of the problem presented to any computer and the
computational effort or complexity of the solution process-
irrespective of the hardware. In the present case, the reduc-
tion in computational effort was from execution of nonlin-
ear simulations with 7 050 dynamic variables to execution
of almost similar simulations with 18 variables.

Now, the reduced model (14) is simulated along with the
optimal control law (19) which transfers an arbitrarily cho-
sen z0 to a desired target z∗. Here all the components of
z∗ are taken as 1 000. The desired humidity profiles U∗

corresponding to z∗ can be obtained using (16). The nodal
humidity profiles can be obtained from z(t). Here, the Ric-
cati equation (20) is solved using Secant method and the
magnitude of the temperature is obtained as 26.32◦C at
t = 40 d, being a representative time. The output profiles
of the original and reduced model, when represented in full
coordinates, at t = 40 d, after applying the optimal control
law match almost perfectly. Those are shown in Fig. 4. It
has been observed that the error between the outputs of
both models, when represented in full coordinates at differ-
ent time instants is around 1.856 %. Hence, we can conclude
that the controller acts satisfactorily.

Fig. 4 Humidity profile with controller

7 Conclusions

In this work, a modeling strategy for a grain storage sys-
tem is presented. Here humidity is taken as variable to be
modeled. FEM is used for discretization purpose thus mak-
ing the approach suitable to more complicated geometries.
A reduced order model is obtained using proper orthogo-
nal decomposition technique. It has been observed that the
reduced model has almost same dynamic properties as the
original one. A controller based on optimal control theory
is developed and its stability is analyzed using Lyapunov
stability criteria. It can be observed that the moisture level
was quite high in the actual system, which is a favorable
condition for infestation. However, using the controller it is
controlled to a certain level. Although the controller is de-
signed for the reduced model, it works satisfactorily for the
original system as well. This is the main contribution of this
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work. This work can be extended to obtain an equivalent
reduced model where dynamic equations involve coupled
temperature and moisture.
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