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Abstract: In this paper, delay-dependent robust stabilization and H∞ control for uncertain stochastic Takagi-Sugeno (T-S) fuzzy
systems with discrete interval and distributed time-varying delays are discussed. The purpose of the robust stochastic stabilization
problem is to design a memoryless state feedback controller such that the closed-loop system is mean-square asymptotically stable
for all admissible uncertainties. In the robust H∞ control problem, in addition to the mean-square asymptotic stability requirement,
a prescribed H∞ performance is required to be achieved. Sufficient conditions for the solvability of these problems are proposed in
terms of a set of linear matrix inequalities (LMIs) and solving these LMIs, a desired controller can be obtained. Finally, two numerical
examples are given to illustrate the effectiveness and less conservativeness of our results over the existing ones.

Keywords: Robust stability, robust H∞ control, stochastic fuzzy systems, distributed delay, linear matrix inequality (LMI).

1 Introduction

In modeling of dynamical systems, Takagi-Sugeno (T-S)
fuzzy systems[1] provide an alternative approach to the
control of plants that are complex, uncertain, and ill-
defined. In the last two decades, with wide applications
from consumer products to industrial processes, T-S fuzzy
model[1−5] is proven to be effective universal approxima-
tions over differential geometric and differentiable algebraic
methods. By making use of simple fuzzy reasoning rules
and fuzzy inference methods, it provides a basis for devel-
opment of systematic approaches to stability, stabilization,
H∞ control and filtering problems[6−13].

Time delays are often encountered in many industrial and
engineering systems such as chemical processes, rolling mill
systems, networked control systems, etc. It is well known
that time delays can cause poor performance or instability.
Therefore, the problem of delay-dependent stability analy-
sis and controller synthesis for T-S fuzzy systems with time
delays have received great efforts by many researchers in
recent years. Moreover, delay-dependent approaches[6, 9, 14]

are generally less conservative than delay-independent[2]

ones when the sizes of time delays are small. Re-
cently, the delay-dependent stabilization and H∞ control
of T-S fuzzy systems with interval time-varying delay are
discussed[15, 16]. Robust stability, stabilization and H∞ con-
troller design of discrete and distributed time delays with
or without fuzzy systems are considered[17−19].

In the past few years, stochastic nonlinear systems have
received much attention since stochastic modeling has come
to play an important role in many branches of science and
engineering applications. For instance, stabilization, H∞
control, and H∞ filtering problems for linear and nonlinear
stochastic systems have been considered[20−26]. The con-
trol technique based on the so-called T-S fuzzy model has
attracted lots of attention. Recently, some attempts have
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been made to use T-S fuzzy model based control technique
for stochastic nonlinear systems[27−30]. Very recently, the
delay-dependent robust H∞ control for uncertain stochastic
T-S fuzzy systems with time delays have been discussed in
[31, 32]. However, to the best of our knowledge, the delay-
dependent robust stabilization and H∞ control for uncer-
tain stochastic T-S fuzzy systems with discrete interval and
distributed time-varying delays have not yet been fully in-
vestigated and this will be the goal of this paper.

In this paper, we investigate the problem of the delay-
dependent robust stabilization and H∞ control for uncer-
tain stochastic T-S fuzzy systems with discrete interval and
distributed time-varying delays. The uncertainties are as-
sumed to be norm bounded and time-varying. For the ro-
bust stabilization problem, a state feedback fuzzy controller
is designed such that the closed-loop system is mean-square
asymptotically stable for all admissible uncertainties, while
for the robust H∞ control problem, a state feedback fuzzy
controller is designed such that the closed-loop system is
not only mean-square asymptotically stable but also guar-
antees a prescribed H∞ performance level. Sufficient con-
ditions for the solvability of these problems are obtained,
and desired state feedback controllers can be constructed
by solving certain LMIs. Further, two numerical examples
are given to illustrate the effectiveness of the proposed ap-
proach.

Throughout this paper, notation X > Y (respectively,
X > Y ) where X and Y are symmetric matrices, means
that X − Y is positive semidefinite (respectively, positive
definite). I denotes the identity matrix of appropriate di-
mension. L2[0,∞) is the space of square integrable vector.
Moreover, let (Ω, F , {Ft}t>0, P) be a complete probability
space with a filtration {Ft}t>0 satisfying the usual condi-
tions (i.e., the filtration contains all P-null sets and is right
continuous). The symmetric elements of the symmetric ma-
trix will be denoted by ∗. Matrices, if their dimensions are
not explicitly stated, are assumed to have compatible di-
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mensions for algebraic operations.

2 Problem formulation

Consider the following uncertain stochastic T-S fuzzy
model with discrete and distributed time-varying delays de-
scribed by

Plant rule i: If θ1(t) is ηi1 and θ2(t) is ηi2 and · · · and
θp(t) is ηip,

then

(Σ) : dx(t) =
[
(Ai + ∆Ai(t))x(t) + (Adi + ∆Adi(t))× x(t− τ(t))+

(B1i + ∆B1i(t))u(t) + Bv1iv(t) + Bd1i

∫ t

t−d(t)

x(s)ds
]
dt+

[
(Ci + ∆Ci(t))x(t) + (Cdi + ∆Cdi(t))× x(t− τ(t))+

(B2i+∆B2i(t))u(t)+Bv2iv(t)+Bd2i

∫ t

t−d(t)

x(s)ds
]
dw(t)

(1)

z(t) = Dix(t) + Ddix(t− τ(t)) + B3iu(t) (2)

x(t) = φ(t), ∀t ∈ [−τ, 0], i = 1, 2, · · · , r (3)

where ηij is the fuzzy set, θ1(t), θ2(t), · · · , θp(t) are the
premise variables, r is the number of IF-THEN rules of
T-S fuzzy model, x(t) ∈ Rn is the state, u(t) ∈ Rm is
control input, v(t) ∈ Rp is a disturbance input which be-
longs to L2[0, ∞), z(t) ∈ Rq is controlled output vector,
and ω(t) ∈ Rn is a one-dimensional Brownian motion de-
fined on the probability space (Ω, F , {Ft}t>0, P) sat-
isfying E{dw(t)} = 0, E{dw(t)2} = dt. In the above
system (Σ), Ai, Adi, B1i, Bv1i , Bd1i , Ci, Cdi, B2i, Bv2i ,
Bd2i , Di, Ddi and B3i are known real constant matrices
with appropriate dimensions. ∆Ai(t), ∆Adi(t), ∆B1i(t),
∆Ci(t), ∆Cdi(t) and ∆B2i(t) are unknown matrices repre-
senting time-varying parameter uncertainties, τ(t) and d(t)
are bounded continuous time-varying delays satisfying

0 6 τm 6 τ(t) 6 τM , τ̇(t) 6 µ < ∞, 0 6 d(t) 6 dM (4)

where τm, τM , µ and dM are real constant scalars. Let τ =
max{τM , dM}. φ(t) is real valued continuous initial function
on [−τ, 0]. In this paper, the parameter uncertainties are
assumed to be of the form
[
∆Ai(t) ∆Adi(t) ∆B1i(t) ∆Ci(t) ∆Cdi(t) ∆B2i(t)

]
=

EiFi(t)
[
H1i H2i H3i H4i H5i H6i

]
(5)

where Ei, H1i, H2i, H3i, H4i, H5i and H6i are known real
constant matrices with appropriate dimensions, and Fi(t)
is an unknown real time-varying matrix function satisfying

FT
i (t)Fi(t) 6 I. (6)

It is assumed that all elements of Fi(t) are Lebesgue mea-
surable. ∆Ai(t), ∆Adi(t), ∆B1i(t), ∆Ci(t), ∆Cdi(t) and
∆B2i(t) are said to be admissible if both (5) and (6) hold.

By using center average defuzzifier, product inference and
singleton fuzzifier, the global dynamics of the T-S fuzzy

system (Σ) can be inferred as

(Σ1) : dx(t) =
r∑

i=1

hi(θ(t))
{[

(Ai + ∆Ai(t))x(t)+

(Adi + ∆Adi(t))x(t− τ(t)) + (B1i + ∆B1i(t))u(t)+

Bv1iv(t) + Bd1i

∫ t

t−d(t)

x(s)ds
]
dt+

[
(Ci + ∆Ci(t))x(t) + (Cdi + ∆Cdi(t))x(t− τ(t))+

(B2i + ∆B2i(t))u(t) + Bv2iv(t)+

Bd2i

∫ t

t−d(t)

x(s)ds
]
dw(t)

}
(7)

z(t) =

r∑
i=1

hi(θ(t))
{

Dix(t) + Ddix(t− τ(t)) + B3iu(t)
}

(8)

x(t) = φ(t), ∀t ∈ [−τ, 0] (9)

where hi(θ(t)) = νi(θ(t))∑r
i=1 νi(θ(t))

, νi(θ(t)) = Πp
j=1ηij(θj(t)),

and ηij(θj(t)) is the grade of membership value of θj(t)
in ηij . In this paper, we assume that νi(θ(t)) > 0 for
i = 1, 2, · · · , r and

∑r
i=1 νi(θ(t)) > 0 for all t. Therefore,

hi(θ(t)) > 0 (for i = 1, 2, · · · , r), and
∑r

i=1 hi(θ(t)) = 1 for
all t. In the sequel, for simplicity, we use hi to represent
hi(θ(t)).

Based on the parallel distributed compensation schemes,
a fuzzy model of a state feedback controller for the system
(Σ1) is formulated as follows:

Control rule i: If θ1(t) is ηi1 and θ2(t) is ηi2 and · · · and
θp(t) is ηip, then

u(t) = Kix(t), i = 1, 2, · · · , r. (10)

The overall state feedback fuzzy control law is represented
by

u(t) =

r∑
i=1

hiKix(t) (11)

where Ki (i = 1, 2, · · · , r) are the local control gains. Under
control law (11), the overall closed-loop system is obtained
as

(Σ2) : dx(t) =
[
AKx(t)+Adx(t− τ(t))+Bv1v(t)+Bd1

∫ t

t−d(t)

x(s)ds
]
dt+

[
CKx(t)+Cdx(t−τ(t))+Bv2v(t)+Bd2

∫ t

t−d(t)

x(s)ds
]
dw(t)

(12)

z(t) = DKx(t) + Ddx(t− τ(t)) (13)
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x(t) =φ(t), ∀t ∈ [−τ, 0] (14)

where

AK =

r∑
i=1

r∑
j=1

hihj(Ai + B1iKj + ∆Ai(t) + ∆B1i(t)Kj)

Ad =

r∑
i=1

hi(Adi + ∆Adi(t))

Bv1 =

r∑
i=1

hiBv1i

Bd1 =

r∑
i=1

hiBd1i

CK =

r∑
i=1

r∑
j=1

hihj(Ci + B2iKj + ∆Ci(t) + ∆B2i(t)Kj)

Cd =

r∑
i=1

hi(Cdi + ∆Cdi(t))

Bv2 =

r∑
i=1

hiBv2i

Bd2 =

r∑
i=1

hiBd2i

DK =

r∑
i=1

r∑
j=1

hihj(Di + B3iKj)

Dd =

r∑
i=1

hiDdi.

Let us introduce the following definition and lemmas that
are useful for the development of our results.

Definition 1[25]. The nominal system (7) and (9) with
u(t) = 0 and v(t) = 0 is said to be mean-square stable if for
any ε > 0, there exists δ(ε) > 0 such that E{|x(t)|2} < ε
when

sup
−τ6s60

E{|φ(s)|2} < δ(ε).

In addition,

lim
t→∞

E{|x(t)|2} = 0

for any initial conditions, then the nominal system (7) and
(9) with u(t) = 0 and v(t) = 0 is said to be mean-square
asymptotically stable. The uncertain stochastic system (7)
and (9) is said to be robustly stochastically stable if the
system associated to (7) and (9) with u(t) = 0 and v(t) =
0 is mean-square asymptotically stable for all admissible
uncertainties ∆Ai(t), ∆Adi(t), ∆B1i(t), ∆Ci(t), ∆Cdi(t)
and ∆B2i(t).

In this paper, our aim is to develop techniques of ro-
bust stochastic stabilization and robust H∞ control for the
stochastic fuzzy system (Σ2). More specifically, we are con-
cerned with the following two problems:

1) Robust stabilization problem: Design a state feedback
controller (11) for the system (7) and (9) with v(t) = 0
such that the resulting closed-loop system (12) and (14)
with v(t) = 0 is mean-square asymptotically stable for all
admissible uncertainties. In this case, the system (12) and
(14) with v(t) = 0 is robustly stochastically stablilizable.

2) Robust H∞ control problem: Given a scalar γ > 0,
design a state feedback controller in the form of (11) for
system (Σ1) such that, for all admissible uncertainties, the
resulting closed-loop system (Σ2) is mean-square asymp-
totically stable, and for any non-zero v(t) ∈ L2[0, ∞),
‖z(t)‖E2 < γ‖v(t)‖2 is satisfied under zero initial condition.
In this case, the system (Σ2) is robustly stochastically sta-
bilizable with disturbance attenuation level γ.

Lemma 1[33]. For any vectors x, y ∈ Rn, matrices
P ∈ Rn×n, D ∈ Rn×nf , E ∈ Rnf×n and F ∈ Rnf×nf

with P > 0, ‖ F ‖6 1, and scalar ε > 0, we have

1) 2xTy 6 xTP−1x + yTPy,
2) DFE + ETFTDT 6 ε−1DDT + εETE.

Lemma 2[21]. For any constant matrix M > 0, any
scalars a and b with a < b, and a vector function x(t) :
[a, b] → Rn such that the integrals concerned are well de-
fined, the following holds:

[ ∫ b

a

x(s)ds
]T

M
[ ∫ b

a

x(s)ds
]

6 (b− a)

∫ b

a

xT(s)Mx(s)ds.

Lemma 3[27]. For any real matrices Xij for i, j =
1, 2, · · · , r and Λ > 0 with appropriate dimensions, we have

r∑
i=1

r∑
j=1

r∑

k=1

r∑

l=1

hihjhkhlX
T
ijΛXkl 6

r∑
i=1

r∑
j=1

hihjX
T
ijΛXij

where hi (1 6 i 6 r) are defined as hi(θ(t)) > 0,∑r
i=1 hi(θ(t)) = 1.

3 Robust stochastic stabilization

In this section, we shall present a sufficient condition for
the uncertain stochastic fuzzy system (12) and (14) with
v(t) = 0 to be robustly stochastically stabilizable in terms
of LMIs. The design of the fuzzy controller is to determine
the local feedback gains Ki(i = 1, 2, · · · , r) such that the
system (12) and (14) with v(t) = 0 is robustly stochastically
stabilizable. When there are no parameter uncertainties
in the system (12) and (14) with v(t) = 0, Theorem 1 is
specialized as follows.

Theorem 1. For given scalars τm, τM , dM and µ, the
time-varying delays satisfying (4), the closed-loop stochas-
tic fuzzy system (12) and (14) with v(t) = 0 and ∆Ai(t) =
∆Adi(t) = ∆B1i(t) = ∆Ci(t) = ∆Cdi(t) = ∆B2i(t) = 0
is stochastically stabilizable if there exist matrices X >
0, Q̄s > 0 (s = 1, 2, 3), R̃l > 0 (l = 1, 2, 3, 4), Z̄ > 0 and
real matrices N̄lij , M̄lij , S̄lij , Yj (l = 1, 2, 1 6 i 6 j 6 r) of
appropriate dimensions such that the following LMIs hold:




Ξii
11 Ξii

12 Ξii
13

∗ Ξ22 0

∗ ∗ Ξ33


 < 0, 1 6 i 6 r (15)




Ξij
11 Ξij

12 Ξij
13

∗ Ξ22 0

∗ ∗ Ξ33


 +




Ξji
11 Ξji

12 Ξji
13

∗ Ξ22 0

∗ ∗ Ξ33


 < 0,

1 6 i < j 6 r (16)
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where

Ξij
11 =




φij
11 φij

12 M̄1ij −S̄1ij Bd1iX

∗ φij
22 M̄2ij −S̄2ij 0

∗ ∗ −Q̄2 0 0

∗ ∗ ∗ −Q̄3 0

∗ ∗ ∗ ∗ − 1

dM
Z̄




Ξij
12 =

[
ĈT

ij τM ÂT
ij τ̄ ÂT

ij τM ĈT
ij τ̄ ĈT

ij

]

Ξij
13 =

[
τM N̄ij τ̄ M̄ij τ̄ S̄ij N̄ij M̄ij S̄ij

]

Ξ22 =diag
{
−X, −τM R̃1, −τ̄ R̃2, −τM R̃3, −τ̄ R̃4

}

Ξ33 =diag
{
− 2τMX + τM R̃1, −2τ̄X + τ̄ R̃2,

− 4τ̄X + τ̄ R̃1 + τ̄ R̃2, −2X + R̃3, −2X + R̃4,

− 4X + R̃3 + R̃4

}

with

φij
11 =Q̄1 + Q̄2 + Q̄3 + N̄1ij + N̄T

1ij + (AiX + B1iYj)+

(AiX + B1iYj)
T + dM Z̄

φij
12 =S̄1ij − N̄1ij + N̄T

2ij − M̄1ij + AdiX

φij
22 =−(1−µ)Q̄1−N̄2ij−N̄T

2ij +S̄2ij +S̄T
2ij−M̄2ij−M̄T

2ij

ÂT
ij =

[
AiX + B1iYj AdiX 0 0 Bd1iX

]T

ĈT
ij =

[
CiX + B2iYj CdiX 0 0 Bd2iX

]T

N̄ij =
[
N̄T

1ij N̄T
2ij 0 0 0

]T

M̄ij =
[
M̄T

1ij M̄T
2ij 0 0 0

]T

S̄ij =
[
S̄T

1ij S̄T
2ij 0 0 0

]T

τ̄ =τM − τm.

Moreover, the state feedback gain can be constructed as
Kj = YjX

−1 (j = 1, 2, · · · , r).
Proof. Let

AK =

r∑
i=1

r∑
j=1

hihj(Ai + B1iKj)

Ad =

r∑
i=1

hiAdi

Bd1 =

r∑
i=1

hiBd1i

CK =

r∑
i=1

r∑
j=1

hihj(Ci + B2iKj)

Cd =

r∑
i=1

hiCdi

Bd2 =

r∑
i=1

hiBd2i

then the closed-loop nominal system (12) with v(t) = 0 can
be represented as

dx(t) = f(t)dt + g(t)dw(t) (17)

where

f(t) = AKx(t) + Adx(t− τ(t)) + Bd1

∫ t

t−d(t)
x(s)ds

g(t) = CKx(t) + Cdx(t− τ(t)) + Bd2

∫ t

t−d(t)
x(s)ds.

Choose a Lyapunov-Krasovskii functional candidate as

V (xt, t) =V1(xt, t) + V2(xt, t) + V3(xt, t)+

V4(xt, t) + V5(xt, t) (18)

where

V1(xt, t) =xT(t)Px(t)

V2(xt, t) =

∫ t

t−τ(t)

xT(s)Q1x(s)ds +

∫ t

t−τm

xT(s)Q2x(s)ds+

∫ t

t−τM

xT(s)Q3x(s)ds

V3(xt, t) =

∫ 0

−τM

∫ t

t+θ

fT(s)R1f(s)dsdθ+

∫ −τm

−τM

∫ t

t+θ

fT(s)R2f(s)dsdθ

V4(xt, t) =

∫ 0

−τM

∫ t

t+θ

gT(s)R3g(s)dsdθ+

∫ −τm

−τM

∫ t

t+θ

gT(s)R4g(s)dsdθ

V5(xt, t) =

∫ 0

−d(t)

∫ t

t+θ

xT(s)Zx(s)dsdθ

where P, Qs (s = 1, 2, 3), Rl (l = 1, 2, 3, 4) and Z are
symmetric positive definite matrices with appropriate di-
mensions.

By using Itô′s formula[34], we have

dV (xt, t) = LV (xt, t)dt + 2xT(t)Pg(t)dw(t) (19)

where

LV (xt, t) =

5∑
i=1

LVi(xt, t). (20)
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It is easy to know

LV1(xt, t) =2xT(t)Pf(t) + gT(t)Pg(t) =

2xT(t)P
(
AKx(t) + Adx(t− τ(t))+

Bd1

∫ t

t−d(t)

x(s)ds
)

+ gT(t)Pg(t)

LV2(xt, t) 6xT(t)Q1x(t)−(1− µ)xT(t−τ(t))Q1x(t−τ(t))+

xT(t)Q2x(t)− xT(t− τm)Q2x(t− τm)+

xT(t)Q3x(t)− xT(t− τM )Q3x(t− τM )

LV3(xt, t) =τMfT(t)R1f(t)−
∫ t

t−τM

fT(s)R1f(s)ds+

(τM − τm)fT(t)R2f(t)−
∫ t−τm

t−τM

fT(s)R2f(s)ds

LV4(xt, t) =τMgT(t)R3g(t)−
∫ t

t−τM

gT(s)R3g(s)ds+

(τM − τm)gT(t)R4g(t)−
∫ t−τm

t−τM

gT(s)R4g(s)ds

LV5(xt, t) 6dMxT(t)Zx(t)−
∫ t

t−d(t)

xT(s)Zx(s)ds.

From the Newton-Leibnitz formula, the following equalities
are true for matrices Nlij , Mlij , Slij (l = 1, 2) with appro-
priate dimensions:

0 =2

r∑
i=1

r∑
j=1

hihj

[
xT(t)N1ij + xT(t− τ(t))N2ij

]
×

[
x(t)− x(t− τ(t))−

∫ t

t−τ(t)

f(s)ds−
∫ t

t−τ(t)

g(s)dw(s)
]

(21)

0 = 2

r∑
i=1

r∑
j=1

hihj

[
xT(t)M1ij + xT(t− τ(t))M2ij

]
×

[
x(t−τm)−x(t−τ(t))−

∫ t−τm

t−τ(t)

f(s)ds−
∫ t−τm

t−τ(t)

g(s)dw(s)
]

(22)

0 = 2

r∑
i=1

r∑
j=1

hihj

[
xT(t)S1ij + xT(t− τ(t))S2ij

]
×

[
x(t−τ(t))−x(t−τM )−

∫ t−τ(t)

t−τM

f(s)ds−
∫ t−τ(t)

t−τM

g(s)dw(s)
]
.

(23)

By Lemma 1 1), for matrices Rl > 0 (l = 1, 2, 3, 4), the

following inequalities hold:

− 2

r∑
i=1

r∑
j=1

hihjξ
T(t)Nij

∫ t

t−τ(t)

f(s)ds 6

τM

r∑
i=1

r∑
j=1

hihjξ
T(t)NijR

−1
1 NT

ijξ(t)+

∫ t

t−τ(t)

fT(s)R1f(s)ds

(24)

− 2

r∑
i=1

r∑
j=1

hihjξ
T(t)Mij

∫ t−τm

t−τ(t)

f(s)ds 6

τ̄

r∑
i=1

r∑
j=1

hihjξ
T(t)MijR

−1
2 MT

ijξ(t)+

∫ t−τm

t−τ(t)

fT(s)R2f(s)ds

(25)

− 2

r∑
i=1

r∑
j=1

hihjξ
T(t)Sij

∫ t−τ(t)

t−τM

f(s)ds 6

τ̄

r∑
i=1

r∑
j=1

hihjξ
T(t)Sij

(
R1 + R2

)−1

ST
ijξ(t)+

∫ t−τ(t)

t−τM

fT(s)
(
R1 + R2

)
f(s)ds (26)

− 2

r∑
i=1

r∑
j=1

hihjξ
T(t)Nij

∫ t

t−τ(t)

g(s)dw(s) 6

r∑
i=1

r∑
j=1

hihjξ
T(t)NijR

−1
3 NT

ijξ(t)+

( ∫ t

t−τ(t)

g(s)dw(s)
)T

R3

( ∫ t

t−τ(t)

g(s)dw(s)
)

(27)

− 2

r∑
i=1

r∑
j=1

hihjξ
T(t)Mij

∫ t−τm

t−τ(t)

g(s)dw(s) 6

r∑
i=1

r∑
j=1

hihjξ
T(t)MijR

−1
4 MT

ijξ(t)+

( ∫ t−τm

t−τ(t)

g(s)dw(s)
)T

R4

( ∫ t−τm

t−τ(t)

g(s)dw(s)
)

(28)

− 2

r∑
i=1

r∑
j=1

hihjξ
T(t)Sij

∫ t−τ(t)

t−τM

g(s)dw(s) 6

r∑
i=1

r∑
j=1

hihjξ
T(t)Sij

(
R3 + R4

)−1

ST
ijξ(t)+

( ∫ t−τ(t)

t−τM

g(s)dw(s)
)T(

R3 + R4

)( ∫ t−τ(t)

t−τM

g(s)dw(s)
)

(29)
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where

ξT(t) =
[
xT(t) xT(t− τ(t)) xT(t− τm) xT(t− τM )

( ∫ t

t−d(t)

x(s)ds
)T]

Nij = [NT
1ij NT

2ij 0 0 0
]T

Mij = [MT
1ij MT

2ij 0 0 0
]T

Sij = [ST
1ij ST

2ij 0 0 0
]T

τ̄ = τM − τm.

Using Lemma 3, one can derive that

fT(t)
(
τMR1 + τ̄R2

)
f(t) =

[
AKx(t) + Adx(t− τ(t))+

Bd1

∫ t

t−d(t)

x(s)ds
]T(

τMR1 + τ̄R2

)
×

[
AKx(t) + Adx(t− τ(t)) + Bd1

∫ t

t−d(t)

x(s)ds
]

=

r∑
i=1

r∑
j=1

r∑

k=1

r∑

l=1

hihjhkhlξ
T(t)ÃT

ij

(
τMR1 + τ̄R2

)
Ãklξ(t) 6

r∑
i=1

r∑
j=1

hihjξ
T(t)ÃT

ij

(
τMR1 + τ̄R2

)
Ãijξ(t) (30)

where

ÃT
ij =

[
Ai + B1iKj Adi 0 0 Bd1i

]T

.

Similarly

gT(t)
(
P + τMR3 + τ̄R4

)
g(t) 6

r∑
i=1

r∑
j=1

hihjξ
T(t)C̃T

ij

(
P + τMR3 + τ̄R4

)
C̃ijξ(t) (31)

where

C̃T
ij =

[
Ci + B2iKj Cdi 0 0 Bd2i

]T

.

Then, it follows from Lemma 2, that

−
∫ t

t−d(t)

xT(s)Zx(s)ds 6

− 1

dM

( ∫ t

t−d(t)

x(s)ds
)T

Z
( ∫ t

t−d(t)

x(s)ds
)
. (32)

Combining (20) to (32), we get

LV (xt, t) 6
r∑

i=1

r∑
j=1

hihjξ
T(t)Ξijξ(t)+

( ∫ t

t−τ(t)

g(s)dw(s)
)T

R3

( ∫ t

t−τ(t)

g(s)dw(s)
)
+

( ∫ t−τm

t−τ(t)

g(s)dw(s)
)T

R4

( ∫ t−τm

t−τ(t)

g(s)dw(s)
)
+

( ∫ t−τ(t)

t−τM

g(s)dw(s)
)T(

R3 + R4

)
×

( ∫ t−τ(t)

t−τM

g(s)dw(s)
)
−

∫ t

t−τ(t)

gT(s)R3g(s)ds−

∫ t−τm

t−τ(t)

gT(s)R4g(s)ds−

∫ t−τ(t)

t−τM

gT(s)
(
R3 + R4

)
g(s)ds (33)

where

Ξij =Ψij
11 + C̃T

ijPC̃ij + τM ÃT
ijR1Ãij + τ̄ ÃT

ijR2Ãij+

τM C̃T
ijR3C̃ij + τ̄ C̃T

ijR4C̃ij + τMNijR
−1
1 NT

ij+

τ̄MijR
−1
2 MT

ij + τ̄Sij(R1 + R2)
−1ST

ij+

NijR
−1
3 NT

ij + MijR
−1
4 MT

ij + Sij(R3 + R4)
−1ST

ij

Ψij
11 =




ψij
11 ψij

12 M1ij −S1ij PBd1i

∗ ψij
22 M2ij −S2ij 0

∗ ∗ −Q2 0 0

∗ ∗ ∗ −Q3 0

∗ ∗ ∗ ∗ − 1

dM
Z




with

ψij
11 =Q1 + Q2 + Q3 + N1ij + NT

1ij + P (Ai + B1iKj)+

(Ai + B1iKj)
TP + dMZ

ψij
12 =S1ij −N1ij + NT

2ij −M1ij + PAdi

ψij
22 =− (1− µ)Q1 −N2ij −NT

2ij + S2ij+

ST
2ij −M2ij −MT

2ij .

It can be known that

E
{( ∫ t

t−τ(t)

g(s)dw(s)
)T

R3

( ∫ t

t−τ(t)

g(s)dw(s)
)}

=

E
{ ∫ t

t−τ(t)

gT(s)R3g(s)ds
}

(34)
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E
{( ∫ t−τm

t−τ(t)

g(s)dw(s)
)T

R4

( ∫ t−τm

t−τ(t)

g(s)dw(s)
)}

=

E
{ ∫ t−τm

t−τ(t)

gT(s)R4g(s)ds
}

(35)

and

E
{( ∫ t−τ(t)

t−τM

g(s)dw(s)
)T(

R3+R4

)( ∫ t−τ(t)

t−τM

g(s)dw(s)
)}

=

E
{ ∫ t−τ(t)

t−τM

gT(s)
(
R3 + R4

)
g(s)ds

}
. (36)

Taking the mathematical expectation on both sides of
(33) and using (34)−(36), we get

E
{
LV (xt, t)

}
6 E

{ r∑
i=1

r∑
j=1

hihjξ
T(t)Ξijξ(t)

}
. (37)

If Ξii < 0 for 1 6 i 6 r and Ξij + Ξji < 0 for any 1 6
i < j 6 r, it yields E

{
LV (xt, t)

}
< 0. Employing the Schur

complement, Ξii < 0 and Ξij + Ξji < 0 are equivalent to

Ξ̃ij + Ξ̃ji < 0 (38)

for any 1 6 i 6 j 6 r, where

Ξ̃ij =




Ψij
11 Ψij

12 Ψij
13

∗ Ψ22 0

∗ ∗ Ψ33




with

Ψij
12 =

[
C̃T

ijP τM ÃT
ij τ̄ ÃT

ij τM C̃T
ij τ̄ C̃T

ij

]

Ψij
13 =

[
τMNij τ̄Mij τ̄Sij Nij Mij Sij

]

Ψ22 =− diag
{

P, τMR−1
1 , τ̄R−1

2 , τMR−1
3 , τ̄R−1

4

}

Ψ33 =− diag
{
τMR1, τ̄R2, τ̄(R1+R2), R3, R4, (R3+R4)

}

and Ψij
11 is defined previously.

Pre- and post-multiply (38) by diag
{
X, X, X, X, X, X,

I, I, I, I, X, X, X, X, X, X
}

and its transpose, respectively,
and applying the change of variables such that P = X−1,
XQsX = Q̄s (s = 1, 2, 3), XZX = Z̄, XNlijX = N̄lij ,
XMlijX = M̄lij , XSlijX = S̄lij (l = 1, 2), then it gives

Ξ̂ij + Ξ̂ji < 0 (39)

for 1 6 i 6 j 6 r, where

Ξ̂ij =




Ξij
11 Ξij

12 Ξij
13

∗ Ξ̂22 0

∗ ∗ Ξ̂33




Ξ̂22 =diag
{
−X, −τMR−1

1 , −τ̄R−1
2 , −τMR−1

3 , −τ̄R−1
4

}

Ξ̂33 =diag
{
− τMXR1X, −τ̄XR2X, −τ̄X(R1 + R2)X,

−XR3X, −XR4X, −X(R3 + R4)X
}

and Ξij
11, Ξij

12, Ξij
13 are defined in statement of Theorem 1.

It follows from inequalities

XRlX − 2X + R−1
l =(X −R−1

l )Rl(X −R−1
l ) > 0

that

−2X + R−1
l >−XRlX, l = 1, 2, 3, 4.

Let us assume that R−1
l = R̃l (l = 1, 2, 3, 4). Then, LMI

(39) is equivalent to the LMIs defined in (15) and (16).
Therefore, by Definition 1 and [35], the closed-loop nominal
stochastic fuzzy system (12) and (14) is stochastically stable
with v(t) = 0. ¤

In the following part, using Lemma 1 2), we extend the
above result to the uncertain stochastic fuzzy system (12)
and (14) with v(t) = 0 to obtain a delay-dependent criterion
as stated in the following theorem by means of the feasibility
of LMIs.

Theorem 2. For given scalars τm, τM , dM and µ, the
time-varying delays satisfying (4), and the closed-loop un-
certain stochastic fuzzy system (12) and (14) with v(t) = 0
is robustly stochastically stabilizable, if there exist matrices
X > 0, Q̄s > 0 (s = 1, 2, 3), R̃l > 0 (l = 1, 2, 3, 4), Z̄ > 0,
and real matrices N̄lij , M̄lij , S̄lij , Yj (l = 1, 2) of appro-
priate dimensions and scalars ε1ij > 0, ε2ij > 0 (1 6 i 6
j 6 r) such that the following LMIs hold:




Ξii
11 Ξii

12 Ξii
13 Ξii

14

∗ Ξ22 0 Ξii
24

∗ ∗ Ξ33 0

∗ ∗ ∗ Ξii
44


 < 0, 1 6 i 6 r (40)




Ξij
11 Ξij

12 Ξij
13 Ξij

14

∗ Ξ22 0 Ξij
24

∗ ∗ Ξ33 0

∗ ∗ ∗ Ξij
44


 +




Ξji
11 Ξji

12 Ξji
13 Ξji

14

∗ Ξ22 0 Ξji
24

∗ ∗ Ξ33 0

∗ ∗ ∗ Ξji
44


 < 0,

1 6 i < j 6 r (41)

where

Ξij
14 =




ε1ijEi 0 XHT
1i + Y T

j HT
3i XHT

4i + Y T
j HT

6i

0 0 XHT
2i XHT

5i

0 0 0 0

0 0 0 0

0 0 0 0




Ξij
24 =




0 ε2ijEi 0 0

ε1ijτMEi 0 0 0

ε1ij τ̄Ei 0 0 0

0 ε2ijτMEi 0 0

0 ε2ij τ̄Ei 0 0




Ξij
44 =diag

{
− ε1ijI, −ε2ijI, −ε1ijI, −ε2ijI

}

Ξij
11, Ξij

12, Ξij
13, Ξ22 and Ξ33 are defined in Theorem 1.

Moreover, the state feedback gain can be constructed as
Kj = YjX

−1 (j = 1, 2, · · · , r).
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Proof. For the sake of presentation and simplicity, de-
note

Ω1i =
[

ET
i 0 0 0 0 0 τMET

i τ̄ET
i 01×8

]T

Ω2i =
[

01×5 ET
i 0 0 τMET

i τ̄ET
i 01×6

]T

Ω3ij =
[

H1iX + H3iYj H2iX 01×14

]

Ω4ij =
[

H4iX + H6iYj H5iX 01×14

]
.

Replacing Ai, Adi, B1i, Ci, Cdi, and B2i in Theorem 1
with Ai + ∆Ai(t), Adi + ∆Adi(t), B1i + ∆B1i(t), Ci +
∆Ci(t), Cdi + ∆Cdi(t), and B2i + ∆B2i(t) respectively,
we obtain the following corresponding uncertain stochastic
fuzzy system (12) and (14) with v(t) = 0




Ξij
11 Ξij

12 Ξij
13

∗ Ξ22 0

∗ ∗ Ξ33


 + Ω1iFi(t)Ω3ij + ΩT

3ijF
T
i (t)ΩT

1i+

Ω2iFi(t)Ω4ij + ΩT
4ijF

T
i (t)ΩT

2i < 0. (42)

By Lemma 1 2), we have



Ξij
11 Ξij

12 Ξij
13

∗ Ξ22 0

∗ ∗ Ξ33


 + ε1ijΩ1iΩ

T
1i + ε−1

1ijΩ
T
3ijΩ3ij+

ε2ijΩ2iΩ
T
2i + ε−1

2ijΩ
T
4ijΩ4ij < 0. (43)

By Schur complement, we obtain (40) and (41). Then,
by Theorem 1, the closed-loop uncertain stochastic fuzzy
system (12) and (14) is robustly stochastically stable with
v(t) = 0. ¤

In the case of u(t) = 0, v(t) = 0, Bd1i = Bd2i = 0,
∆Ci(t) = 0 and ∆Cdi(t) = 0, the system (7) is reduced to
the following model

dx(t) =
r∑

i=1

hi(θ(t))
{[

(Ai + ∆Ai(t))x(t) + (Adi + ∆Adi(t))×

x(t− τ(t))
]
dt +

[
Cix(t) + Cdix(t− τ(t))

]
dw(t)

}
(44)

x(t) = φ(t), ∀t ∈ [−τM , 0] (45)

where the time-varying delay τ(t) satisfies

0 6 τ(t) 6 τM < ∞, τ̇(t) 6 µ < ∞ (46)

with τM and µ are real constant scalars. In the system (44),
the parameter uncertainties are assumed to be of the form

∆Ai(t) = E1iF1i(t)H1i

∆Adi(t) = E2iF2i(t)H2i (47)

where E1i, E2i, H1i and H2i are known real constant ma-
trices with appropriate dimensions, F1i(t) and F2i(t) are
unknown real time-varying matrix function satisfying

FT
1i(t)F1i(t) 6 I

FT
2i(t)F2i(t) 6 I. (48)

When there are no parameter uncertainties in the sys-
tem (44), the following corollary can be obtained by using
Theorem 1.

Corollary 1. For given scalars τM and µ, the time-
varying delays satisfying (46), the nominal stochastic fuzzy
system (44) is asymptotically stable in the mean square
sense if there exist matrices P > 0, Q1 > 0, Q3 > 0,
R1 > 0, R3 > 0, and real matrices Nli and Sli (l = 1, 2) of
appropriate dimensions such that the following LMI holds:




Φi
11 Φi

12 Φi
13

∗ Φ22 0

∗ ∗ Φ33


 < 0, i = 1, 2, · · · , r (49)

where

Φi
11 =




φi
11 φi

12 −S1i

∗ φi
22 −S2i

∗ ∗ −Q3




Φi
12 =




CT
i P τMAT

i R1 τMCT
i R3

CT
diP τMAT

diR1 τMCT
diR3

0 0 0




Φi
13 =




τMN1i τMS1i N1i S1i

τMN2i τMS2i N1i S2i

0 0 0 0




Φ22 =diag
{
− P, −τMR1, −τMR3

}

Φ33 =diag
{
− τMR1, −τMR1, −R3, −R3

}

with

φi
11 =PAi + AT

i P + Q1 + Q3 + N1i + NT
1i

φi
12 =PAdi −N1i + NT

2i + S1i

φi
22 =− (1− µ)Q1 −N2i −NT

2i + S2i + ST
2i.

Remark 1. Choose the following Lyapunov-Krasovskii
functional candidate as in (18) with Q2 = 0, R2 = 0, R4 =
0, Z = 0, replacing Nlij and Slij (l = 1, 2) with Nli and
Sli (l = 1, 2) in (21) and (23) respectively, and taking Mlij

as zero in (22), the proof of Corollary 1 is easily obtained
from Theorem 1.

For the system (44), the robust stability conditions can
be obtained as stated in the following Corollary 2 by ex-
tending the proof of Corollary 1.

Corollary 2. For given scalars τM and µ, the time-
varying delays satisfying (46), the uncertain stochastic
fuzzy system (44) is robustly asymptotically stable in the
mean square if there exist matrices P > 0, Q1 > 0, Q3 > 0,
R1 > 0, R3 > 0, real matrices Nli and Sli (l = 1, 2) of ap-
propriate dimensions, and scalars ε1i > 0 and ε2i > 0 such
that the following LMI holds:




Φi
11 Φi

12 Φi
13 Φi

14

∗ Φ22 0 Φi
24

∗ ∗ Φ33 0

∗ ∗ ∗ Φi
44


 < 0, i = 1, 2, · · · , r (50)
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where

Φi
11 =




φ̃i
11 φi

12 −S1i

∗ φ̃i
22 −S2i

∗ ∗ −Q3




Φi
14 =




PE1i PE2i

0 0

0 0




Φi
24 =




0 0

τMR1E1i τMR1E2i

0 0




Φi
44 =

[
−ε1iI 0

∗ −ε2iI

]

with

φ̃i
11 =PAi + AT

i P + Q1 + Q3 + N1i + NT
1i + ε1iH

T
1iH1i

φ̃i
22 =− (1− µ)Q1 −N2i −NT

2i + S2i + ST
2i + ε2iH

T
2iH2i.

Further, Φi
12, Φi

13, Φ22, Φ33 and φi
12 are defined in Corol-

lary 1.

4 Robust stochastic H∞H∞H∞ control

In this section, a delay-dependent sufficient condition for
the solvability of robust H∞ control problem is proposed,
and an LMI approach for designing a desired state feedback
fuzzy controller is developed. The second main result is
stated as follows.

Theorem 3. For a prescribed γ > 0, given scalars
τm, τM , dM and µ, the time-varying delays satisfying (4),
there exists a fuzzy control law (11) such that the closed-
loop uncertain stochastic fuzzy system (Σ2) is robustly
stochastically stabilizable with attenuation γ if there exist
matrices X > 0, Q̄s > 0 (s = 1, 2, 3), R̃l > 0 (l = 1, 2, 3, 4),
Z̄ > 0, real matrices N̄lij , M̄lij , S̄lij , Yj (l = 1, 2) of
appropriate dimensions, and scalars ε1ij > 0, ε2ij > 0
(1 6 i 6 j 6 r) such that the following LMIs hold:




Υii
11 Υii

12 Υii
13 Υii

14

∗ Υ22 0 Υii
24

∗ ∗ Υ33 0

∗ ∗ ∗ Υii
44


 < 0, 1 6 i 6 r (51)




Υij
11 Υij

12 Υij
13 Υij

14

∗ Υ22 0 Υij
24

∗ ∗ Υ33 0

∗ ∗ ∗ Υij
44


+




Υji
11 Υji

12 Υji
13 Υji

14

∗ Υ22 0 Υji
24

∗ ∗ Υ33 0

∗ ∗ ∗ Υji
44


 < 0,

1 6 i < j 6 r (52)

where

Υij
11 =




φij
11 φij

12 M̄1ij −S̄1ij Bv1i Bd1iX

∗ φij
22 M̄2ij −S̄2ij 0 0

∗ ∗ −Q̄2 0 0 0

∗ ∗ ∗ −Q̄3 0 0

∗ ∗ ∗ ∗ −γ2I 0

∗ ∗ ∗ ∗ ∗ − 1

dM
Z̄




,

Υij
12 =

[
ČT

ij τM ǍT
ij τ̄ ǍT

ij τM ČT
ij τ̄ ČT

ij

]
,

Υij
13 =

[
τMN ij τ̄M ij τ̄Sij N ij M ij Sij Ďij

]
,

Υij
14 =

[
Ξij

14

0

]
, Υ22 = Ξ22, Υij

24 = Ξij
24,

Υ33 =

[
Ξ33 0

0 −I

]
, Υij

44 = Ξij
44

with

ǍT
ij =

[
AiX + B1iYj AdiX 0 0 Bv1i Bd1iX

]T

ČT
ij =

[
CiX + B2iYj CdiX 0 0 Bv2i Bd2iX

]T

ĎT
ij =

[
DiX + B3iYj DdiX 0 0 0 0

]T

N ij =
[
N̄T

1ij N̄T
2ij 0 0 0 0

]T

M ij =
[
M̄T

1ij M̄T
2ij 0 0 0 0

]T

Sij =
[
S̄T

1ij S̄T
2ij 0 0 0 0

]T

.

Further, Ξij
14, Ξ22, Ξij

24, Ξ33, Ξij
44, φij

11, φij
12, φij

22 and τ̄ are
defined as in Theorem 2. Moreover, the state feedback gain
can be constructed as Kj = YjX

−1 (j = 1, 2, · · · , r).
Proof. For convenience, we set

f(t) =AKx(t)+Adx(t− τ(t))+Bv1v(t)+Bd1

∫ t

t−d(t)

x(s)ds

g(t) =CKx(t)+Cdx(t− τ(t))+Bv2v(t)+Bd2

∫ t

t−d(t)

x(s)ds.

By (51) and (52), it is easy to see that the LMIs in (40)
and (41) hold. Therefore, it follows from Theorem 2 that
the closed-loop system (Σ2) is robustly stochastically sta-
ble. Now, we show that under the zero initial condition,
system (Σ2) satisfies ‖z(t)‖E2 < γ‖v(t)‖2 for all non-zero
v(t) ∈ L2[0,∞). Choose a Lyapunov-Krasovskii functional
candidate as defined in (18) and utilizing Itô′s formula, we
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have

LV (xt, t) 6
r∑

i=1

r∑
j=1

hihjζ
T(t)Υijζ(t)+

( ∫ t

t−τ(t)

g(s)dw(s)
)T

R3

( ∫ t

t−τ(t)

g(s)dw(s)
)
+

( ∫ t−τm

t−τ(t)

g(s)dw(s)
)T

R4

( ∫ t−τm

t−τ(t)

g(s)dw(s)
)
+

( ∫ t−τ(t)

t−τM

g(s)dw(s)
)T(

R3 + R4

)
×

( ∫ t−τ(t)

t−τM

g(s)dw(s)
)
−

∫ t

t−τ(t)

g(s)TR3g(s)ds−

∫ t−τm

t−τ(t)

g(s)TR4g(s)ds−

∫ t−τ(t)

t−τM

g(s)T
(
R3 + R4

)
g(s)ds (53)

where

Υij =Υ̃ij
11 + C̃T

ij(t)PC̃ij(t) + τM ÃT
ij(t)R1Ãij(t)+

τ̄ ÃT
ij(t)R2Ãij(t) + τM C̃T

ij(t)R3C̃ij(t)+

τ̄ C̃T
ij(t)R4C̃ij(t) + τM N̂ijR

−1
1 N̂T

ij + τ̄ M̂ijR
−1
2 M̂T

ij+

τ̄ Ŝij(R1 + R2)
−1ŜT

ij + N̂ijR
−1
3 N̂T

ij+

M̂ijR
−1
4 M̂T

ij + Ŝij(R3 + R4)
−1ŜT

ij

Υ̃ij
11 =




γij
11 γij

12 M1ij −S1ij PBv1i PBd1i

∗ γij
22 M2ij −S2ij 0 0

∗ ∗ −Q2 0 0 0

∗ ∗ ∗ −Q3 0 0

∗ ∗ ∗ ∗ 0 0

∗ ∗ ∗ ∗ ∗ − 1

dM
Z




with

γij
11 = Q1 + Q2 + Q3 + N1ij + NT

1ij + P (Ai(t)+

B1i(t)Kj) + (Ai(t) + B1i(t)Kj)
TP + dMZ

γij
12 =S1ij −N1ij + NT

2ij −M1ij + PAdi(t)

γij
22 =− (1− µ)Q1 −N2ij −NT

2ij + S2ij+

ST
2ij −M2ij −MT

2ij

ÃT
ij(t) =

[
Ai(t) + B1i(t)Kj Adi(t) 0 0 Bv1i Bd1i

]T

C̃T
ij(t) =

[
Ci(t) + B2i(t)Kj Cdi(t) 0 0 Bv2i Bd2i

]T

N̂ij =
[
NT

1ij NT
2ij 0 0 0 0

]T

M̂ij =
[
MT

1ij MT
2ij 0 0 0 0

]T

Ŝij =
[
ST

1ij ST
2ij 0 0 0 0

]T

τ̄ =τM − τm

ζT(t) =
[
xT(t) xT(t− τ(t)) xT(t− τm) xT(t− τM )

vT(t)
( ∫ t

t−d(t)

x(s)ds
)T]

.

It can be known that

zT(t)z(t) =

r∑
i=1

r∑
j=1

r∑

k=1

r∑

l=1

hihjhkhlζ
T(t)D̃T

ijD̃klζ(t) 6

r∑
i=1

r∑
j=1

hihjζ
T(t)D̃T

ijD̃ijζ(t) (54)

where

D̃T
ij =

[
Di + B3iKj Ddi 0 0 0 0

]T

.

Now, we set

J(t) = E
{ ∫ t

0

[
zT(s)z(s)− γ2vT(s)v(s)

]
ds

}
(55)

where t > 0. Because V (φ(t), 0) = 0 under the zero initial
condition, i.e., φ(t) = 0 for t ∈ [−τ, 0], then by Itô′s formula,
it follows that

J(t) =

E
{ ∫ t

0

[
zT(s)z(s)− γ2vT(s)v(s) + LV (xs, s)

]
ds

}
−

E
{

V (xt, t)
}

6

E
{ ∫ t

0

[
zT(s)z(s)− γ2vT(s)v(s) + LV (xs, s)

]
ds

}
6

E
{ ∫ t

0

ζT(s)Υ̃ijζ(s)ds
}

(56)

where

Υ̃ij = Υij + D̃T
ijD̃ij + diag

{
0, 0, 0, 0, −γ2I, 0

}
.

Then, considering LMIs (51) and (52), following similar
line as in the proof of Theorem 2, we have Υ̃ii < 0 and Υ̃ij +
Υ̃ji < 0, which imply that J(t) < 0 for t > 0. Therefore,
we have ‖z(t)‖E2 < γ‖v(t)‖2. ¤

Remark 2. We mention that Theorem 3 provides a
delay-dependent H∞ control problem for a class of uncer-
tain stochastic fuzzy systems with discrete interval and dis-
tributed time-varying delays. Note that, by Theorem 3, the
problems of finding the maximum allowable upper bound of
the delays are τM , dM , for given γ, µ and τm or the small-
est γ for given τm, τM , µ and dM can be easily solved. For
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instance, the smallest γ for given τm, τM , µ and dM ob-
tainable from Theorem 3 can be determined by solving the
following convex optimization problem:

min χ

s.t. X > 0, Q̄s > 0 (s = 1, 2, 3),

R̃l > 0 (l = 1, 2, 3, 4), Z̄ > 0,

ε1ij > 0, ε2ij > 0 (1 6 i 6 j 6 r)

and LMIs (51)− (52) with χ = γ2.

Remark 3. By setting Bd1 = 0, Bd2 = 0 in Theorems
2 and 3, the delay-dependent robust stabilization and H∞
control for uncertain stochastic fuzzy system with interval
time-varying delay criteria can be obtained, corresponding
proof is similar to Theorems 2 and 3 and hence omitted.

In the case when there is no parameter uncertainties in
the system (Σ2), Theorem 3 is specialized as follows.

Corollary 3. For a prescribed γ > 0, given scalars
τm, τM , dM and µ, the time-varying delays satisfying (4),
there exists a fuzzy control law (11) such that the closed-
loop stochastic fuzzy system (Σ2) with ∆Ai(t) = ∆Adi(t) =
∆B1i(t) = ∆Ci(t) = ∆Cdi(t) = ∆B2i(t) = 0 is stochasti-
cally stabilizable with a disturbance attenuation γ, if there
exist matrices X > 0, Q̄s > 0 (s = 1, 2, 3), R̃l > 0 (l =
1, 2, 3, 4), Z̄ > 0 and real matrices N̄lij , M̄lij , S̄lij , Yj (l =
1, 2, 1 6 i 6 j 6 r) of appropriate dimensions such that
the following LMIs hold:




Υii
11 Υii

12 Υii
13

∗ Υ22 0

∗ ∗ Υ33


 < 0, 1 6 i 6 r (57)




Υij
11 Υij

12 Υij
13

∗ Υ22 0

∗ ∗ Υ33


 +




Υji
11 Υji

12 Υji
13

∗ Υ22 0

∗ ∗ Υ33


 < 0,

1 6 i < j 6 r (58)

where Υij
11, Υij

12, Υij
13, Υ22 and Υ33 are defined in Theorem

3. Moreover, the state feedback gain can be constructed as
Kj = YjX

−1 (j = 1, 2, · · · , r).

5 Numerical examples

In this section, we provide illustrative examples to
demonstrate the effectiveness of the method proposed in
the previous section.

Example 1. Consider the uncertain stochastic T-S fuzzy
system (44) with parameters as follows

A1 =

[
−2.3 0

0 −5.7

]
, A2 =

[
−10 0.1

0.1 −12.9

]
,

Ad1 =

[
0.5 −0.1

0.7 −0.6

]
, Ad2 =

[
0.2 0.5

2 0.7

]
,

C1 =

[
−0.2 0

−0.1 0.1

]
, C2 =

[
−1 0.7

0.3 0.5

]
,

Cd1 =

[
0.5 0.3

0.2 0.4

]
, Cd2 =

[
2 0.2

−0.1 0.1

]
,

E1i =0.1I, E2i = 0.2I, Hli = 0.1I,

Fli(t) =diag
{

sin(t), cos(t)
}

(l = 1, 2, i = 1, 2).

For this example, according to Corollary 2, system (44)
is robustly asymptotically stable in the mean square. The
maximal allowable upper bound of the time delay τM for
various µ are shown in Table 1. Obviously, our result
is less conservative than the method in [27]. Assuming
τM = 0.1328 and µ = 0.3, solving LMI (50) in Corollary
2 by the Matlab LMI toolbox, we have the following feasi-
ble solutions:

P =

[
4.5595 0.7706

0.7706 6.3112

]

Q1 =

[
19.7757 4.0450

4.0450 68.0995

]

Q3 =

[
2.4992 −0.1721

−0.1721 0.3803

]

R1 =

[
4.7269 −0.3315

−0.3315 0.0349

]

R3 =

[
19.9805 −1.3832

−1.3832 0.4812

]
.

The time varying delay is assumed as τ(t) = 0.13 +
0.0028 sin(t). For a membership function h1(x1(t)) =

1

1+e(x1(t)+0.5) , h2(x1(t)) = 1−h1(x1(t)), and an initial func-

tion φ(t) = [−3, 3]T, the simulation results of the state
response of the system are plotted in Fig. 1.

Table 1 Maximal allowable delay τM for various µ

µ 0 0.3 0.6 > 0.9

Theorem 2[27] 0.0813 0.0099 − −
Corollary 2 0.2530 0.1328 0.1069 0.1017

Fig. 1 State response of the system
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Example 2. Consider the uncertain stochastic T-S fuzzy
system (Σ2) with parameters as

A1 =

[
−2 1

0.1 −3

]
, A2 =

[
−1.5 0

0 −2

]
,

Ad1 =

[
0.1 0

0.1 −0.3

]
, Ad2 =

[
0.5 0

0.4 −0.3

]
,

B11 =

[
−0.2 0

−0.1 0.1

]
, B12 =

[
0.2 0

0 −0.2

]
,

Bv11 =

[
−0.4 0.1

0 −0.8

]
, Bv12 =

[
−0.1 0

−0.5 0.2

]
,

Bd11 =

[
0 0.2

0.1 −0.2

]
, Bd12 =

[
0 0.5

0.2 −0.3

]
,

C1 =

[
−0.2 0

0 0.2

]
, C2 =

[
−0.2 0

0 −0.2

]
,

Cd1 =

[
−0.1 0

0 −0.1

]
, Cd2 =

[
−0.1 0.5

0.2 −0.5

]
,

B21 =

[
−0.2 0

0.1 0.1

]
, B22 =

[
0.3 0

0 −0.6

]
,

Bv21 =

[
0.2 0.1

0 −0.2

]
, Bv22 =

[
−0.2 0.1

0.2 0.1

]
,

Bd21 =

[
0.3 0.2

0 −0.3

]
, Bd22 =

[
−0.4 0.3

0.2 0.3

]
,

D1 =

[
−0.03 0

0 0.03

]
, D2 =

[
−0.03 0

0 0.03

]
,

Dd1 =

[
−0.03 0

0 0.003

]
, Dd2 =

[
−0.13 0.2

0 0.4

]
,

B31 =

[
0.1 −0.2

−0.4 0.2

]
, B32 =

[
−0.3 0.3

0.2 −0.2

]
,

E1 =

[
0.03 0

0 −0.03

]
, E2 =

[
0.03 0

0 −0.03

]
,

H11 =

[
−0.15 0.2

0 0.3

]
, H12 =

[
−0.15 0.2

0 0.3

]
,

H21 =

[
0.05 −0.35

0.7 0.45

]
, H22 =

[
0.05 −0.5

0.7 0.45

]
,

H31 =

[
−0.11 0.2

0 0.01

]
, H32 =

[
−0.1 0.1

0 0.15

]
,

H41 =

[
−0.15 0.2

0 0.3

]
, H42 =

[
−0.15 0.2

0 0.3

]
,

H51 =

[
0.05 −0.35

0.7 0.45

]
, H52 =

[
−0.1 0.2

0 0.01

]

H61 =

[
−0.21 0.3

0 0.31

]
, H62 =

[
−0.05 0.35

0.7 0.45

]
,

F1(t) =F2(t) = diag
{

sin(t), cos(t)
}

.

In this example, our aim is to design a state feedback
fuzzy controller such that, for all admissible uncertainties,
the closed-loop system is robustly stochastically stable with
disturbance attenuation γ = 0.2. The maximum allowable
upper bounds of the time delay τ (for τM = dM ) are ob-
tained for different τm and various µ from Theorem 3 which
are shown in the Table 2. For τm = 0.1, µ = 0.2, the time
delay τM = 0.3432, and dM = 0.3432, solving the LMIs (51)
and (52) through Matlab LMI control toolbox, the feasible
solutions are given by:

X =

[
29.4343 1.7272

1.7272 7.8654

]
, Q̄1 =

[
22.4363 −8.5634

−8.5634 16.7466

]
,

Q̄2 =

[
0.0678 0.0114

0.0114 0.0027

]
, Q̄3 =

[
2.0366 0.0603

0.0603 0.5159

]
,

R̃1 =

[
50.0733 4.1912

4.1912 12.9957

]
, R̃2 =

[
58.7164 3.4330

3.4330 15.7265

]
,

R̃3 =

[
29.2726 1.0348

1.0348 8.4426

]
, R̃4 =

[
55.3893 2.6179

2.6179 15.5254

]
,

Z̄ =

[
80.7522 11.6452

11.6452 5.4140

]
.

Table 2 Maximal allowable delay of τ with given τm and for

various µ

µ 0 0.2 0.4 0.6 > 0.8

τm = 0.1 0.3960 0.3432 0.2696 0.2206 0.2134

τm = 0.3 0.4726 0.4077 0.3405 0.3181 0.3174

By Theorem 3, we can obtain the desired state-feedback
fuzzy controller as

K1 =

[
−0.3980 −0.9984

−0.0288 −0.3490

]

K2 =

[
−0.4021 0.5118

−0.2922 −0.8733

]
.

Define the membership functions as h1(x1(t)) =
1−sin(x1(t))

2
and h2(x1(t)) = 1+sin(x1(t))

2
. The time-varying

delays are assumed as τ(t) = 0.34 + 0.0032 sin(t) and
d(t) = 0.34 + 0.0032 sin(t), with an initial condition φ(t) =
[−3, 2.5]T. The disturbance input is assumed to be v1(t) =

1
0.2+t2

and v2(t) = 1
1+t2

. Fig. 2 shows the state response
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of the closed-loop system. Figs. 3 and 4 show the graphical
representation of the control input and controlled output
respectively. From the above, it can be seen that the de-
signed H∞ controller satisfies the specified requirements.

Fig. 2 State response of the closed-loop system

Fig. 3 Control input

Fig. 4 Controlled output

6 Conclusions

In this paper, some sufficient conditions have been de-
rived for the solvability of problems of delay-dependent
robust stabilization and H∞ controller design for uncer-
tain stochastic T-S fuzzy systems with discrete interval and
distributed time-varying delays. These conditions are ex-
pressed in terms of LMIs, which can be easily tested by
using Matlab control toolbox. It has been shown that a de-
sired state feedback controller can be constructed when the

LMIs are feasible. Finally, two numerical examples have
been given to illustrate the effectiveness of the developed
techniques.
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