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Abstract: When calculating the sampled-date representation of nonlinear systems second-order hold (SOH) assumption can be

applied to improving the precision of the discretization results. This paper proposes a discretization method based on Taylor series and

the SOH assumption for the nonlinear systems with the time delayed non-affine input. The mathematical structure of the proposed

discretization method is explored. This proposed discretization method can provide a precise and finite dimensional discretization

model for the nonlinear time-delayed non-affine system by keeping the truncation order of the Taylor series. The performance of the

proposed discretization method is evaluated by doing the simulation using a nonlinear system with the time-delayed non-affine input.

Different input signals, time-delay values and sampling periods are considered in the simulation to investigate the proposed method.

The simulation results demonstrate that the proposed method is practical and easy for time-delayed nonlinear non-affine systems.

The comparison between SOH assumption with first-order hold (FOH) and zero-order hold (ZOH) assumptions is given to show the

advantages of the proposed method.
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1 Introduction

Time-delay systems are also called systems with afteref-

fect or dead-time, hereditary systems, equations with de-

viating argument or differential-difference equations. Op-

posed to ordinary differential equations (ODEs), they be-

long to the class of functional differential equations (FDEs)

which are infinite dimensional[1]. The analysis of the time-

delay systems is one of the difficult but hot points in con-

trol theory and control engineering domain. The reasons

for this can be grouped into two major kinds. The first one

is that time delay is an applied problem. Time delay prob-

lem is becoming increasingly more widespread in control

systems because of the convergence of communication and

computational systems with traditional control engineering.

Controller communication, especially communication over

local-area networks (LANs) or wide-area networks (WANs),

and complex computations resulting from digital controller

implementations result in large time delays. Many practi-

cal systems such as automotive powertrain systems[2], com-

bustion systems[3], chemical reactors[4, 5], teleoperators[6] ,

and master-slave manipulator systems[7] are described by

time-delay models. The second reason is that control sys-

tems with non-negligible time delays exhibit complex be-

haviors because of their infinite dimensionality. When ex-

pressed in the continuous time domain, even a linear time

invariant system with a constant time delay in the input or

state has infinite dimensionality. For continuous time sys-
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tems, the time delay problems can in principle be treated

by the infinite dimension system theory approach. How-

ever, it is generally not easy to understand the approach

and obtain the corresponding controller which is given in

terms of operator Riccati equations[8]. And controller de-

sign techniques developed over the last several decades for

finite dimensional systems are difficult to apply to time

delay systems. Thus it is necessary to develop a con-

trol system design scheme that resolves the time delay

problem.

Since time delay often occurs in various engineering sys-

tems and causes serious deterioration of the stability and

performance of the systems, considerable research has been

done for the control of time delay systems[9]. Ji[10] proposed

an adaptive neural network control method for a class of

perturbed strict-feedback nonlinear systems with time de-

lays. Tang and Ding[11] concerned with the model predic-

tive control of networked control systems with time delay

and data packets disorder. Zhu et al.[12] dealt with the

problem of tracking control for a class of high order nonlin-

ear systems with input delay. Mu and Gao[13] discussed the

problem of global input-to-state stability for discrete time

piecewise affine systems with time delay. Bedoui et al.[14]

proposed an approach for simultaneous online identification

of the time delay and dynamic parameters of discrete time

delay systems[14]. Balasubramaniam and Senthilkumar[15]

discussed the delay-dependent robust stabilization and H∞
control for uncertain stochastic Takagi-Sugeno fuzzy sys-

tems with discrete interval and distributed time-varying de-

lays. Ahmida and Tissir[16] discussed the delay-dependent

exponential stability of a class of uncertain T-S fuzzy

switched systems with time delay. Phat et al.[17] addressed



Y. L. Zhang / Discretization of Nonlinear Non-affine Time Delay Systems Based on Second-order Hold 321

the exponential stability for a class of nonlinear hybrid time-

delay systems.

In practice, nonlinear control strategies are usually im-

plemented using a microcontroller or a digital signal pro-

cessor. As a direct consequence of this, the associated

control algorithms must operate using discrete time inter-

vals. The continuous-time control law is designed based

on a continuous-time system model and then is discretized.

Or a continuous-time system model is discretized and then

the discrete time control law is designed based on it. It

should be emphasized that in both design approaches, the

time discretization of either the controller or the system

model is necessary. In the field of the discretization, for

the time free continuous time systems the traditional nu-

merical techniques such as Euler and Runge-Kutta method

have been used to obtain the sampled-date representations.

However, these methods require a small sampling interval.

But due to the physical and technical limitations slow sam-

pling is becoming inevitable. For large sample period case,

the Taylor series method was used to improve the perfor-

mance of the controller[18]. However, in previous papers,

the zero-order hold (ZOH) and first-order hold (FOH) as-

sumptions were used in the discretization method[19]. The

performance of the discretization methods using these as-

sumptions is highly dependent on the input signal, and the

sampling period should be short enough for the desired con-

trol precision.

A high-order method is the one that provides increased

accuracy with only a modest increase in the computational

cost[20]. Wei and Liu[21] studied the problem of output

feedback fault-tolerant control design for continuous-time

linear time-invariant systems via high-order hold sampled-

data controllers. Tornero and Tomizuka[22] considered the

problem of the computation of a dual-rate high-order-hold

discrete equivalent controller. Lampe and Rosenwasser[23]

studied the digital control problem for a continuous-time

linear time-invariant (LTI) process with generalized higher-

order hold and time delay. Zhang[24] discussed sampled-

data control design problem by the first-order hold input.

This paper proposes a time discretization method for

nonlinear input-driven dynamic systems with time delayed

non-affine input. This method is based on the Taylor se-

ries and second-order hold (SOH) assumption. This dis-

cretization method can provide a finite dimensional repre-

sentation, which allows the direct application of the exist-

ing nonlinear control system design techniques. Secondly,

the performance evaluation of the proposed algorithm is

presented using a numerical simulation with different sam-

pling periods, time-delays and inputs, and the results are

compared to those obtained by using the ZOH and FOH

method.

The paper is organized as follows. Section 2 contains

some mathematical preliminaries and Section 3 includes the

main results of this paper, in which a new time discretiza-

tion method for nonlinear systems with time delayed non-

affine input is introduced. Finally, one numerical simulation

with different sampling periods, time-delays, and kinds of

inputs is presented in Section 4 to demonstrate the effective-

ness of the proposed discretization method, and Section 5

provides a few concluding remarks drawn from this

study.

2 Preliminaries

In the present study the nonlinear continuous time con-

trol systems with time delayed non-affine input are consid-

ered using a state-space representation form [25]:

ẋ(t) =f0(x(t)) + g1(x(t))u(t− D)+

g2(x(t))u(t − D)2 + · · · + gm(x(t))u(t − D)m (1)

and

ẋ(t) = f(x(t), u(t − D))

where x ∈ Rn is the vector of the states representing an

open and connected set, u ∈ R is the input variable, m is an

integer which indicates the order of the input u, and D is the

system constant time-delay (dead-time) that directly affects

the input. It is assumed that f0 : Rn → Rn, gi : Rn → Rn,

i = 1, 2, · · · , m and f : Rn×R → Rn are smooth mappings.

An equidistant grid on the time axis with mesh T =

tk+1 − tk > 0 is considered where sampling interval is

[tk, tk+1) = [kT, (k + 1)T ) and T is the sampling period.

Furthermore, we suppose the time-delay D and mesh T are

related as follows

D = qT + γ (2)

where q ∈ {0, 1, 2, · · · } and 0 � γ < T . That is, the time-

delay D is customarily represented as an integer multiple

of the sampling period adding a fractional part of T [26]. In

this paper, it is also assumed that system (1) is driven by an

input that is piecewise quadratic over the sampling interval,

i.e., the SOH assumption holds true.

For the ZOH assumption, it is assumed that system (1)

is driven by an input that is piecewise constant over the

sampling interval. And for the FOH assumption, it is as-

sumed that the original piecewise continuous input function

is approximated by a piecewise linear one over the sampling

interval. Let us consider ZOH, FOH and SOH assumptions

in more detail.

Under the ZOH assumption, in the delay free case, while

D = 0, we have

uZ(t) = u(k) = constant, for kT � t < kT + T (3)

where u(k) = u(kT ). Based on the above notation one can

deduce that for D > 0 the delayed input variable attains the

following two distinct values within the sampling interval:

uZ(t − D) =

{
u(k − q − 1), if kT � t < kT + γ,

u(k − q), if kT + γ � t < kT + T.

(4)

Here, subscript Z denotes that input approximation is

performed under the ZOH assumption.
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Under the FOH assumption, while D = 0, we have

uF (t) = u(k) + v(k)(t − kT ), for kT � t < kT + T. (5)

Here, subscript F denotes that input approximation is

performed under the FOH assumption, and in what follows:

v(k) =
u((k + 1)T ) − u(kT )

T
or

v(k) =
du(t)

dt
|t=kT , k = 0, 1, 2, · · · (6)

For D > 0, it is rather straightforward to verify that the

delayed input variable attains the following values within

the sampling interval.

uF (t − D) ≡⎧⎪⎪⎪⎨
⎪⎪⎪⎩

u(k − q − 1) + v(k − q − 1)[t − kT + (T − γ)],

t ∈ [kT, kT + γ)

u(k − q) + v(k − q)[t − kT − γ],

t ∈ [kT + γ, kT + T ).

(7)

Under the SOH assumption and in the case of delay free

case, in the time interval kT � t < kT + T the input can

be expressed as follows.

u(t) =u(k) +
u(k) − u(k − 1)

T
(t − kT )+

1

2

u(k) − 2u(k − 1) + u(k − 2)

T 2
(t − kT )2. (8)

Furthermore, let

a(k) =
v(k) − v(k − 1)

T
(9)

where a(k) represents the second-order derivation at the

instant kT .

Equation (8) is shortly represented as

u(t) = u(k) + v(k)(t − kT ) +
1

2
a(k)(t − kT )2. (10)

In the case of D > 0, we have

u(t − D) ≡⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

u(k − q − 1) + v(k − q − 1)[t − kT + (T − γ)]+
1

2
a(k − q − 1)[t − kT + (T − γ)]2, t ∈ [kT, kT + γ)

u(k − q) + v(k − q)[t − kT − γ]+
1

2
a(k − q)[t − kT − γ]2, t ∈ [kT + γ, kT + T ).

(11)

3 Discretization of nonlinear systems

with time delayed non-affine input

3.1 Discretization in the case of the delay
free input

At this point, it would be methodologically appropriate

to succinctly present and delineate the time-discretization

method available for delay-free (D = 0) nonlinear con-

trol systems. The ensuing brief description of the time

discretization method for delay-free nonlinear systems will

serve as a natural point of departure for the development

of a discretization method for nonlinear systems with time

delayed non-affine input.

When D = 0, within the sampling interval and under the

SOH assumption, the solution of system (1) is expanded

into a uniformly convergent Taylor series:

x(k + 1) = x(k) +
∞∑

l=1

A[l](x(k), u(k), v(k), a(k))
T l

l!
(12)

where A[l](x, u, v, a) are determined recursively by

A[1](x, u, v, a) =f(x, u)

A[2](x, u, v, a) =
∂A[1](x, u, v, a)

∂x
A[1](x, u, v, a)+

∂A[1](x, u, v, a)

∂u
v

A[l+2](x, u, v, a) =
∂A[l+1](x, u, v, a)

∂x
A[1](x, u, v, a)+

∂A[l+1](x, u, v, a)

∂u
v +

∂A[l](x, u, v, a)

∂u
a

(13)

where l = 1, 2, 3, · · · . Notice that the resulting coefficients

A[l](x(k), u(k), v(k), a(k)) can be easily computed by taking

successive partial derivatives of the right hand-side of (1).

Therefore, an exact sampled-data representation (ESDR)

of system (1) can be derived by retaining the full infinite

series of (12), namely

x(k + 1) =ΦT (x(k), u(k), v(k), a(k)) =

x(k) +

∞∑
l=1

A[l](x(k), u(k), v(k), a(k))
T l

l!
. (14)

Simultaneously, an approximate sampled-data represen-

tation (ASDR) of (1) is obtained from a truncation of the

Taylor series order N , i.e.,

xN(k + 1) =ΦN
T (xN(k), u(k), v(k), a(k)) =

xN(k) +
N∑

l=1

A[l](xN(k), u(k), v(k), a(k))
T l

l!

(15)

where subscript T of mapping ΦN
T denotes the dependence

on the sampling period, and superscript N denotes the finite

series truncation order associated with the ASDR of (15).

3.2 Discretization in the case of the time
delayed non-affine input

When D > 0, by applying the Taylor discretization

method for system (1) over the subinterval [kT, kT + γ)

and taking into account (11), one can obtain the state vec-

tor evaluated at kT + γ as a function of x(k), u(k − q − 1),
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v(k − q − 1) and a(k − q − 1).

x(kT + γ) = x(k)+
∞∑

l=1

A[l](x(k), u(k − q − 1), v(k − q − 1), a(k − q − 1))
γl

l!
.

(16)

Similarly, the application of the Taylor discretization

method to the [kT + γ, kT +T ) subinterval yields the state

vector evaluated at (k + 1)T as a function of x(kT + γ),

u(k − q), v(k − q) and a(k − q).

x(k + 1) = x(kT + γ)+
∞∑

l=1

A[l](x(kT + γ), u(k − q), v(k − q), a(k − q))
(T − γ)l

l!
.

(17)

The ASDR of (16) and (17) are obtained from the trun-

cation of the Taylor series order N , as shown below,

xN(kT + γ) = xN(k)+

N∑
l=1

A[l](xN(k), u(k − q − 1), v(k − q − 1), a(k − q − 1))
γl

l!

(18)

xN(k + 1) = xN(kT + γ)+

N∑
l=1

A[l](xN(kT + γ), u(k − q), v(k − q), a(k − q))
(T − γ)l

l!
.

(19)

The subsequent calculation of the corresponding Taylor

coefficients A[l](x, u, v, a) can be realized by using (13).

Theorem 1. Let x0 be an equilibrium point of the orig-

inal non-affine input nonlinear continuous-time system:

ẋ = f(x(t), u(t)) (20)

that belongs to the equilibrium manifold:

Ec = {x ∈ Rn|∃u ∈ R : f(x, u) = 0} (21)

and u = u0 be the corresponding equilibrium value of the

input variables: f(x0, u0) = 0, du
dt

|u0 = 0 and d2u
dt2

|u0 = 0.

Then x0 belongs to the equilibrium manifold: Ed = {x ∈
Rn|∃u ∈ R : ΦD

T (x, u) = x} of the ESDR: x(k + 1) =

ΦD
T (x(k), u(k − q − 1), u(k − q), v(k − q − 1), v(k − q), a(k −

q − 1), a(k − q)) and ASDR: x(k + 1) = ΦN,D
T (x(k), u(k −

q − 1), u(k − q), v(k− q − 1), v(k− q), a(k− q − 1), a(k− q))

obtained under the proposed Taylor discretization method,

with u = u0 being the corresponding equilibrium values of

the input variables: ΦD
T (x0, u0) = x0 and ΦN,D

T (x0, u0) =

x0.

Proof. x0 is the equilibrium point and u0 is the

corresponding equilibrium values of the input variables

⇒ A[1](x0, u0) = f(x0, u0) = 0, A[2](x0, u0, v0, a0) =
∂A[1](x0,u0,v0,a0)

∂x
A[1](x0, u0) + ∂A[1](x0,u0,v0,a0)

∂u
v0 = 0 ⇒

A[l+2](x0, u0, v0, a0) = ∂A[l+1](x0,u0,v0,a0)
∂x

A[1](x0, u0) +
∂A[l+1](x0,u0,v0,a0)

∂u
v0 + ∂A[l](x0,u0,v0,a0)

∂u
a0 = 0, for

all l ∈ {1, 2, 3, · · · } ⇒Φγ(x0, u0, v0, a0) = x0 +∑∞
l=1(A

[l](x0, u0, v0, a0) γl

l!
) = x0, ΦD

T (x0, u0, v0, a0) =

ΦT−γ(Φγ(x0, u0, v0, a0), u0, v0, a0) = x0.

Similar arguments apply to the ΦN,D
T map of the ASDR.

Therefore, x0 belongs to the equilibrium manifold Ed of the

ESDR and ASDR for any finite truncation order N . That

is, the proposed discretization method does not change the

equilibrium point of the original non-affine input nonlinear

continuous-time system. �

4 Simulation

The performance of the proposed time discretization

method is evaluated by applying it to a nonlinear system

with the time delayed non-affine input. Reference solu-

tions for the system are required to validate the proposed

time discretization method. In this paper, the Matlab ODE

solver is used to obtain the reference solutions. The discrete

values obtained at every time step using the proposed time

discretization method are compared to the values obtained

using the Matlab ODE solver at the corresponding time

steps. The partial derivative terms involved in the Taylor

series expansion are determined recursively. In the simu-

lation, these partial derivative terms are calculated using

Maple.

The system considered in this paper is assumed to be a

nonlinear control system[27].

ẋ1 = −x3
1 + x1e

x2u(t − D)2

ẋ2 = x2
2u(t − D).

(22)

Since for system (22) N = 3 is good enough for get-

ting the accurate discretization results, in the simulation

the truncation of the Taylor series order N is chosen as 3.

First we compare the proposed discretization method with

the traditional Euler method. In this case, the parame-

ters are chosen as x1(0) = 1.0, x2(0) = −1.0, T=0.2 s and

D=0.32 s. In this case q=1 and γ = 0.12 s. The input is as-

sumed to be a constant one, u = 1.5. The results obtained

by the Matlab ODE solver and the proposed discretization

method with SOH assumption are shown in Fig. 1. Fig. 2

shows the errors of states x1 and x2 by using the proposed

discretization method with SOH assumption and the tra-

ditional Euler method, respectively. From Fig. 2, it can

be seen that the proposed discretization method can pro-

vide better discretization results than the traditional Euler

method.

Secondly, we choose the parameters as x1(0) = 1.0,

x2(0) = −1.0, T =0.04 s and D=0.018 s. In this case q = 0

and γ= 0.018 s. The input is assumed to be a constant

one, u = 1.2. The results obtained by the Matlab ODE

solver and the proposed discretization method with SOH

assumption are shown in Fig. 3. Fig. 4 shows the errors of

states x1 and x2 in the case of ZOH, FOH and SOH as-

sumptions, respectively. In this case, since the input u is

a constant one the performance of cases of ZOH, FOH and

SOH assumptions is similar.
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Fig. 1 The discretization results for Case 1

Fig. 2 State errors of SOH and Euler method for Case 1

Then we choose the parameters as x1(0) = 1.0, x2(0) =

−1.0, T = 0.05 s, D = 0.22 s, u = sin(1.5t); T = 0.1 s, D =

0.56 s, u = 0.05t2; and T = 0.2 s, D = 0.32 s, u = 0.05t2. In

these three cases q = 4, γ = 0.02 s; q = 5, γ = 0.06 s; and

q = 1, γ = 0.12 s, respectively. The results obtained by the

Matlab ODE solver and the proposed discretization method

with SOH assumption of these three cases are shown in

Figs. 5, 7 and 9, respectively. Figs. 6, 8 and 10 show the

errors of the state in the cases of ZOH, FOH and SOH

assumptions of these three cases, respectively.

From the simulation results, it can be seen that the pro-

posed time discretization method with SOH assumption can

provide satisfied discretization results for nonlinear systems

with time delayed non-affine input. And in these three cases

the inputs are not the constant ones. From Figs. 6, 8 and

10, it can be seen that when the input is not a constant

one the Taylor discretization method with SOH assump-

tion performs better than the methods with FOH and ZOH

assumptions. And in the cases 1–3, the simulation time is

Fig. 3 The discretization results for Case 2

Fig. 4 State errors of ZOH, FOH and SOH for Case 2

Fig. 5 The discretization results for Case 3
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Fig. 6 State errors of ZOH, FOH and SOH for Case 3

Fig. 7 The discretization results for Case 4

long enough to show the system′s steady-state response.

Figs. 1, 3 and 5 show that the proposed time discretization

method does not change the original system′s stability.

The computational costs are considered at the end of this

section, where Table 1 shows the computing times used to

get the discretization results of the proceeding simulations

using Taylor series with the SOH assumption, FOH assump-

tion and the ZOH assumption, respectively. The computing

time is calculated on a computational process with 5000

steps. It can be seen from Table 1 that the computing

times using the Taylor series with the SOH assumption are

moderately longer than those when we use FOH and ZOH

assumptions but the accuracy is much better for the process

with SOH assumption.
Table 1 Computing times for the simulations

Computing time (s) SOH FOH ZOH

Case 2 6.47 5.84 4.46

Case 3 8.65 7.51 5.87

Case 4 6.31 5.91 4.42

Case 5 7.02 6.21 5.01

Fig. 8 State errors of ZOH, FOH and SOH for Case 4

Fig. 9 The discretization results for Case 5

Fig. 10 State errors of ZOH, FOH and SOH for Case 5

5 Conclusion

A scheme based on the Taylor series combined with the

SOH assumption is proposed for the derivation of a discrete-

time representation of the nonlinear systems with time de-
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layed non-affine input. The mathematical structure of the

new discretization scheme is explored. The derived time

discretization method provides a finite-dimensional repre-

sentation for nonlinear control systems with time delayed

non-affine input, thereby enabling the application of exist-

ing nonlinear controller design techniques for such systems.

The effect of sampling on system equilibrium property of

nonlinear systems with time delayed non-affine input is ex-

amined. The performance of the proposed time discretiza-

tion method is evaluated using a nonlinear system with time

delayed non-affine input. In order to verify the accuracy of

the proposed method the simulation results are compared

with those given by Matlab ODE solver. At the same time,

some comparisons are made between the method using SOH

assumption with the traditional Euler method, and those

using FOH and ZOH assumptions. The results show that

the discretization method using SOH assumption is better

than the traditional Euler method and is also better than

the methods using FOH and ZOH assumptions when the

input is not a constant one. Finally, the simulation re-

sults show that the proposed discretization method does

not change the original system stability nor increase much

computational burden.
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to determine ignition delay times for Diesel surrogate fu-
els from combustion in a constant volume bomb: Inverse
Livengood-Wu method. Fuel, vol. 102, pp. 289–298, 2012.

[4] W. Q. Huang, X. X. Li, S. Y. Yang, Y. Qian. Dynamic
flexibility analysis of chemical reaction systems with time
delay: Using a modified finite element collocation method.
Chemical Engineering Research and Design, vol. 89, no. 10,
pp. 1938–1946, 2011.

[5] C. I. Pop, C. M. Ionescu, R. De Keyser. Time delay com-
pensation for the secondary processes in a multivariable car-
bon isotope separation unit. Chemical Engineering Science,
vol. 80, pp. 205–218, 2012.

[6] J. H. Ryu, J. Artigas, C. Preusche. A passive bilateral con-
trol scheme for a teleoperator with time-varying communi-
cation delay. Mechatronics, vol. 20, no. 7, pp. 812–823, 2010.

[7] A. Forouzantabar, H. A. Talebi, A. K. Sedigh. Bilateral con-
trol of master-slave manipulators with constant time delay.
ISA Transactions, vol. 51, no. 1, pp. 74–80, 2012.

[8] H. S. Zhang, G. R. Duan, L. H. Xie. Linear quadratic reg-
ulation for linear time-varying systems with multiple input
delays. Automatica, vol. 42, no. 9, pp. 1465–1476, 2006.

[9] Z. C. Zhang, Y. Q. Wu. Globally asymptotic stabilization
for nonlinear time-delay systems with ISS inverse dynamics.
International Journal of Automation and Computing, vol. 9,
no. 6, pp. 634–640, 2012.

[10] G. Ji. Adaptive neural network dynamic surface con-
trol for perturbed nonlinear time-delay systems. Interna-
tional Journal of Automation and Computing, vol. 9, no. 2,
pp. 135–141, 2012.

[11] X. M. Tang, B. C. Ding. Design of networked control
systems with bounded arbitrary time delays. Interna-
tional Journal of Automation and Computing, vol. 9, no. 2,
pp. 182–190, 2012.

[12] Q. Zhu, A. G. Song, T. P. Zhang, Y. Q. Yang. Fuzzy adap-
tive control of delayed high order nonlinear systems. In-
ternational Journal of Automation and Computing, vol. 9,
no. 2, pp. 191–199, 2012.

[13] X. W. Mu, Y. Gao. The analysis of global input-to-state
stability for piecewise affine systems with time-delay. In-
ternational Journal of Automation and Computing, vol. 9,
no. 2, pp. 211–214, 2012.

[14] S. Bedoui, M. Ltaief, K. Abderrahim. New results on
discrete-time delay systems identification. International
Journal of Automation and Computing, vol. 9, no. 6,
pp. 570–577, 2012.

[15] P. Balasubramaniam, T. Senthilkumar. Delay-dependent
robust stabilization and H∞ control for uncertain stochas-
tic T-S fuzzy systems with discrete interval and distributed
time-varying delays. International Journal of Automation
and Computing, vol. 10, no. 1, pp. 18–31, 2013.

[16] F. Ahmida, E. H. Tissir. Exponential stability of uncer-
tain T-S fuzzy switched systems with time delay. Interna-
tional Journal of Automation and Computing, vol. 10, no. 1,
pp. 32–38, 2013.

[17] V. N. Phat, T. Botmart, P. Niamsup. Switching design for
exponential stability of a class of nonlinear hybrid time-
delay systems. Nonlinear Analysis: Hybrid Systems, vol. 3,
no. 1, pp. 1–10, 2009.

[18] Y. L. Zhang, K. T. Chong. Time-discretization of time de-
layed non-affine system via Taylor-Lie series using scaling
and squaring technique. International Journal of Control,
Automation, and Systems, vol. 4, no. 3, pp. 293–301, 2006.

[19] Y. L. Zhang, O. Kostyukova, K. T. Chong. A new time-
discretization for delay multiple-input nonlinear systems us-
ing the Taylor method and first order hold. Discrete Applied
Mathematics, vol. 159, no. 9, pp. 924–938, 2011.

[20] S. D. Gedney, J. Ottusch, P. Petre, J. Visher, S. Wandzura.
Efficient high-order discretization schemes for integral equa-
tion methods. In Proceedings of the 1997 Digest Antennas
and Propagation Society International Symposium, IEEE,
Montreal, Quebec, Canada, pp. 1814–1817, 1997.

[21] H. F. Wei, H. W. Liu. Output feedback fault-tolerant con-
trol for continuous-time LTI systems via high-order hold
sampled-data controllers. In Proceedings of 2009 Chinese
Control and Decision Conference, IEEE, Guilin, China,
pp. 5318–5323, 2009.



Y. L. Zhang / Discretization of Nonlinear Non-affine Time Delay Systems Based on Second-order Hold 327

[22] J. Tornero, M. Tomizuka. Dual-rate high order hold equiva-
lent controllers. In Proceedings of the 2000 American Con-
trol Conference, IEEE, Chicago, IL, USA, pp. 175–179,
2000.

[23] B. P. Lampe, E. N. Rosenwasser. Modal control for
sampled-data systems with generalized higher-order hold
and time delay. In Proceedings of 2006 IFAC Workshop on
Time Delay Systems, IFAC, LAquila, Italy, pp. 314–319,
2006.

[24] Y. L. Zhang. Discretization of nonlinear non-affine time de-
lay system using first order hold assumption with scaling
and squaring technique. International Review on Comput-
ers and Software, vol. 7, no. 4, pp. 1860–1865, 2012.

[25] S. Yamagishi, Y. Uchida, J. Yoneyama. Output feedback
stabilization of sampled-data systems by first-order hold
input. In Proceedings of 2011 SICE Annual Conference,
IEEE, Tokyo, Japan, pp. 283–287, 2011.
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