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Abstract Making the best decisions on vaccination policy during influenza sea-

sons can be critical in minimizing overall costs for an insurance company. Using

administrative data, company records, and published reports for the flu season

during 2007–2008, a simulation model is developed to mimic the spread of influ-

enza in children, to calculate the cost of vaccination, and the cost of treatment for

infected children. The model is designed to allow for sensitivity analysis with

different scenarios of vaccination rates and is implemented in a healthcare insurance

company located in Southeast region of the USA. The experimental results show

several advantages of simulation methodology, including its ability to mimic the

complex behavior of a spreading influenza in a selected population group, while

testing a range of alternative solutions for different disease scenarios. Based on the

historical data, the proposed simulation suggests a vaccination policy that could

significantly reduce the overall cost of the vaccination program.

Keywords Simulation � Vaccination policy � Health insurance planning �
Influenza modeling

1 Introduction

Influenza (i.e., flu) is a highly contagious respiratory infection that is caused by a

variety of influenza viruses. Even in recent years, high levels of influenza activity
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sustained statewide. The pandemic 2009 influenza virus accounted for *50 % of

cases of influenza-like illness and over 92 % of influenza viruses (Dawood et al.

2009). The illness produced by the influenza virus can be mild to severe and can

even lead to death. It is estimated that between 5 and 20 % of the population in the

US is infected each year (Kapustin 2008) by this disease. Observations have

suggested that most infections occur in younger individuals: 40 % between 10 and

18 years and 95 % for those younger than 50 years. Especially high rates (147 per

100,000) occur in children aged 5–14 years (Louie et al. 2009). Considering the

severity of the disease, Prosser et al. (2008) suggests an increase in vaccination rates

which currently remain far below national goals in the US.

The World Health Organization raised the worldwide pandemic influenza alert to

its highest level in response to the global spread of a novel influenza virus (Black

et al. 2009). In the today’s modern society, government involvement in the

provision of public services, including high-quality health services, is expected

(Armistead and Pettigrew 2008). Also, policy makers focus on improving the health

care service quality while providing lower costs to meet high expectations of quality

health care. Most healthcare organizations and practitioners tend to focus on input

costs and other aspects of costs have relatively received less attention (Rayna and

Striukova 2009; Chung et al. 2010).

The overall insurance costs of flu during any given season consist of two major

components: the cost of vaccination (prevention) and cost of patient treatment (if the

disease is not averted). The cost of vaccination is computed by multiplying the

average cost of a vaccine (minus any copayment) times the number of people who

receive the vaccine. For practical purposes, the cost of vaccination can be assumed to

be a linear function of the number of individuals who receive the vaccine. The cost of

treatment is computed by multiplying the number of people who contract the disease

times the average cost of disease treatment (minus any deductable and/or

copayment). Components of the cost of treatment include the average for the use

of physicians, hospitals, or emergency rooms (ERs). The treatment cost is inversely

related to the number of people who receive the vaccine. That is, for a given target

population, the number of people requiring treatment decreases as the vaccination

rate increases. It is assumed that treatment costs are inversely and nonlinearly related

to the vaccination rate. As shown in Fig. 1, the sum of the two cost components is the

total cost curve, which is U-shaped. Thus, there exists a mathematically optimal rate

of vaccination, which will minimize the overall insurance costs of the disease.

From a societal perspective, increasing vaccination rates has mixed results with

respect to cost-effectiveness. For example, Prosser et al. (2008) suggest that non-

traditional settings (pharmacies, workplaces) could be used to deliver routine

influenza vaccinations, resulting in cost savings for healthy adults aged 50–64 and

which is relatively cost effective for healthy adults aged 18–49. Opportunities exist

for healthcare practitioners to exercise and use judgment on vaccination strategies.

To aid the selection process from a cost perspective, decision-making tools can be

used to evaluate the proper degree of vaccination for different population segments.

Establishing an optimal vaccination policy is a complex task. It involves a high

degree of uncertainty and a large number of input factors, most of which are

random. This paper seeks to demonstrate how a simulation model can be used to
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find an appropriate vaccination rate, which reduces the total cost of vaccination and

treatment. Nichol et al. (1994) found that immunization in the elderly saved $117

per person in medical costs. While vaccination is generally considered to be cost

effective from a societal perspective, and can be beneficial for children or the

elderly, there is no universal tool that can be used to investigate the effectiveness of

a vaccination program, such as proposed in this paper.

The approach is illustrated with data from an insurance company located in the

Southeast region of the USA. The model ‘‘mimics’’ the spread of flu in school-aged

children and calculates the cost of vaccination, as well as the cost of treatment of the

infected children. Parameters of the simulation model are estimated from

administrative data and company records during the 2007–2008 season of influenza.

The conceptual and logical design of the proposed simulation model is based on the

existing theory of vaccination models as described in the following section.

2 Literature review

Mathematical models, which depict the impact of vaccination on the spread of

disease, have existed for over 100 years. In 1880, a Swiss physician, Theophil Lotz,

rigorously analyzed available statistical data and developed a basic mathematical

model to clarify the impact of a vaccination program (Lotz 1880). He foresaw two

of the most important theoretical concepts in modern infectious disease epidemi-

ology: basic reproduction number and herd immunity. The basic reproduction

number, R0, is the average number of secondary cases arising from the introduction

of an initial case (Anderson and May 1991; Diekmann and Heesterbeek 2000). Dietz

(1993) provides a survey of the various estimation methods available for R0.

To further describe the dynamics in the generation of new cases, Lotz (1880) also

suggested an average time of 15 days for what now would be called the ‘‘generation

interval’’ or the ‘‘serial interval’’, which is the mean time interval between onset of

initial case and onset of secondary cases (Bailey 1975; Diekmann and Heesterbeek

2000; Fine 2003). The number of people, which can be infected by a single case

Fig. 1 Relationships between costs and vaccination rate
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during one generation, is known as reproduction number. When the reproduction

number is two, starting with a single case, 1 9 26 = 64 cases in the sixth generation

and 1 9 28 = 256 cases in the eighth generation are infected.

The discussions following the above theory regarding reproduction number come

very close to determining the required vaccination coverage for eradication in a

randomly mixed population (Anderson and May 1982; Diekmann and Heesterbeek

2000). Threshold vaccination coverage for eradication is based on several factors:

non-homogenous distribution of population and contacts, contact tracing, and ring

vaccination (Fine 1993). In addition, evidence of herd immunity was finally

suggested after smallpox eradication, based on surveillance data on vaccination

coverage and population density (Arita et al. 1986). Herd immunity not only

decreases the disease frequency in the non-immunized, but also affects those who

are vaccinated, if the vaccine is not 100 % effective (Mühlemann and Weiss 1997).

Based on this research, many models that predict the impact of vaccination

programs have been introduced. These models can be grouped into two main

categories: dynamic and static. A major difference between them is that dynamic

models capture the indirect protection resulting from immunization (i.e., herd

immunity effect). Herd immunity is the population-level consequence of acquired

immunity among some individuals, which will reduce the risk of acquiring infection

among susceptible individuals. Immunity can be acquired either through natural

infection or through artificial inoculation with a vaccine (Garnett 2005).

Currently, most economic evaluations of vaccination programs use static models

(Brisson and Edmunds 2003). In recent decades, several new methodologies have

been introduced (Hill and Longini 2003). Examples of methodological choices are

type of analysis (cost-benefit, cost-effectiveness, or cost-utility), the perspective

(societal or payer), valuation technique (willingness to pay, standard gamble, multi-

attribute utility scores), and discount rates (Briggs 2000; Briggs and McGray 1999).

Further, recent literature shows many models with parameter uncertainties (Brisson

and Edmunds 2006). Uncertainties include parameters, such as biological,

demographic, epidemiological, medical, and economic.

The objective functions in other proposed models vary from the willingness-to-

pay method to cost-benefit analysis (Birch et al. 1999). However, the literature

suggests that in spite of the measure, it is very important that proposed models are

consistent with a coherent theory of health condition (Weinstein et al. 2003). In lieu

of such requirements, many disease and population-specific studies are conducted to

investigate the impact of vaccination rate on the cost of a vaccination (Jacobson

et al. 1999; Jacobson and Sewell 2002; Sewell and Jacobson 2003; Griffiths et al.

2005; Jackson et al. 1995).

Most recently, Sander et al. (2009) provide an economic evaluation of influenza

pandemic mitigation strategies based on a dynamic influenza micro-simulation

transmission model. The authors use simulation to evaluate sixteen mitigation

strategies, pre-vaccination being one of them. While these single and mixed

strategies are formulated from a societal perspective, the paper is focused on

different vaccination strategies from a health insurance perspective. Similar to this

paper, Weycker et al. (2005) use a stochastic simulation model to illustrate the
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benefits of vaccinating children. However, they investigate the scenario from a

societal perspective.

The proposed simulation model is dynamic, because it considers the herd

immunity effect. It is also stochastic, because many input variables, such as

reproduction number, transmission period, event outcomes, and treatment costs, are

random variables generated using well-defined statistical distribution functions.

3 Mathematics of vaccination model

In this paper homogeneous mixing of the population is assumed. The individuals in

the population under scrutiny make contact at random and do not mix solely in a

smaller subgroup. Homogeneous mixing is a reasonable assumption to simplify the

mathematics of the model. Hill and Longini (2003) describe a mathematical model

to optimally allocate vaccines to several subpopulations with potentially heteroge-

neously mixing of individuals.

Assuming each case carries the contagion to only two others, the number of

cases will grow from generation to generation, starting with one case and growing

to 2, 4, 8, 16, 32, 64, etc. When the initial number of cases is denoted by a, the

reproduction number by R0, and the generation number by n, the number of cases

increases according to the series a; aR0; aR2
0; aR3

0; . . .; aRn
0. Starting with a single

initial case, the number of cases in the nth generation is equal to the reproduction

number (R0) to the power of n. This exponential growth assumes that the infection

ratio is the same as the reproduction number. However, as the disease progresses

from one generation to the next, infected people are no longer susceptible to the

disease. Since vaccines can reduce the risk of infection to exposed individuals

susceptible to infection and can reduce the probability of transmission from a

vaccinated individual infected with influenza (Longini et al. 1978), the infection

ratio or the number of people infected in the next generation from a single case,

changes and can be calculated as:

I ¼ R0

S

P
; ð1Þ

where I is the number of people infected from a single case, R0 is the reproduction

number for a given disease and population group, S is the number of susceptible

individuals in the population group, and P is the size of population group.

When I = 1, an infectious disease is said to be endemic. In such a case, it can be

sustained in a population without the need for external inputs. This means that, on

average, each infected person is infecting exactly one other person. For a disease to

be in the endemic steady state, the higher the basic reproduction number, the lower

the proportion of the population must be susceptible and vice versa. If I [ 1, the

disease is considered to be in an epidemic state, and the number of people infected

will grow exponentially. If I \ 1, then the disease will die out. From a medical

perspective, the number of people infected from a single case must be either less

than or equal to 1. As such:
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I ¼ R0

S

P
� 1: ð2Þ

Formula (2) indicates that in order to eliminate a disease or keep it in an endemic

state, the number of susceptible individuals must be kept lower than or equal to the

ratio between population size and the reproduction number, as follows:

S� P

R0

: ð3Þ

Formula (3) indicates the rationale of a vaccination program from a medical

perspective. In order for any vaccination program to work, it must immunize as

many people as possible so that the number of susceptible (S) is kept below the

threshold. Hill and Longini (2003) suggest a method for determining minimal

vaccine allocations to prevent an epidemic by setting the reproduction number to 1.

Their proposed framework can be sufficiently applied to several epidemic situations.

If V represents the number of people to be vaccinated before the first infection

occurs, then S = P - V. Replacing S in (3), the lower boundary for V, named Vm is

calculated:

V �Vm ¼
P R0 � 1ð Þ

R0

ð4Þ

While (4) establishes values of Vm for the disease to be in the endemic state, it is

suggested that the optimal value of Vm must be calculated from a cost perspective.

Because the reproduction number, cost of the vaccine, physician cost, loss of

productivity, and other variables in the model are stochastic, these variables can

better be represented with a range of values, very often described with a statistical

distribution. As such, a cost-based vaccination program can be better modeled as

stochastic and can be solved via simulation.

4 Conceptual model of the vaccination

When an infection arrives in a susceptible population, the disease is spread based

on the reproduction number and immunization rate. Figure 2 shows that people

who are infected can either self-recover, seek physician help, or go to the ER.

The physician or the ER doctor will provide the necessary treatment. In more

serious cases, the physicians may admit a patient to the hospital. After hospital

treatment, patients recover but in rare cases the model assumes that some patients

die.

Longini et al. (1978) provide a formula which calculates the number of people

being infected at a given time. Formula (1) suggests that in the first generation,

when there are Vm vaccinated (immunized) people, the number of people infected

(I1) will be:

I1 ¼ R0

P� Vm

P

� �
ð5Þ
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In the second generation, there will be (I1 - H1) new sources of infection, where

H1 patients are healed (or recover) during the reproduction period. The number of

people infected in the second generation (I2) will be:

I2 ¼ I1 � H1ð Þ � R0

P� Vm � I1

P

� �
: ð6Þ

The number of people infected in the nth generation is calculated as:

In ¼
Xn�1

g¼1

Ig � Hg

� �
� R0

P� Vm �
Pn�1

g¼1

Ig

P

0
BBB@

1
CCCA ð7Þ

The model formulas (6) and (7) consider three groups of patients: susceptible,

infectious, and removed individuals (Chick et al. 2008). The number of individuals

in each group varies as a function of time t according to a deterministic differential

equation (Chick et al. 2008).

Formula (7) is used to simulate arrivals of infected people in the ‘‘susceptible

people’’ section in Fig. 2. This is a stochastic feed. R0 is generated as a stochastic

variable, and the value of the rest of the variables in (7) is uncertain at the time new

infections are introduced in the model. Also, the time between arrivals of the new

set of infections is a random variable. In the model, the number of infections are

assumed to increase exponentially with a mean Rp, where reproduction period Rp

represents the expected time to transmit the disease from one person to another.

Once people are infected and move to the ‘‘sick people’’ section of the simulation

model, there are three potential outcomes: self-recovered, physician visit, or ER.

The model assigns probabilities for each of the above three options. Such

probability values depend on the type of disease and population profile, such as age,

insurance coverage, income level, and so on. Further, the above three events are

collectively exhaustive and mutually exclusive. The collectively exhaustive

property requires that when a person is infected, at least one of the events must

occur: the person must either self-recover, or see a physician, or visit the ER. The

Fig. 2 Basic scenario for simulation model

Using simulation to establish appropriate vaccination rates 443

123



mutually exclusive property requires that the occurrence of any of the three events

automatically implies the non-occurrence of the remaining two events: the infected

person cannot self recover and see a physician for the same infection, or cannot see

a physician and visit the ER at the same simulation scenario.

Once a patient has received medical assistance through a physician or through the

ER, he or she will have two possible outcomes: recovered or hospitalized. These two

events are also collectively exhaustive and mutually exclusive. Probabilities for each

of these two options are assigned based on the historical data of the disease under

investigation. Once hospitalized, the patient will either recover or will die, again based

on ‘‘assigned’’ probabilities. Once a patient is deceased, the population size is reduced,

accordingly. Once patients recover or self-recover, they cannot become infected

again. As such, the number of susceptible people is also reduced, accordingly.

5 Experimental design

To examine the efficacy of the proposed simulation model a similar experimental

approach to Deng et al. (2008) is utilized. The simulation model is implemented

using ProModel�, simulation software provided by ProModel� Corporation. The

goal of such a demonstration is to investigate whether a health insurance provider

can reduce the overall cost by using the simulation model to generate optimal

vaccination policies. Appendix shows the code for the base scenario of the

simulation model. As mentioned earlier, data from this scenario are generated from

the 2007–2008 season of influenza as recorded by a Health Insurance Company

(HIC) headquartered in a Southeast City of the USA. HIC is an independent, not-

for-profit, locally governed health plan company. It has been centered on the health

and well being of its members for more than 60 years. The company has more than

15,000 customer companies and more than 2.3 million members.

The focus of the investigation is a small segment of HIC’s customer base: school-

aged children. The company has provided data about*9,200 children who are insured

with the company through their parents’ policies. During the 2007–2008 flu season,

there were no specific vaccination policies for this population group. HIC wants to

know if the use of the simulation model could provide any significant savings. If such

savings are realized, the company may use the model for the upcoming flu seasons for

school-aged children, as well as other segments of its members, such as selected

companies, the elderly, teachers, at risk patients, etc. HIC believes that the vaccination

rate can be controlled by manipulating copayments on the vaccine.

Table 1 shows the vaccination rate and the copayment level based on the records

from the last few years. The average base cost for the vaccination of $10.90, based

on the recent CDC data (www.cdc.gov/vaccines/programs/vfc/cdc-vac-price-

list.htm). The first row in the table represents the base scenario: company offers

no incentives (patient copayment is 100 %). In this scenario, the company estimates

that 0–10 % of the children will be vaccinated on a voluntary basis. Since the

copayment for this scenario is 100 %, HIC’s cost for vaccination is $0. As one

progresses through scenarios, the cost to a patient decreases proportionally with the

copayment level and cost to the insurance company increases also proportionally.
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Actual values, as well as statistical distributions, used in the model are shown in

the last column of Table 2. These data are estimated based on transaction records of

HIC, as well as general information found in the website of the Center for Disease

Control (http://www.cdc.gov). Using Stat:Fit�, a component of ProModel�, several

statistical distributions are generated using a series of observed data.

As shown, variables used in the model are grouped into three classifications:

controlled variables, decision variables, and the objective function. The first set,

controlled variables are used to design a simulation scenario. The other two sets,

decision variables and the objective function, are used to optimize a simulation

scenario. The table shows that 9,200 children records are investigated. It also shows

that reproduction ratio for the disease follows a uniform distribution with a mean of

2.3 and range of 0.6.

Obviously, the higher the vaccination rate, the more people are vaccinated, and

the less people are infected. However, the answer to this question becomes more

difficult when considering the ‘‘herd immunity’’ effect. As such, the simulation

model is used to calculate the level of vaccination rate, which will trigger ‘‘herd

immunity’’. While the answer to this question is mathematically provided for

deterministic models, the simulation investigates ‘‘herd immunity’’ in a stochastic

environment, which is more realistic for disease scenarios (Table 3).

Upon starting the simulation of each scenario, the decision maker is prompted

with the following questions:

• What is the expected size of the population?

• What is the expected reproduction number?

• What is the copayment policy or vaccination rate?

• What is the expected time to transmit the disease from one person to another?

• What is the cost of the vaccine?

Each answer set is based on the information from the flu season and allows the

decision maker to identify a given scenario. After each scenario is created, the

simulation is run using an appropriate number of replications allowing statistically

significant results. Harrell et al. (1995) provide an approach to computing the

number of replications required to ascertain a selected degree of accuracy. In the

example, each scenario is replicated one hundred times to ensure data reliability.

The data generated by the model can be further analyzed to fine tune the model and

the resulting decisions.

Table 1 Vaccination rate and copayment policy

Scenarios Patient’s copayment (%) Vaccination rate Cost of vaccine to HIC

Base scenario 100 0–10 $0.00

Scenario 1 80 10–20 $2.18

Scenario 2 60 20–40 $4.36

Scenario 3 40 40–50 $6.54

Scenario 4 20 50–60 $8.72

Scenario 5 0 60–80 $10.90
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Table 2 Major input variables of vaccination model

Variable

name

Description Notation in

the model

Random Value in the

model

Population

size

Number of children subjected to a

vaccination program

Pop_Size No 9,200

Reproduction

ratio

Average number of children infected by

another infected child

R0 Yes Uniform U(2.3,

.6)

Reproduction

period

Expected time to transmit the disease from

one person to another

R_period Yes Exponential

E(2.6) days

Wait until

doctor

Average time people wait while sick until

they decide to see a doctor in hope of

self-recovery

W_until_dr Yes E(3.5) days

Wait until

recovered

Average time people have to wait until they

are considered recovered

W_until_re-

covered

Yes E(5.5) days

Cost of

vaccine

The cost to buy and administer a single

vaccine

Vaccine_C No $10.90

Physician cost Average cost HIC pays to a physician for a

single visit

Physician_C Yes Uniform

U(155, 54)

Hospital cost Average cost HIC pays for a single

hospitalization case

Hospital_C Yes Triangular

T(7030,

13159,

39792)

ER cost Average cost HIC pays for a single visit to

the ER

ER_C Yes Uniform

U(4740,

1250)

Table 3 Major decision and derived variables of simulation model

Variable Description Notation in the

model

Type

Vaccination

rate

Percentage of population vaccinated before the simulation

starts. Several values are used to illustrate different

scenarios, as well as ‘‘herd immunity’’ effect

V_rate Decision

variable

Number of

infections

Number of people who are infected Infected Derived

value

Immunized Number of people vaccinated before the simulation starts Immunized Derived

value

Recovered Number of people infected and recovered or self-

recovered

Recovered Derived

value

Total

vaccination

cost

Total cost of vaccination program, calculated as a product

of number of people vaccinated times the portion of cost

covered by HIC

Vaccination_C Derived

value

Total

treatment

cost

Total cost of treatment, calculated as a sum of physician

cost, hospitalization cost, and ER cost

Treatment_C Derived

value

Total cost Total cost of the disease, calculated as a sum of total

vaccination cost and total treatment cost. Goal is to

minimize this

Total_C Derived

value
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6 Results and analysis

6.1 Model validity

It is expected that a valid simulation model should mimic the actual data, given the

same basic input parameters. In this validity exercise the proposed model and its

parameters should represent the behavior of the disease (flu) during the target year

under investigation (2007–2008).

Table 4 represents a comparison between the simulation model parameters and

characteristics of the flu season during 2007–2008. As shown in this table, the model

produced very close behavior. Three main characteristics (attack rate, reproductive

number, and hospitalization per 10,000) fell within the expected range with a 95 %

level of confidence. Specifically, while the attack rate for the season is reported

between 20 and 50 % (last column), the simulation produced an average attack rate

of 20.48 % with a confidence interval between 20.05 and 21.91 %. Similarly, while

the reproductive number for the season is reported between 1.5 and 3, the simulation

produced an average reproductive number of 2.34 with a confidence interval between

2.27 and 2.41. Similar results are shown for the hospitalization rate among children

between 0 and 23 months. The fourth parameter, mortality rate, 9.1 %, fell outside

the confidence interval of 10.2–11.69 %. The model is still considered as valid, since

mortality is not included in the overall cost.

The impact of ‘‘herd immunity’’ in the number of people infected can provide

insights about the model’s construct and its validity. Two alternatives are compared:

scenario model with ‘‘herd immunity’’ and scenario model, where ‘‘herd immunity’’

is purposefully suppressed.

As shown in Fig. 3a, in a given scenario where the vaccination rate is selected at

20 %, the infection of the population increases to 40 %. After that point, herd

immunity will not allow the spread of further infections. In Fig. 3b, where the ‘‘herd

immunity’’ effect is removed, and the same vaccination rate of 20 % is applied,

infection will continue to spread until 80 % are infected.

Table 4 Comparison of model results with reports for 2007–2008 flu

Parameter Simulation results CDC and other sources

Mean Confidence interval (95 %)

From To

Attack rate 20.48 % 20.05 % 21.91 % 20–50 %a

Reproductive number 2.34 2.27 2.41 1.5–3a

Pediatric hospitalization per 10,000 38.61 37.08 40.15 41.6 per 10,000b

Mortality rate 10.95 % 10.2 % 11.69 % 9.1 %a

a http://www.cdc.gov/flu/weekly/weeklyarchives2007-2008/07-08summary.htm
b http://www.upenn.edu/ldi/issuebrief12_3.pdf
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This analysis, not only re-enforces the validity of the model, but also shows the

power of computer simulation as a decision-making tool. The decision maker is able

to evaluate IF-THEN scenarios, which would be difficult, if not impossible, to

generate in the real environment.

6.2 Experimental results and analysis

Six scenarios are simulated and tested, as shown earlier in Table 1. The first four

columns in Table 5 are similar to those in Table 1. The firth column shows the

results of the simulation model for the average total costs for each scenario. The

results indicated that the estimated total cost of each scenario varies from

$16,604.08 to $383,713.42. Those results indicate that scenario 3, with a 40 %

patient copayment policy, provides the lowest overall cost ($16,604.08).

Further, analysis of variance (ANOVA) in conjunction with multiple comparison

tests is used for comparing six scenarios. Each scenario corresponds to a different

copayment policy. Base scenario (100 % patient copayment policy) along with

scenarios 1–5 represents a single factor (copayment policy) treatment with K = 6

levels. The null hypothesis is that the mean total costs due to copayment policies do

Fig. 3 Impact of herd immunity on the number of infections

Table 5 Simulation results

Scenarios Patient’s

copayment (%)

Vaccination

rate

Cost of vaccine

to HIC

Sample mean

for total cost

Base scenario 100 0–10 $0.00 $383,713.42

Scenario 1 80 10–20 $2.18 $187,821.07

Scenario 2 60 20–40 $4.36 $18,402.76

Scenario 3 40 40–50 $6.54 $16,604.08

Scenario 4 20 50–60 $8.72 $23,284.99

Scenario 5 0 60–80 $10.90 $32,380.37
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not differ. The alternate hypothesis states that the mean total costs due to the

copayment policies differ among at least one pair of scenarios.

This is a balanced design, since the number of observations for each scenario is

the same (n = 100). Parameters for this design are:

• Number of factor levels = number of alternative scenarios = K = 6

• Total number of observations = N = nK = 100 * 6 = 600

Using the fixed-effect model, the hypotheses are written as:

H0 : s0 ¼ s1 ¼ s2 ¼ s3 ¼ s4 ¼ s5 ¼ 0

H1 : si 6¼ 0 for at least one i; for i ¼ 0; 1; 2; 3; 4; 5;

where si is the effect of the ith treatment (ith scenario in case) as a deviation from

the overall population mean (l) and random variations (eij) of the response variable

(overall cost) that occurred during the jth replication of the ith scenario.

Table 6 presents an ANOVA table for this simulation model. Since

FCALC = 1028.38 is greater than FCRITICAL = F(5,594, 0.05) & 2.23, the null

hypothesis H0 is rejected, and one can conclude that the copayment policy

significantly affects the mean total cost. A multiple comparison test is now

conducted to determine which copayment policy causes the significance. Specif-

ically, a protected least significant difference (LSD) will be utilized.

LSD requires that a 15 pair-wise comparisons of sample means be performed.

LSD value is calculated as follows:

LSD að Þ ¼ tðdf errorð Þ; a=2Þ
p

2 MSEð Þ=n ¼ 1:96 � p2 � 2; 171; 020; 622:36=100

¼ 6; 589 ð8Þ
As shown in Table 7, the following pairs of means are different concluded to be

different:

l0 = l1, l0 = l2, l0 = l3, l0 = l4, l0 = l5 (cells in column 2, comparison to

Base Scenario) l1 = l2, l1 = l3, l1 = l4, l1 = l5 (cells in column 3, comparison

to Scenario 1), l2 = l5 (last cell in column 4, comparison to Scenario 2), l3 = l4,

l3 = l5 (cells in column 5, comparison to Scenario 3), and l4 = l5 (last cell in

column 6, comparison to Scenario 4). The null hypothesis cannot be rejected for

l2 = l3 and l2 = l4 (cells in column 4, comparison to Scenario 2). One may be

inclined to believe that the best copayment policy is scenario 3 (40 % patient, 60 %

HIC), followed non-significantly by scenario 2 (60 % patient, 40 % HIC).

Table 6 Analysis of variance

Source of

variation

Degrees of

freedom

Sum of squares Mean square FCALC

Total

(corrected)

N - 1 = 599 SSTC = 12,452,735,830,964.40

Treatment

(copayment

policies)

K - 1 = 5 SST = 11,163,149,581,281.60 MST = 2,232,629, 916,256.33 1,028.38

Errors N - K = 594 SSE = 1,289,586,249,682.77 MSE = 2,171,020, 622.36
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When comparing the best policy, Scenario 3, with the Base Scenario presently used

by HIC, a savings of approximately of $367,000 (95 % confidence interval: 357,000–

377,000) is calculated. This analysis indicates that HIC will benefit significantly when

using the proposed simulation model in future flu seasons. The savings can be even

greater if HIC decides to expand the model to other member segments.

7 Managerial insights

The simulation model should be of interest to managers of health insurance

organizations to establish appropriate vaccination copayment policies for a given

influenza season. In addition, the model is applicable to employers who may

consider vaccination of their workforce in order to prevent absence from work or

underperformance for an upcoming flu season. Although this uses influenza

scenarios for school-aged children to cover the more typical vaccination program,

this model can be easily extended to any type of disease and any subpopulations:

adults, elderly, high-risk patients, or selected workforce of any given employer. For

example, insurance companies or employers should utilize the model as a

foundation to build a decision support system to generate vaccination policies for

their members or employees. Specifically, the proposed model can help healthcare

practitioners who want to design a vaccination program to:

(i) Establish an optimal vaccination rate or an appropriate copayment policy,

which will result in the best possible vaccination rate. The goal here is to

minimize the overall cost of a vaccination program, including vaccination and

treatment costs. For any given disease where vaccination is suggested, and any

given population segment, the decision maker can consider several random

input variables, such as reproduction rate, transmission time, vaccine efficacy,

and costs of hospitalization, physicians, and ER.

(ii) Calculate an acceptable cost of a single dose of vaccination, which makes a

given vaccination program economically feasible. Such value can be defined

via sensitivity analysis of a given vaccination program scenario, and can help

establish a price for a vaccine when negotiating with a vaccine manufacturer.

In summary, insurance company practitioners can use the model to determine

optimal vaccination rates, given acceptable costs and economic targets.

8 Conclusion and implications for future research

This paper proposes a simulation model, which can be applied by health insurance

organizations as a decision-making tool in flu vaccination programs. The model can

be used by practitioners to identify an appropriate vaccination rate based on cost

considerations. The proposed model is illustrated with an example from the

perspective of an insurance provider interested in establishing a cost effective

copayment policy. It is shown that using the proposed model can lead to significant

savings when establishing copayment policies for vaccinations against influenza or

other diseases.
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Simulation has several advantages over mathematical or other decision-making

methods when applied to this healthcare situation. Simulation allows the decision maker to

‘‘mimic’’ the behavior of the disease as it arrives in a given population target. Once the

simulation model is validated, the decision maker can test alternative solutions for

different disease scenarios. In addition, the robustness of the alternative solutions can be

tested by ‘‘tweaking’’ the model to reflect changes in the parameters of the system. Another

advantage of the proposed model is its flexibility. The decision maker is able to recreate

scenarios for a certain disease, a given population target, or different vaccination rates.

This is the first research to provide a simulation model to investigate the cost-

effectiveness of vaccination policies from a health insurance perspective. However,

there are some potential limitations of the proposed method, especially when trying

to investigate scenarios from an employer’s or even societal perspectives. Some of

the limitations are listed in Table 8. An exploration of these limitations within the

Table 8 Limitations of current model and adjustment for future studies

Limitation Description Health insurance

perspective

Other scenarios

Vaccine

quantity

discount

As shown in Fig. 1, it is

assumed that the

vaccination cost is linear

and proportional to the

number of people

vaccinated

This assumption is correct,

because health insurance

companies pay the same

(copayment) amount for

each vaccine

A societal or employer’s

perspective in the model

might consider quantity

discount, since

pharmaceutical

companies may be

willing to provide lower

cost vaccine for larger

quantities

Vaccine

efficacy

The model assumes that the

vaccine is 100 percent

effective, that is,

everyone who is

vaccinated is immune

from the flu

This assumption is

reasonable in the case of

the flu, especially from an

insurance perspective.

The number of people

who are vaccinated and

still need to see a doctor

is very small, so no

additional treatment costs

occur

As other research indicates

(Hill and Longini 2003),

future studies need to

consider vaccine efficacy,

especially when

investigating other

diseases

Mortality cost Mortality cost is not

included in our study. It

is calculated the number

of children who die for

model validation

purposes

There is a lack of data and

lack of interest from the

insurance perspective to

calculate such a cost

It is necessary to include

mortality cost when the

model is designed from a

societal perspective.

Other published studies

consider cost of death

(Prosser et al. 2008)

Parents’ work

absence or

productivity

Any cost-effectiveness

study about children

becoming sick should

include the cost of

missing work or

underperforming at work

because parents are

fatigued

There is a lack of data and

lack of interest from the

insurance perspective to

calculate such a cost

It is necessary to include

parents’ work related

costs when the model is

designed from a societal

or employer’s perspective
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context of the simulation approach is suggested for future research. Future

extensions of this simulation paper might also include the incorporation other costs,

such as parental time lost, expected costs of missing school, and for some healthcare

situations, long-term care associated with permanent disabilities. Finally, simula-

tions show what could happen under various scenarios—they do not show what will

happen. Even with a very good simulation model, there are potentially many factors

not included in the model that can determine the real world outcome. Therefore, far

reaching decisions should not be based solely on the outcomes of simulations.

Appendix: The code for the base scenario simulation model
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