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1 Introduction

A switched system belongs to an important class of hy-
brid systems. Typically, a switched system consists of a
number of subsystems and a switching signal, which defines
a specific subsystem being activated during a certain time
interval. Switched systems arised in many practical mod-
els in manufacturing, communication networks, automotive
engine control, chemical processes etc.[1−3] In the last two
decades, there has been increasing interest in stability anal-
ysis and control design of switched linear systems[4−7]. The
main approach for stability analysis relies on the use of
Lyapunov-Krasovskii functional and linear matrix inequal-
ities (LMIs).

For nonlinear systems, there has been no systematic tool
capable of finding necessary and sufficient conditions for
stability till now. This makes the control problem of non-
linear systems a challenging task. The problem becomes
more challenging when the system is constituted by sev-
eral subsystems, and only one of them is activated at a
given time because the determination of the switching rule
between subsystems is a fundamental task in the stability
analysis.

Fuzzy control represents an important approach to han-
dle complex and ill-determined systems. Compared with
conventional modeling techniques which use a single model
to describe the global behavior of a system, fuzzy modeling
is essentially a multi-model approach in which simple sub-
models are fuzzily combined to describe the global behavior
of a system. Numerous control problems have been stud-
ied based on this T-S fuzzy model[8−11]. The fuzzy logic
approach is used to study the stability analysis of switched
systems[8, 12−14].

As is well known, the introduction of time delay sys-
tems render the stability analysis more complicated. Fur-
thermore, time delay systems are of great importance since
they are frequently encountered in various engineering sys-
tems, such as chemical processes, mechanical systems, sys-
tems in economy, transmission lines, etc. Linear time de-
lay switched systems have been extensively studied in the
literatures[15−20]. For nonlinear switched time delay sys-
tems there are only few results[21−24]. Benzaouia[14] consid-
ered discrete time systems while Yong et al.[25] investigated
continuous time systems with constant delay.

In this paper, we address the problem of stability of un-
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certain switched nonlinear systems with time delay using
T-S fuzzy model. Note here that the transient process of
a system can be better described if its decay rate is deter-
mined. Hence, the problem of exponential stability is of
great importance. To the best of our knowledge, there is no
paper dealing with exponential stability of nonlinear time
delay switched systems. This point represents our objective
in this paper. Delay dependent exponential stability condi-
tions are presented by using T-S fuzzy model. Our method
is based on Lyapunov-Krasovskii functional approach, and
the results are expressed in terms of LMIs. With our re-
sults, we can compute simultaneously the two bounds that
characterize the exponential stability. These bounds are
the stability factor and decay rate of the solution. Two
numerical examples are given for illustration.

2 Problem formulation

The switched nonlinear systems with time delay can be
described by a differential equation as

{
ẋ(t) = fσ(x(t), x(t− h), t), t > 0

x(t) = φ(t), t ∈ [−h, 0]
(1)

where x ∈ Rn is the state vector, φ ∈ ([−h, 0],Rn) is
the initial function, with norm ‖φ‖ = supθ∈[−h,0]‖φ(θ)‖,
where θ ∈ [h, 0], fσ are sufficiently regular functions from
Rn to Rn that are parameterized by the index set I :=
{1, 2, · · · , N}, i.e., σ ∈ I. σ(x): Rn → I is the switch-
ing rule which is a piece-wise constant function depend-
ing on the state x(t) in each time, i.e., fσ(x) (x(t), x(t −
h, t) switches between f1(x(t), x(t − h), t), f2(x(t), x(t −
h), t), · · · , and fN (x(t), x(t − h), t). h is a constant time

delay which can take its values in [−h, 0], i.e.,

0 6 h 6 h. (2)

Moreover σ(x) = j implies that the j-th subsystem is acti-
vated, and we have the following subsystem:

{
ẋ(t) = fj(x(t), x(t− h), t), t > 0

x(t) = φ(t), t ∈ [−h, 0].
(3)

Furthermore, following the idea of [26], we consider a
fuzzy switched time delay system described by T-S fuzzy
model for switched nonlinear systems (1). The i-th rule of
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the T-S fuzzy model is described by the following IF-THEN
form:

Plan rule i:
Ri: If z1(t) is W i

1 and · · · and zs(t) is W i
s , then





ẋ(t) = (Aiσ + ∆Aiσ(t))x(t) + (Biσ(t)+
∆Biσ(t) + ∆Biσ)x(t− h)

x(t) = φ(t), t ∈ [−h, 0], i = 1, · · · , r t > 0
(4)

where z1(t), z2(t), · · · , zs(t) are the premise variables,
W i

l , l = 1, · · · , s are the fuzzy sets, r is the num-
ber of IF-THEN rules, [Aiσ Biσ ∆Aiσ(t) ∆Biσ(t)] ∈
{[Aij , Bij ∆Aij(t) ∆Bij(t)], j = 1, · · · , N}, Aij and
Bij are constant matrices, ∆Aij(t) and ∆Bij(t) are
unknown perturbation matrices. The matrix Aiσ

switches between matrices Ai1, Ai2, · · · , AiN , the ma-
trix Biσ switches between matrices Bi1, Bi2, · · · , BiN .
The perturbation matrices ∆Aiσ(t) and ∆Biσ(t)
switch between matrices ∆Ai1(t) Ai2(t), · · · , AiN (t) and
∆Bi1(t), ∆Bi2(t), · · · , ∆BiN (t), respectively. Hence, sys-
tem (4) can be represented as

Plan rule i for individual subsystem j:
Ri: If z1(t) is W i

1 and · · · and zs(t) is W i
s , then

{
ẋ(t)=(Aij +∆Aij(t))x(t)+(Bij(t)+∆Bij)x(t−h)

x(t)=φ(t), t ∈ [−h, 0], i = 1, · · · , r, t > 0.
(5)

The perturbation matrices are assumed to be norm bounded
and given by

Aij = EaijFaij(t)Haij

∆Bij = EbijFbij(t)Hbij (6)

where Eaij , Ebij , Haij and Hbij are known constant ma-
trices with appropriate dimensions, Faij(t) and Fbij(t) are
unknown time-varying matrices with lebesgue measurable
elements bounded by

FT
aij(t)Faij(t) 6 I

FT
bij(t)Fbij(t) 6 I. (7)

By using the center-average defuzzifier, product inference
and singleton fuzzifier, dynamics of T-S fuzzy system (5)
can be expressed as

ẋ(t) =

r∑
i=1

µi(z(t))[(Aij + ∆Aij(t))x(t) + (Bij+

∆Bij(t))x(t− h)] (8)

where µi(z(t)) = wi(z(t))∑r
i=1 wi(z(t))

, wi(z(t)) = Πs
j=1w

i
j(zi(t)),

W i
j (zj(t)) is the membership value of zj (t) in W i

j , and it
is assumed that µi(z(t)) > 0,

∑r
i=1 µi(z(t)) = 1 for all t.

The system (8) may be written as

ẋ(t) = Ãjx(t) + B̃jx(t− h) (9)

where

Ãj =

r∑
i=1

µi(z(t))(Aij(t) + ∆Aij(t))

B̃j =

r∑
i=1

µi(z(t))(Bij(t) + ∆Bij(t)).

Lemma 1. For any x, y ∈ Rn, and M > 0, we have

2xTy 6 xTM−1x + yTMy. (10)

Definition 1. Given α >0, system (9) is robustly α-
exponentially stable, if there exists a switching rule σ and a
constant β >1 such that every solution x(t, φ) of the system
satisfies

‖x(t, φ)‖ 6 βe−αt‖φ‖, t > 0.

3 Main results

Let the matrices R, Q and Q̃ be given by

R =

[
R11 R12

RT
12 R22

]

Q =

[
Q11 Q12

QT
12 Q22

]

Q̃ =

[
I AT

ij

0 BT
ij

]
Q

[
I 0

Aij Bij

]
. (11)

And let

Q =

[
0 ET

aij

0 ET
bij

]

Q =

[
0 0

Eaij Ebij

]

Hij =

[
Haij 0
0 Hbij

]

β1 = λmin(R11) (12)

β2 = (1 + h
2
)λmax(R) +

1− e2αh

2α
λmax(P )+

e2αh + 2αh− 1

α2
max
16i6r
16j6N

(Q̃ij) + λmax(H
T
ijHij)} (13)

Lij = R11Aij + AT
ijR11 + F0Aij + AT

ijF
T
0 + Z (14)

Yij =




(F0 + R11)Eaij (F0 + R11)Ebij

F1Eaij F1Ebij

(F2 + RT
12)Eaij (F2 + RT

12)Ebij

F3Eaij F3Ebij




Nij =




HT
aijS0ijHaij ∗ ∗ ∗

HT
bijS

T
1ijHaij HT

aijS2ijHbij ∗ ∗
0 0 0 ∗
0 0 0 0




Sij =

(
S0ij S1ij

ST
1ij S2ij

)

πij =




0 ∗ ∗ ∗
F1Aij + BT

ij F1Bij + BT
ij ∗ ∗

F2Aij F2Bij 0 ∗
F3Aij − FT

0 F3Bij − FT
1 FT

2 −F3 − FT
3




ψij =




ψij
11 ∗ ∗ ∗

ψij
21 ψij

22 ∗ ∗
ψij

31 ψij
32 ψij

33 ∗
hQT

12 0 0 hQ22




where * denotes the symmetric part in a symmetric matrix,
and

ψij
11 = R12 + RT

12 + 2αR11 + P −Z − 1

h
e−2αhQ22 + hQ11
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ψij
21 = BT

ijR11 −RT
12 +

1

h
e−2αhQ22

ψij
31 = RT

12Aij + R22 + 2αRT
12 − 1

h
e−2αhQ12

ψij
22 = −e−2αhP − 1

h
e−2αhQ22

ψij
32 = RT

12Bij −R22 +
1

h
e−2αhQ12

ψij
33 = 2αR22 − 1

h
e−2αhQ11.

The switching rule ([SR]) is constructed as follows:
Step 1. Let x(t) = φ(t).

Step 2. σ(x) = arg min16j6N

{
xT(t)

[(∑r
i=1 µiAij

)T ×
(R11 + FT

0 ) + (R11 + F0)
(∑r

i=1 µiAij

)
+ Z

]
x(t)

}
.

Step 3. σ(x) = i as long as x(t) ∈ Ωi ={
x : xT(t)

[ ( ∑r
i=1 µi ×Aij

)T
(R11 + FT

0 ) + (R11 + F0) ×(∑r
i=1 µAij

)
+ Z

]
x(t) < 0

}
.

Step 4. If x(t) hits the boundary of Ωi, go to Step 2 to
determine the next mode.

Theorem 1. System (9) is α-exponentially stable if
there exist symmetric positive definite matrices Z, P , S,
Q22, Q11, R11, R22, S0ij , S2ij , matrices R12, Q12, F0, F1,
F2, F3, S1ij , j = 1, · · · , N and i = 1, · · · , r satisfying:

1) There exists 0 < ρj < 1, such that
∑N

j=1 ρj = 1 and

N∑
j=1

ρjLij < 0. (15)

2)

[
ψij + πij + Nij ∗

Y T
ij −Sij

]
< 0. (16)

The switching rule is given by [SR], and the solution x(t, φ)
of the system satisfies

‖x(t, φ)‖ 6 βe−αt‖φ‖, β =

√
β2

β1
, t > 0.

Proof. Let xt := {x(t + s), s ∈ [−2h, 0]} and consider
the following Lyapunov-Krasovskii functional: V (xt) =
V1(xt) + V2(xt) + V3(xt), where

V1(xt) =

(
x(t)∫ T

t−h
x(s)ds

)T

R

(
x(t)∫ T

t−h
x(s)ds

)T

V2(xt) =

∫ 0

−h

e2aθsxT(t + s)Px(t + s)ds

V3(xt) =

∫ 0

−h

∫ 0

s

e2aθ

(
x(t + θ)
ẋ(t + θ)

)T

Q

(
x(t + θ)
ẋt+θ)

)
dθds.

It is easy to verify that

V1(xt) 6 (1 + h
2
)λmax(R)‖xt‖2

V2(xt) 6 1− e−2αh

2α
λmax(P )‖xt‖2

V3(xt) =

∫ 0

−h

∫ 0

s

e2αθ

(
x(t + θ)

x(t + θ − h(t))

)T

×
[

I ÃT
ij

0 B̃T
ij

]
Q

[
I 0

Ãij B̃ij

] (
x(t + θ)

x(t + θ − h)

)
dθds 6

∫ 0

−h

∫ 0

s

e2αθ

(
x(t + θ)

x(t + θ − h)

)T

×

[2Q̃ij + 2H̃T
ijF

T
ijQijF ijF ij ]

(
x(t + θ)

x(t + θ − h)

)
dθds 6

e−2αh + 2αh− 1

α2
max
16i6s

16j6N

{λmax(Q̃ij)+

λmax(Qij)λmax(H
T
ijHij)}

where F ij = diag{Faij , Fbij}. So we have

β1‖x(t)‖2 6 V (xt) 6 β2‖xt‖2 (17)

where β1 and β2 are defined by (12) and (13). Computing
the first time derivative of V (xt), we obtain

V̇1(xt) = 2

(
x(t)∫ t

t−h
x(s)ds

)T

R

(
ẋ(t)

x(t)− x(t− h)

)

V̇2(xt) = xT(t)Px(t)− 2αV2(xt)− e−2αhxT(t− h)Px(t− h)

V̇3(xt) = h

(
x(t)
ṫ(t)

)T

Q

(
x(t)

(̇t)

)
− 2αV3(xt)−

∫ t

t−h

e−2α(s−t)

(
x(s)
ẋ(s)

)T

Q

(
x(s)
ẋ(s)

)
ds.

Let χ(t) =




x(t)
x(t− h)∫ t

t−h
x(s)ds

ẋ(t)


 , then

V̇1(xt) =

r∑
i=1

µi[x
T(t)(R11Aij + AT

ijR11)x(t)+

χT(t)(T1 + ∆T1)χ(t)]− 2αV1(t)

V̇2(xt) = χT(t)T2PTT
2 χ(t)− χT(t)T3PTT

3 χ(t)− 2αV2(t)

V̇3(xt) = χT(t)T4χ(t)− 2αV3(t)

where

T1 =



R12+RT
12+2αR11 ∗ ∗ ∗

BT
ijR11−RT

12 0 ∗ ∗
RT

12Aij +R22+2αRT
12 RT

12Bij−R22 2αR22 ∗
0 0 0 0




T4 =



hQ11− 1
h
e−2αhQ22 ∗ ∗ ∗

1
h
e−2αhQ22 −1

h
e−2αhQ22 ∗ ∗

−1
h
e−2αhQ12

1
h
e−2αhQ12 −1

h
e−2αhQ11 ∗

hQT
12 0 0 hQ22




∆T1 =




R11∆Aij + ∆AT
ijR11 ∗ ∗ ∗

∆BT
ijR11 0 ∗ ∗

RT
12∆Aij RT

12∆Bij 0 ∗
0 0 0 0




T2 =




I
0
0
0



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T3 =




0

e−αhI
0
0


 .

Let θij = T1 + T2PTT
2 − T3PTT

3 + T4, we get

V̇ (xt) + 2αV (xt) 6
r∑

i=1

µi[x
T(t)(R11Aij+

AT
ijR11)x(t)] +

r∑
i=1

µi[χ
T(t)θijχ(t)+

χT(t)∆T1χ(t)]. (18)

Now let Bj = [Ãj B̃j 0 − I] and F =




F0

F1

F2

F3


, we

can easily verify that Bjχ = 0, ∀χ 6= 0, and

χT(t)[FBj + BT
j FT]χ(t) = 0, j = 1, · · · , N. (19)

Adding (19) to the right hand side of (18), and adding
and subtracting the term xT(t)Zx(t) with the positive def-
inite matrix Z, we get

V̇ (xt)+2αV (xt) 6
r∑

i=1

µi[x
T(t)Lijx(t)] +

r∑
i=1

µi×

[χT(t)[θij + πij ]χ(t) + χT(t)∆πijχ(t)] (20)

where ∆πij is given at the top of the next page.

Let F̃ =

[
Faij(t) 0

0 Fbij(t)

]
and H̃ij =

[
Haij 0 0 0

0 Hbij 0 0

]
. ∆πij can be written as

∆πij = YijF̃ H̃ij + H̃T
ijF̃

TY T
ij .

Applying Lemma 1, we have

V̇ (xt) + 2αV (xt) 6
r∑

i=1

µi{xT(t)Lijx(t) + χT(t)[θij+

πij + YijS
−1
ij YijT + HijTSijHij ]χ(t) (21)

where θij can be written as

θij = Mij + h




Q11 ∗ ∗ ∗
0 − e−2αh

h
P ∗ ∗

0 0 0 ∗
QT

12 0 0 Q22


−

e−2αh

h
×




Q22 ∗ ∗ ∗
−Q22 Q22 ∗ ∗
Q12 −Q12 Q11 ∗
0 0 0 0




where Mij is given at the top of the next page.

θij =Mij +h




Q11 ∗ ∗ ∗
0 λ(h)P ∗ ∗
0 0 0 ∗

QT
12 0 0 Q22


 +

λ(h)




0 −I
0 I
I 0
0 0




[
Q12 Q12

QT
12 Q22

] [
0 0 I 0
−I I 0 0

]

where λ(h) = − e−2αh

h
. Since λ(h) is an increasing function

of h we have λ(h) 6 λ(λ) so that

θij 6 Θij = Mij + h




Q11 ∗ ∗ ∗
0 − e−2αh

h
P ∗ ∗

0 0 0 ∗
QT

12 0 0 Q22


−

e−2αh

h




0 −I
0 I
I 0
0 0




[
Q11 Q12

QT
12 Q22

] [
0 0 I 0
−I I 0 0

]
.

Since condition (16) holds, by schur complement, for all

h satisfying 0 < h 6 h, we have

Θij + πij + Nij + YijS
−1
ij Y T

ij < 0

where Nij = H̃T
ijSijH̃ij . It follows that

V̇ (xt) + 2αV (xt) 6
r∑

i=1

µi{xT(t)Lijx(t)}. (22)

From condition (15), we have
∑N

j=1 ρjLij < 0, where

0 < ρj < 1, j = 1, · · · , N , and
∑N

j=1 ρj = 1. Consequently,
we can write

N∑
j=1

ρj min
j=1,··· ,N

(
r∑

i=1

µi[x
T(t)Lijx(t)]

)
6

N∑
j=1

ρj

r∑
i=1

µix
T(t)Lijx(t) < 0.

By choosing the switching rule

σ(x) = arg min
j=1,··· ,N

(
r∑

i=1

µi[x
T(t)Lijx(t)]

)

we have

V̇ (xt)+2αV (xt) 6
r∑

i=1

µi[x
T(t)Lijx(t)] 6

N∑
j=1

ρj

[
r∑

i=1

µix
T(t)Lijx(t)

]
=

r∑
i=1

µj

[
N∑

j=1

ρjx
T(t)Lijx(t)

]
< 0.

This implies that V (xt) 6 V (φ)e−2αt, t > 0. Taking ac-
count of (17), we obtain β1‖x(t)‖2 6 V (xt) 6 V (φ)e−2αt 6
β2e

−2αt‖φ‖2. And then, ‖x(t)‖ 6 βe−αt‖φ‖, t > 0 which
concludes the proof. ¤

Remark 1. For the nominal system of (9), i.e.,
∆Aij(t) = ∆Bij(t) = 0, from Theorem 1 we can obtain
the α-exponential stability if the condition (15) holds and
the following LMI is satisfied.

ψij + πij < 0 (23)
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∆πij =




(F0 + R11)∆Aij + ∆AT
ij(F

T
0 + R11) ∗ ∗ ∗

F1∆Aij + ∆BT
ij(F

T
0 + R11) F1∆Bij + ∆BT

ijF
T
1 ∗ ∗

(F2 + RT
12)∆Aij (F2 + R12)∆Bij 0 ∗

F3∆Aij F3∆Bij 0 0




Mij =




R12 + RT
12 + 2αR11 + P − Z ∗ ∗ ∗

BT
ijR11 −RT

12 0 ∗ ∗
RT

12Aij + R22 + 2αRT
12 RT

12Bij −R22 2αR22 ∗
0 0 0 0


 .

Remark 2. If we set α = 0 in the Lyapunov functional,
Theorem 1 reduces to a robust stability criterion. In [27],
the free weighting matrix method was used to deal with
the cross terms. It has been shown that the weighting ma-
trix approach is less restrictive than model transformation
method used in [28]. Peng et al.[29] employed Jensen′s in-
tegral inequality, and it is shown by examples that it gives
improved results. The work of [30] is based on Finsler′s
lemma and leads to improved results over the previous ref-
erences. We emphasize here that the results of [27−30] can
not be applied to switched systems, because the stability
of the switched system depends on the switching rule. As
is well known, all the subsystems may be stable, but the
overall system may be unstable if the switching rule is not
adequately chosen and the converse is true. In this paper,
we are motivated by Finsler′s lemma although this lemma
is not used. In manipulating the derivative of the Lyapunov
functional, we used the state equation. As shown in exam-
ple 1, our approach gives improved results.

Remark 3. For the case N = 1, without switching, and
without perturbations, system (9) reduces to the following
T-S fuzzy time delay system:

ẋ(t) =

r∑
i=1

µi[Aix(t) + Bix(t− h)]. (24)

In this case, from (20), since there is no switching rule, we
can insert Lij in the first element of the matrix θij , which
leads to the result stated in the next corollary. First, let
ψi = ψij and πi = πij , where in the expressions of ψij and
πij , we replace Aij and Bij by Ai and Bi, respectively.

Corollary 1. The system (24) is α-exponentially stable
if there exist symmetric positive definite matrices P , Q22,
Q11, R11, R22, Z1, Z2, matrices R12, Q12, F0, F1, F2, F3

satisfying

Ωi + πi < 0. (25)

The solution x(t, φ) of the system satisfies

‖x(t, φ)‖ 6 βe−αt‖φ‖

β =

√
β2

β1
(26)

where the elements Ωi
k1 = ψi

k1 for k, l = 1, · · · , 4, (k, l) 6=
(1, 1), Ωi

11 = (ψi
11 − Z) + R11Ai + AT

i R11 + F0Ai + AT
i FT

0 ,
and we omit j in the calculation of β.

Note that in general, the results of fuzzy T-S switched
systems when applied to only fuzzy systems give large time
delay upper bounds because of the absence of the switching
modes.

4 Numerical examples

In this section, we will present two numerical examples
to illustrate the proposed results.

Example 1[29]. Let us consider a non switched system
with the following rules

Rule 1: If x1(t) is W1, then

ẋ = A1x(t) + B1x(t− h). (27)

Rule 2: If x1(t) is W2, then

ẋ = A2x(t) + B2x(t− h). (28)

And the membership functions for Rules 1 and 2 are

µ1(x1(t)) =
1

1 + e−2x1(t)

µ2(x2(t)) = 1− µ1(x1(t))

where Ai and Bi (i = 1, 2) are given by

A1 =

[ −2 0
0 −0.9

]
, A2 =

[ −1 0.5
0 −1

]
,

B1 =

[ −1 0
−1 −1

]
, B2 =

[ −1 0
0.1 −1

]
.

Taking α = 0 and applying Corollary 1, we obtain the
maximum allowable delay bound h = 1.9110.

To compare with the literature results, the upper bounds
on the time delay obtained are listed in Table 1. It is clear
that the obtained upper h is significantly larger than those
in [29−35].

Table 1 The maximal allowable time delay bound

Paper Upper bound

Li et al.[31] 1.00

Tian and Peng[32] 1.5974

Chen et al.[33] 1.5974

Wu and Li[34] (Corollary 1) 1.5974

Lien et al.[35] 1.5974

Peng et al.[29] 1.6341

Idrissi and Tissir[30] 1.8191

Corollary 1 1.9110

Example 2. Consider continuous switched time-delay
system (1) with two subsystems.

For the subsystem 1,
Rule 1: If x1(t) is W1, then

ẋ = (A11 + ∆A11(t))x(t) + (B11 + ∆B11(t))x(t− h).
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Rule 2: If x1(t) is W2, then

ṫ = (A21 + ∆A21(t))x(t) + (B21 + ∆B21(t))x(t− h).

For the subsystem 2,
Rule 1: If x1(t) is W1, then

ẋ(t) = (A12 + ∆A12(t))x(t) + (B12 + ∆B12(t))x(t− h).

Rule 2: If x1(t) is W2, then

ẋ(t) = ((A22 + ∆A22(t))x(t) + (B22 + ∆B22(t))x(t− h).

And the membership functions are taken the same as in
Example 1. The system matrices are given by

A11 =

( −6 0.2
−1.05 1

)
, A12 =

( −0.2 0.5
−1 −5

)
,

A21 =

( −3.6 −0.3
−0.2 0.3

)
, A22 =

( −0.2 −0.5
0.31 −4.9

)
,

B11 =

( −3 0.5
−1 1.5

)
, B12 =

( −0.4 0.5
−0.1 −1

)
,

B21

( −0.1 0.15
−1 0.1

)
, B22 =

( −0.12 −0.5
−0.3 0.5

)
,

Ha11

( −0.01 0.0002
−0 0.00003

)
, Ha21 =

( −0.01 0
0.002 0

)
,

Ha12 =

(
0.01 0.0002
0 −0.00003

)
, Ha22 =

( −0.0001 0
0.0002 0

)
,

Hb11 =

(
0.01 0
0 0.5

)
, Hb21 =

(
0.01 0.02
0.25 0.3

)
,

Hb12 =

(
0.01 0
0.15 0.5

)
, Hb22 =

(
0.01 0.02
0.25 0.3

)
,

Ea11 =

(
0 1
0 −2

)
, Ea21 =

(
2 0
0 1

)
,

Ea12 =

(
0 1
0 −2

)
, Ea22 =

(
1 0
0 2

)
,

Eb11 =

(
0.3 0
2.2 0.3

)
, Eb21 =

(
0.1 0.2
0.3 0.4

)
,

Eb12 =

(
0.2 0
2.2 0.3

)
, Eb22 =

(
0.1 2
0.3 0.4

)
,

Fa11(t) = Fa21(t) = Fa12(t) = Fa22(t) =

(
cost 0
0 sint

)
.

Letting α = 0.5 and applying Theorem 1, the upper
bound h = 0.3863 of h is computed.

5 Conclusions

This paper has proposed a switching design for the ex-
ponential stability of uncertain linear switching fuzzy time-
delay systems. Delay-dependent stability conditions are es-
tablished by using Lyapunov approach. The perturbations
considered are norm-bounded and the results are expressed
in terms of LMIs. The numerical examples have been pro-
vided to demonstrate the effectiveness and applicability of
the proposed method.
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