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Abstract: Most of the processes in the industry have nonlinear behavior. Control of such processes with conventional control methods
could lead to unstable, suboptimal, etc., results. On the other hand, the adaptive control is a technique widely used for controlling of
nonlinear systems. The approach here is based on the recursive identification of the external linear model as a linear representation of
the originally nonlinear system. The controller then reacts to the change of the working point or disturbances which could occur by
the change of the parameters, structure, etc. The polynomial synthesis together with the linear quadratic (LQ) approach is employed
here for the controller synthesis. These techniques satisfy basic control requirements such as the stability, the reference signal tracking
and the disturbance attenuation. Resulted controller could be tuned with the choice of weighting factors in LQ approach. This work
investigates the effect of these factors on control results. Proposed methods are tested on the mathematical model of the isothermal

continuous stirred-tank reactor and simulated results are also verified on the real model of the continuous stirred tank reactor.
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1 Introduction

It is known that the control of nonlinear processes is
not simple and sometimes even very hard. Unfortunately,
a major group of systems from industry is nonlinear and
control of such processes with the conventional controllers
with fixed parameters could lead to unstable, inaccurate
or unwanted output response when the state of the system
changes or the disturbance occurs. The adaptive control!
is one way how we can solve these problems. This control
method uses idea from the nature where plants or animals
“adapt” their behavior to the actual state or environmental
conditions. The adaptive controller adapts parameters or
the structure to parameters of the controlled plant accord-
ing to a selected criterion?.

The adaptive approach here is based on the choice of
the external linear model (ELM) as a linear approxima-
tion of the originally nonlinear system, parameters of which
are identified recursively and parameters of the controller
are recomputed according to identified ones. The dynamic
analysis is used for the choice and the order of ELM. The
delta-models!®! used here for identification are special type
of discrete-time (DT) models whose parameters are recom-
puted according to the sampling period and approaches to
the continuous-time ones.

The continuous-time controller is designed via the poly-
nomial synthesis[4], spectral factorization and the linear
quadratic (LQ) approach. These methods satisfy basic con-
trol requirements such as the stability, the reference signal
tracking and the disturbance attenuation. The resulted
controller is called “hybrid” because it works in continuous-
time but its parameters are recomputed in discrete time
intervals together with the ELM delta-model identification.
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First, the simulation techniques are used in the practi-
cal part. The isothermal continuous stirred-tank reactor
(CSTR) is used as a theoretical example. The mathemati-
cal model of this reactor is described by the set of five ordi-
nary differential equations (ODE) B which is then subjected
to the steady-state and dynamic analyses[5]. The steady-
state analysis mathematically means numerical solving of
the set of nonlinear algebraic equations. The Simple it-
eration method!® is employed to this numerical solution.
On the other hand, numerical solving of the set of ordi-
nary differential equation as a mathematical model of the
system uses Runge-Kutta's method. Advantage of these
methods can be found in the easy programmability and
Runge-Kutta’s methods which are also build-in functions
in Matlab.

The steady-state is also very important because it pro-
vides initial conditions to the dynamic analysis and it could
also help in finding the optimal working point. On contrary,
the dynamic analysis produces step responses that results
in the choice of the ELM for the adaptive controller!?.

The importance of the simulation grows nowadays with
the increasing computation power and decreasing costs of
industrial computers. A big advantage of the simulation
is that once we have simulation program we can perform
simulations very quickly, safely and mainly much cheaper
than the experiments on the real model.

On the other hand, the disadvantage of the simulation is
in the reliability of the model. If we do not compare simu-
lation results with the real measurements, there is no guar-
antee that the abstract model is accurate enough. The pro-
posed control techniques here are tested on the real model
of CSTR with the dissolution of the salt in the water inside.

This paper is divided into five main parts. The descrip-
tion of the hybrid adaptive LQ technique is in the second
part after this introduction. The third part presents simu-
lation results on the mathematical model of the isothermal
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CSTR, the fourth part is verification of the control tech-
nique on the real model and the last, fifth part is devoted
to the conclusion.

All simulations in the work are done in the mathematical
simulation program Matlab, Version 7.

2 Adaptive LQ control

The adaptivity, or let us say sensitivity, to the change
of the state or conditions of the control could be satisfied
for example by the recursive identification during the con-
trol. The most of the processes have nonlinear behavior
and identification of such processes is very complex. We
can overcome this inconvenience by the ELM as a linear
representation of the originally nonlinear system. Two ma-
jor groups of the ELM are continuous-time (CT) and DT.
Each ELM has its pros and cons. The method used here
employs so called delta models as special type of DT mod-
els parameters of which are related to the sampling period
and it means that they are close to the more accurate CT
ones!™.

The polynomial theory is used in the controller design
here. The scheme of the one degree-of-freedom (1DOF)
control scheme is in Fig. 1, where G(s) represents the trans-
fer function (i.e., ELM) of the controlled output and @ (s)
denotes the transfer function of the controller, generally,

(1)

where ¢ (s) and p (s) are again commensurable polynomials
with the properness condition.
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Fig.1 1DOF control scheme

The Laplace transform of the transfer function G (s) is

Y (s)

6 =5

Y(s) =G (s)-Ul(s) 2)

where Laplace transform of the input signal w is from Fig. 1.
U(s)= Q(s)-E(s)+V(s) ="+

Qs)-[W(s) =Y (s)]+V(s). ()

If we put polynomials a (s), b(s), p(s) and ¢ (s) into (3)

instead of Laplace transforms G (s) and @ (s), (2) has form

b(s)q(s)
a(s)p(s)+b(s)q(s)

a(s)p(s) Vs
MOTIOECO A (4)

Both fractions in (4) have the same denominators which
are called a characteristic polynomial of the closed loop and
this polynomial can be rewritten in the form

a(s)-p(s)+0b(s)-q(s) =d(s) (5)

Y (s) =

.W(5)+...

where d (s) is a stable optional polynomial. The whole equa-
tion (5) is called Diophantine equation. The stability of
the control system is fulfilled for the stable polynomial d (s)
on the left side of the Diophantine equation (5). Asymp-
totic tracking of the reference signal and disturbance atten-
uation is attained if the polynomial p (s) includes the least
common divisor of denominators of transfer functions of the
reference w and disturbance v:

p(s)=1(s)-p(s). (6)

With condition that these signals are from the range of
the step functions, the polynomial f (s) = s and the Dio-
phantine equation (5) is

a(s)-s-p(s)+0b(s) q(s)=d(s) (7)
and the transfer function of the feedback controller is

5 q(s)
Q) = ;575 (8)
As it is written above, the polynomial d(s) on the right
side of the Diophantine equation (7) is the stable optional
polynomial. There are several ways how we can construct
this polynomial. The simple one is the based on pole-
placement method where d (s) is divided into one or more
parts with double, triple, etc., roots, e.g.

d(s)=(s+a)",d(s)=(s+a1)? - (s+a2)% - (9)

where the only condition is that a > 0. The disadvantage
of this method can be found in the uncertainty. There is
no general rule which can help us with the choice of roots
which are, of course, various for different controlled pro-
cesses. One way how we can overcome this unpleasant fea-
ture is to use spectral factorization of the polynomial a (s)
in the denominator of the transfer function G (s). A big
advantage of this method is that it can make stable roots
from every polynomial, even if it is unstable. The polyno-
mial d(s) is in this case

d(s) =n(s)-g(s) (10)

where parameters of the polynomial n(s) are computed
from the spectral factorization of the polynomial a (s), i.e.,

n"(s) -n(s)=a" (s)-a(s). (11)

In (11), n*(s) and a*(s) denotes stable mirrors from the
spectral factorization of the possible non-stable polynomi-
als n (s) and a (s). The second part, polynomial g (s), could
be designed via pole-placement method similarly as in (9)
or we can use the LQ[S] method which is based on the min-
imizing of the cost function in the complex domain

Jiq = / Tl () + g @ ()t (12)

m
2

where prq > 0 and ¢rq > 0 are weighting coefficients, e (t)
is the control error and denotes the difference of the input
variable. It practically means, that parameters of the poly-
nomial g (s) are computed from the spectral factorization

(a(s) - f(5))" - pra-a(s) - f(s) + -+
b™(s) - prq - b(s) = g7 (s) - g(s) (13)

where * again denotes stable mirror from the spectral fac-
torization similarly as in previous case. Degrees of unknown
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polynomials p (s), ¢ (s) and d (s) are for the fulfilled proper-
ness condition generally:

degp(s) > dega(s) — 1
degq(s) =dega(s) +deg f(s) —1
) dega+1

deg g (s) = degd(s) — degn(s). (14)

It is good if the controlled output could be tuned some-
how. In our case, the weighting coefficients prq and ¢prq
are tuning parameters which could affect the speed of the
control, overshoot of the output variable or the course of the
input variable. There is also the opportunity to choose what
is more critical for the control —to have minimal control er-
ror e (t) or minimal changes of the input variable w (¢). The
control error could be affected by choice of the weighting co-
efficient urq and the run of the input variable is tuned by
the choice of the second weighting coefficient ¢pr.q in (12).

3 Simulation experiment

The nonlinear system under the consideration is an
isothermal continuous stirred tank reactor with complex

reaction®. The schematic representation of this reactor
is in Fig. 2.
q’ CAO’ CBO n
—

Fig.2 Scheme of the isothermic continuous stirred tank reactor
The reactions inside the reactor could be described by
the scheme:

A+BIS

B+X 2T
B+Y % 2. (15)
We assume that the reactant inside is perfectly mixed and

the volume is constant during experiments. We can now in-
troduce the mathematical model of the system which comes

from material balances inside the reactor:

dca ¢

prak (cao —ca) —ki-ca-cB

deg ¢

T 7V(cBo cB)—ki-ca-cB
kz'cB'Cx—k3~CB'CY

dex ¢

r 7V(CXO cx)+ki-ca-cg—ka-cB-cx

dey ¢

r —V(CYU cy)+ka-c-cx —ks-cB-cy

dez q

&z _ 49 _ S 1

T V(Czo cz)+ks-cp-cy (16)

where ¢ denotes volumetric flow rate, V is used for volume
of the reactant, ca, cg, cx, cy and cz are concentrations,
k13 are rate constants and ¢ is time. The fixed parameters
are in Table 11,

Table 1 Parameters of the reactor

Parameter Value

V=1m™3
k1 =5x%x10"*m ™ 3.kmol '.s7!
ko =5x 1072m ™ 3.kmol '.s7 !

ks =2x 10" 2m ™3 .kmol1.s7?!
3

Volume of the reactant
Rate constant of the react. 1
Rate constant of the react. 2
Rate constant of the react. 3

Input concentration of A cao = 0.4kmol-m™

¢go = 0.6kmol-m™?

3

Input concentration of B

Input concentration of X cxo = Okmol-m™
Input concentration of Y cyo = Okmol-m™3
3

Input concentration of Z czo = Okmol-m™

The system has theoretically six input variables: the vol-
umetric flow rate ¢, input concentrations of the compounds
A, B, X,Y, Z — cao,cBo,Cx0,Cy0,Cczo and five state vari-
ables final concentrations of the compounds A, B, X, Y and
Z —ca,cB,cx,cy and cz.

The mathematical model in (16) shows that this sys-
tem belongs to the class of nonlinear lumped-parameters
systems. Nonlinearity comes from the multiplication of
the state variables and the set of ODE (16) is typical for
systems with lumped parameters unlike system with dis-
tributed parameters which are described by the partial dif-
ferential equations (PDE).

3.1 External linear model (ELM)

As it written above, the choice of the external linear
model comes from the static and dynamic analyses inside
the reactor. First, the static analysis observes the behavior
of the system in the steady-state (SS), i.e., t — oo. Math-
ematical meaning of SS is % = 0 and the set of ODE
(16) is then transformed to the set of nonlinear algebraic
equations. The static analysis here was performed for the
different values of the volumetric flow rate of the reactant
g and the results can be found in Figs. 3 and 4.

All responses in the previous figures have shown the non-
linearity of the system. As the output concentration of the
compound B will be chosen later as a controlled variable,
there cannot be clearly found an optimal working point,
so the volumetric flow rate ¢° = 1 x 107*m®.s™! has been
chosen as a working point for the next studies. The sec-
ond, dynamic analysis observes the behavior of the system
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after the step change of the input variable. In our case,
four step changes of the volumetric flow rate of the reac-
tant Ag = —50%, —25%, 256% and 50% of the ¢° were done.
The output variables yi1 and y2 displayed in the following
graphs represent difference of the actual concentrations of
the compounds A and B from their steady-state value which
is actually initial condition (starting value) for the dynamic
study, e.g.

t t y
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Y2 (t) = cB (t) — cp
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Fig.3 Steady-state values of the concentrations ca, cg and cz
for different volumetric flow rate of the reactant g
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Fig.4 Steady-state values of the concentrations cx and cy for
different volumetric flow rate of the reactant ¢

The change of the volumetric flow rate g is chosen as
a manipulated (input) variable from the practical point of
view and control variable is the change of the concentration
of the product B. The input and output variables are then:

w(t)y="12"4 (t)qs_ 7 100 (%);

s (t) — cp [kmol - m73] . (18)

<

—~
~

=
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Although dynamic analyses in Figs. 5 and 6 looks like first
order transfer function, the controlled output y (t) was de-
scribed by the second order continuous-time transfer func-
tion (ELM), i.e.,

G(S) _ b(S) _ bis + bo (19)

a(s) as2+ais+ao
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Fig.5 Step responses of the output y; to the step change of the
volumetric flow rate of the reactant Agq
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Fig.6 Step responses of the output y» to the step change of the
volumetric flow rate of the reactant Agq

The choice of the second order ELM covers more working
points where the output response could be more complex
than in this concrete choice. Degrees of the polynomials in
(14) are then

degq(s) =2=q(s) = g25" + q15+

degp(s) =2=p(s) = s>+ pis+po

degg(s) =3=>g(s) =5+ g25° + g15+ g0
degn(s) =2=n(s)=s"+nis+mno

degd(s) =5=d(s) =5 +das* +dzs’ +-- -+

d282 +dis + dp. (20)

Polynomials n (s) and g (s) are computed as a result of
spectral factorizations (11) and (13):

go =/ HQby, g1 = \/29092 + ¢rqag + ubt

g2 = \/29193 +¢1q (a3 —2a0), g3 = /PrQ

no =/ag, n1=4/2n0+ a? — 2ap0. (21)

Polynomials a (s) and b (s) of the ELM (19) are computed
by the well-known and easily programmable recursive least-
squares method!®. As it was already mentioned, the delta-
models used for the ELM here have parameters estimated
in the discrete time intervals but as they are related to the
sampling period T,, we assume that they are close to the
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continuous ones. This assumption allows the usage of these
parameters in computations of the controllers parameters.
The vector of parameters and the data vector in this case
are

ps(k — 1) = [—ys(k — 1), —ys(k — 2), us(k — 1), us(k — 2)]"
05 (k) = [at, ad, b0, 0] (22)

where y5; and us denotes the recomputed output and input
variables of the delta-model:

_yk) —2y(k - D +y(k - 2)

y5(k) - T2

SRR TLES I

ys(k —2) = y(k — 2)

us(k— 1) = u(k — 1); u(k — 2)

us(k —2) = u(k — 2). (23)

The vector of parameters is computed from:
ys (k) = 05 (k) - ¢s (k — 1) +e (k) (24)

where e (k) is a general random immeasurable error. The
vector of parameters is then computed by the recursive least
squares (RLS) method®!. Advantages of this method can
be found in the simplicity and easy programmability[w].

3.2 Simulation results

The goal of simulations is to explore effect of the weight-
ing factors prq and ¢rq as a tuning parameters and find
optimal combinations of these parameters.

All simulations were performed with the same conditions.
The simulation time was Ty = 20000s, five different step
changes of the reference signal were done during this time,
sampling period was T, = 10s. The input variable was
limited inside the bounds w (¢t) = (—100 %; 100 %).

The first simulation analysis presented in Figs.7 and 8
shows impact of the weighting factor ¢rq on the course of
the output variable. The second parameter was fixed to the
value urLq = 2.

0.02

o
=
T

o
=3
=]

-0.01

Reference and output signal w(z), y(¢) (kmol-m-)

002} —y(®, $,,=0.005
| — =y, ¢,=005
—-=y(.¢,=02
-0.03
0 5000 10000 15000 20000

Time (s)

Fig.7 Courses of the reference signal, w (t) and the output sig-
nal y (¢t) for various values of weighting factor ¢rq, for the sim-
ulation model

100
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50
25

Input variable u(f) (%)
=)

u (1), é,,=0.005
— —u(), $,,=0.05
—cu (D), ¢,,=02

0 5000 10000 15000 20000
Time (s)

Fig.8 Courses of the input signal, u (t), for various values of
weighting factor ¢rq, for the simulation model

It is clear, that increasing value of ¢r,q results in slower,
but smoother course of the output. Also the input variable
is good from the practical point of view which in our case
is volumetric flow rate, and is represented by twist of the
valve on the input pipe and shocking or quick changes of
this variable could affect service life of the valve. Simula-
tions for the different p1,q and fixed value of p1,q = 0.1 were
performed in the second study.

Effect of the parameter urq in Figs.9 and 10 is oppo-
site to the previous one. In this case, increasing value of
pLq results in the quicker output response but with bigger
overshoots. The only problem of both simulation studies
can be found at the very beginning of the control where
the course of the input variable and course of the output
variable is very inaccurate. This is caused by the recursive
identification which is purposely started from the general
point 05 (k) = [0.1,0.1,0.1,0.1]" and it takes time 50-100s
to get to the right vector of parameters. The chosen course
of the identified parameter af is shown in Fig. 11. It is clear,
that after some initial adaptation time, the estimation runs
reliably. The course of the other parameters is very similar.

0.02

-0.01

-0.02

==y, 1,=40

5000 10000 15000 20000
Time (s)

-0.03

Reference and output signal w(z), y(¢) (kmol-m~)

Fig.9 Courses of the reference signal, w (t) and the output sig-
nal y (t) for various values of weighting factor uLq, for the sim-
ulation model

Both responses in graphs Figs. 7-10 have similar courses
which lead us to explore the effect of the ratio ¢1q : pLq to
the results of the control. There were used also quantitative
criteria S, and Sy besides visual comparisons which were
computed as
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Fig.10 Courses of the input signal, u (t), for various values of
weighting factor prq, for the simulation model
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Fig.11 Courses of the identified parameter, a? (t), for various
values of weighting factor ¢rq, for the simulation model

These criteria were computed not for all simulation time
but it starts after the first step change and last to the end of
the simulation. This was because of the objectivity of the
results as the courses of both input and output variables are
suboptimal at the very beginning due to inaccurate recur-
sive identification as it was mentioned above. The results
are shown in Table 2 where the upper side of the table is
related to the first simulation analysis (effect of the parame-
ter prq) and lower side presents results of the second study
for Table the different urq.

Table 2 Qualitative results of the control

PLQ HLQ PLQ i HLQ Su Sy
0.005 2 1:400 12 876.71 0.0571
0.05 2 1:40 12 435.91 0.0984
0.2 2 1:10 13 296.56 0.1381
0.1 1 1:10 13 296.56 0.1381
0.1 4 1:40 12 435.91 0.0984
0.1 40 1:400 12 876.71 0.0571

Now it is clear, that results of both studies are compa-
rable and ratio ¢rq : pLg could be used as the qualitative

criteria — bigger ratio produces quicker output response but
with the possibility of overshoots.

4 Verification of simulations

As it is written at the very beginning, modeling and sim-
ulation results are not reliable if they are not verified on the
real model.

The control methods suggested and tested above were
verified on the multifunctional process control teaching sys-
tem PCT40 from the Armfield. This system consists of
several very interesting and useful systems from the control
point of view such as a heat exchanger, a water tank and
CSTR which was used in our case. This reactor is small rep-
resentation of the real chemical reactor with the volume of
the model 1 liter. There could be two reactions performed
inside the reactor 1) dissolution of salt in water where the
conductivity is measured and controlled and 2) neutraliza-
tion of the acid and base where pH is measured. In our
case, the first reaction was used.

The schematic representation of the CSTR is in Fig. 12.
The system has two input pipes, the first for the pure wa-
ter and the second for the 10% solution of the NaCl. The
conductivity of this solution is around 60 mS which must
be taken into the account for the choice of the reference
signal. Both inputs, water and solution, are fed inside the
reactor via peristaltic pumps and these pumps cause also
the nonlinearity of the system.

Conductivity
probe

Main vessel

Dilusion inlet

Water inlet

Fig.12 Scheme of CSTR reactor in PCT40

As the system have two inputs, the operation speed of
the peristaltic pump in % which feds clean water was cho-
sen as an input variable. In fact, this operation represents
also the volumetric flow rate of the water. The second input
is fixed to the 30% during all operations.

The static and dynamic analyses are shown in Figs. 13
and 14. They present a nonlinear behavior of the system
and there could be used the same ELM (19) as in previous
case.

The control was tested for three changes of the reference
signal

w(t) =15[1 —exp(—0.1¢t)] mS fort € [0;360]s  (26)
w(t)=18mS  fort € (360;540)s (27)
w (t) = 14 mS for ¢ € [540; 720]s (28)
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Fig.13 Steady-state analysis for different operation of the pump
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Fig.14 Dynamic analysis for different step changes of the oper-
ation of the pump as an input variable
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Fig.15 Courses of the reference signal, w (¢t) and the output
signal y (t) for various values of weighting factor ¢rq, real model

The reason why we use exponential function at the first
change is that it provides much better results due to in-
accurate estimation of the ELMs parameters at the very
beginning of the control when the adaptive controller needs
some time for the adaptation. The courses of both input
and output variables are shown in following figures.

It can be clearly seen from Figs. 15 and 16 that the used
hybrid adaptive LQ control strategy provides good control
results also on the real system. The only weakness is at the
very beginning due to inaccurate identification and also us-
age of the 1DOF controller. The usage of 2DOF controller
which has one part in the feedback and one part in the feed-
forward branch of the control scheme provides much better

results mainly for the reference signal tracking[ll]. These
experiments confirm this but the results are not shown here
due to length of the contribution.
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Fig.16 Courses of the input signal, u (t), for various values of
weighting factor prq, real model

5 Conclusions

The paper deals with hybrid adaptive LQ control of the
nonlinear system. The polynomial approach, spectral fac-
torization and LQ approach were used for constructing the
continuous-time controller. Although the delta ELM be-
longs to the class of discrete-time models, its parameters
approach to the continuous ones. That is why we call this
controller hybrid — it runs in continuous-time, but param-
eters of the delta ELM are identified recursively in the de-
fined sampling intervals.

This adaptive controller has two tuning parameters —
weighting factors which give attention to the output error
or the change of the input variable. It was proved that
there are not important values of these weighting factors
separately, but ratio of them, e.g., vrq : pLq. Decreas-
ing value of this ratio produces slower speed of the con-
trol but smoother course of both the input and the output
variables. Simulation tests were done on nonlinear mathe-
matical model of the CSTR and also on the real model of
CSTR with dissolution of the salt inside the water. Both
experiments have shown usability of the proposed control.
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