Skip to main content
Log in

MiR-126-3p promotes the cell proliferation and inhibits the cell apoptosis by targeting TSC1 in the porcine granulosa cells

  • Published:
In Vitro Cellular & Developmental Biology - Animal Aims and scope Submit manuscript

Abstract

In mammalian ovaries, many studies demonstrated that the proliferation and apoptosis of granulosa cells are involved in folliculogenesis. Previous evidence suggests that miR-126-3p might get involved in the proliferation and apoptosis of granulosa cells, and tuberous sclerosis complex 1 (TSC1) gene was predicted as one target of miR-126-3p, and moreover, granulosa cell-specific TSC1 knockout stimulated folliculogenesis in mice. However, the molecular regulation of miR-126-3p on TSC1 and its effects on cell proliferation and apoptosis remain virtually unexplored in granulosa cells. Using porcine granulosa cells as a model, the luciferase report assay, mutation, deletion, Annexin-V/PI staining, and EdU assays were applied to investigate the molecular mechanism for miR-126-3p regulating the expression of TSC1 and their effects on the cell proliferation and apoptosis. We found that miR-126-3p showed a positive effect on cell proliferation and a negative effect on cell apoptosis in porcine granulosa cells, and knockdown of TSC1 significantly promoted cell proliferation and significantly inhibited cell apoptosis in porcine granulosa cells. Furthermore, miR-126-3p might target and repress the expressions of TSC1 at the post-transcriptional level, thereby promoting cell proliferation and inhibiting cell apoptosis of granulosa cells. These findings would provide of great insight in further exploring the molecular regulation of miR-126-3p and TSC1 on the functions of granulosa cells during the folliculogenesis in mammals.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Figure 1.
Figure 2.
Figure 3.
Figure 4.

Similar content being viewed by others

References

  • Adhikari D, Zheng W, Shen Y, Gorre N, Hamalainen T, Cooney AJ, Huhtaniemi I, Lan ZJ, Liu K (2010) Tsc/mTORC1 signaling in oocytes governs the quiescence and activation of primordial follicles. Hum Mol Genet 19(3):397–410

    Article  CAS  Google Scholar 

  • Cho IS, Kim J, Seo HY, Lim DH, Hong JS, Park YH, Park DC, Hong KC, Whang KY, Lee YS (2010) Cloning and characterization of microRNAs from porcine skeletal muscle and adipose tissue. Mol Biol Rep 37(7):3567–3574

    Article  CAS  Google Scholar 

  • Christenson LK (2010) MicroRNA control of ovarian function. Anim Reprod 7(3):129–133

    CAS  PubMed  PubMed Central  Google Scholar 

  • De Neubourg D, Gerris J, Knaapen M, Kockx M (2003) Human granulosa cells after ovulation induction show caspase-independent cell death. Gynecol Obstet Investig 56(2):106–112

    Article  Google Scholar 

  • Du C, Lv Z, Cao L, Ding C, Gyabaah OA, Xie H, Zhou L, Wu J, Zheng S (2014) MiR-126-3p suppresses tumor metastasis and angiogenesis of hepatocellular carcinoma by targeting LRP6 and PIK3R2. J Transl Med 12:259

    Article  Google Scholar 

  • Gu Z, Eleswarapu S, Jiang H (2007) Identification and characterization of microRNAs from the bovine adipose tissue and mammary gland. FEBS Lett 581(5):981–988

    Article  CAS  Google Scholar 

  • Hasegawa T, Kamada Y, Hosoya T, Fujita S, Nishiyama Y, Iwata N, Hiramatsu Y, Otsuka F (2017) A regulatory role of androgen in ovarian steroidogenesis by rat granulosa cells. J Steroid Biochem Mol Biol 172:160–165

    Article  CAS  Google Scholar 

  • He D, Zou T, Gai X, Ma J, Li M, Huang Z, Chen D (2017) MicroRNA expression profiles differ between primary myofiber of lean and obese pig breeds. PLoS One 12(7):e0181897

    Article  Google Scholar 

  • Hsueh AJ, Kawamura K, Cheng Y, Fauser BC (2015) Intraovarian control of early folliculogenesis. Endocr Rev 36(1):1–24

    Article  CAS  Google Scholar 

  • Huang L, Wang ZB, Jiang ZZ, Hu MW, Lin F, Zhang QH, Luo YB, Hou Y, Zhao Y, Fan HY, Schatten H, Sun QY (2013) Specific disruption of Tsc1 in ovarian granulosa cells promotes ovulation and causes progressive accumulation of corpora lutea. PLoS One 8(1):e54052

    Article  CAS  Google Scholar 

  • Huang L, Yin ZJ, Feng YF, Zhang XD, Wu T, Ding YY, Ye PF, Fu K, Zhang MQ (2016) Identification and differential expression of microRNAs in the ovaries of pigs (Sus scrofa) with high and low litter sizes. Anim Genet 47(5):543–551

    Article  CAS  Google Scholar 

  • Hunter MG (2000) Oocyte maturation and ovum quality in pigs. Rev Reprod 5(2):122–130

    Article  CAS  Google Scholar 

  • Kim YJ, Ku SY, Kim YY, Suh CS, Kim SH, Choi YM (2016) MicroRNA profile of granulosa cells after ovarian stimulation differs according to maturity of retrieved oocytes. Geburtshilfe Frauenheilkd 76(6):704–708

    Article  CAS  Google Scholar 

  • Kowalczykiewicz D, Swiercz A, Handschuh L, Lesniak K, Figlerowicz M, Wrzesinski J (2014) Characterization of Sus scrofa small non-coding RNAs present in both female and male gonads. PLoS One 9(11):e113249

    Article  Google Scholar 

  • Kranc W, Budna J, Kahan R, Chachula A, Bryja A, Ciesiolka S, Borys S, Antosik MP, Bukowska D, Brussow KP, Bruska M, Nowicki M, Zabel M, Kempisty B (2017) Molecular basis of growth, proliferation, and differentiation of mammalian follicular granulosa cells. J Biol Regul Homeost Agents 31(1):1–8

    CAS  PubMed  Google Scholar 

  • Lagos-Quintana M, Rauhut R, Yalcin A, Meyer J, Lendeckel W, Tuschl T (2002) Identification of tissue-specific microRNAs from mouse. Curr Biol 12(9):735–739

    Article  CAS  Google Scholar 

  • Li D, Xu D, Xu Y, Chen L, Li C, Dai X, Zhang L, Zheng L (2017) MicroRNA-141-3p targets DAPK1 and inhibits apoptosis in rat ovarian granulosa cells. Cell Biochem Funct 35(4):197–201

    Article  CAS  Google Scholar 

  • Li Y, Fang Y, Liu Y, Yang X (2015) MicroRNAs in ovarian function and disorders. J Ovarian Res 8:51

    Article  Google Scholar 

  • Li Y, Li X, Sun WK, Cheng C, Chen YH, Zeng K, Chen X, Gu Y, Gao R, Liu R, Lv X (2016) Comparison of liver microRNA transcriptomes of Tibetan and Yorkshire pigs by deep sequencing. Gene 577(2):244–250

    Article  CAS  Google Scholar 

  • Liu J, Du X, Zhou J, Pan Z, Liu H, Li Q (2014) MicroRNA-26b functions as a proapoptotic factor in porcine follicular granulosa cells by targeting Sma-and Mad-related protein 4. Biol Reprod 91(6):146

    Article  Google Scholar 

  • Maalouf SW, Liu WS, Pate JL (2016) MicroRNA in ovarian function. Cell Tissue Res 363(1):7–18

    Article  CAS  Google Scholar 

  • Mao, Z., L. Fan, Q. Yu, S. Luo, X. Wu, J. Tang, G. Kang and L. Tang (2017). "Abnormality of klotho signaling is involved in polycystic ovary syndrome." Reprod Sci: 1933719117715129

  • Peng JY, An XP, Fang F, Gao KX, Xin HY, Han P, Bao LJ, Ma HD, Cao BY (2016) MicroRNA-10b suppresses goat granulosa cell proliferation by targeting brain-derived neurotropic factor. Domest Anim Endocrinol 54:60–67

    Article  CAS  Google Scholar 

  • Plendl J (2000) Angiogenesis and vascular regression in the ovary. Anat Histol Embryol 29(5):257–266

    Article  CAS  Google Scholar 

  • Regan SL, Knight PG, Yovich JL, Stanger JD, Leung Y, Arfuso F, Dharmarajan A, Almahbobi G (2017) Infertility and ovarian follicle reserve depletion are associated with dysregulation of the FSH and LH receptor density in human antral follicles. Mol Cell Endocrinol 446:40–51

    Article  CAS  Google Scholar 

  • Sharbati S, Friedlander MR, Sharbati J, Hoeke L, Chen W, Keller A, Stahler PF, Rajewsky N, Einspanier R (2010) Deciphering the porcine intestinal microRNA transcriptome. BMC Genomics 11:275

    Article  Google Scholar 

  • Soede NM, Langendijk P, Kemp B (2011) Reproductive cycles in pigs. Anim Reprod Sci 124(3–4):251–258

    Article  CAS  Google Scholar 

  • Sontakke SD, Mohammed BT, McNeilly AS, Donadeu FX (2014) Characterization of microRNAs differentially expressed during bovine follicle development. Reproduction 148(3):271–283

    Article  CAS  Google Scholar 

  • Tanaka Y, Park JH, Tanwar PS, Kaneko-Tarui T, Mittal S, Lee HJ, Teixeira JM (2012) Deletion of tuberous sclerosis 1 in somatic cells of the murine reproductive tract causes female infertility. Endocrinology 153(1):404–416

    Article  CAS  Google Scholar 

  • Timoneda O, Balcells I, Nunez JI, Egea R, Vera G, Castello A, Tomas A, Sanchez A (2013) miRNA expression profile analysis in kidney of different porcine breeds. PLoS One 8(1):e55402

    Article  CAS  Google Scholar 

  • Tiwari M, Prasad S, Tripathi A, Pandey AN, Ali I, Singh AK, Shrivastav TG, Chaube SK (2015) Apoptosis in mammalian oocytes: a review. Apoptosis 20(8):1019–1025

    Article  CAS  Google Scholar 

  • Vimalraj S, Miranda PJ, Ramyakrishna B, Selvamurugan N (2013) Regulation of breast cancer and bone metastasis by microRNAs. Dis Markers 35(5):369–387

    Article  CAS  Google Scholar 

  • Wang L, Li C, Li R, Deng Y, Tan Y, Tong C, Qi H (2016) MicroRNA-764-3p regulates 17beta-estradiol synthesis of mouse ovarian granulosa cells by targeting steroidogenic factor-1. In Vitro Cell Dev Biol Anim 52(3):365–373

    Article  Google Scholar 

  • Wang P, Yang D, Zhang H, Wei X, Ma T, Cheng Z, Hong Q, Hu J, Zhuo H, Song Y, Jia C, Jing F, Jin Q, Bai C, Mao H, Zhao J (2015) Early detection of lung cancer in serum by a panel of MicroRNA biomarkers. Clin Lung Cancer 16(4):313–319 e311

    Article  CAS  Google Scholar 

  • Wu J, Zhu H, Song W, Li M, Liu C, Li N, Tang F, Mu H, Liao M, Li X, Guan W, Li X, Hua J (2014) Identification of conservative microRNAs in Saanen dairy goat testis through deep sequencing. Reprod Domest Anim 49(1):32–40

    Article  CAS  Google Scholar 

  • Yamamoto H, Yamashita Y, Saito N, Hayashi A, Hayashi M, Terai Y, Ohmichi M (2017) Lower FOXO3 mRNA expression in granulosa cells is involved in unexplained infertility. J Obstet Gynaecol Res 43(6):1021–1028

    Article  CAS  Google Scholar 

  • Yang Y, Song KL, Chang H, Chen L (2014) Decreased expression of microRNA-126 is associated with poor prognosis in patients with cervical cancer. Diagn Pathol 9:220

    Article  Google Scholar 

  • Yuan X, Zhou X, He Y, Zhong Y, Zhang A, Zhang Z, Zhang H, Li J (2018) C/EBPbeta promotes STAT3 expression and affects cell apoptosis and proliferation in porcine ovarian granulosa cells. Genes (Basel) 9(6)

    Article  Google Scholar 

  • Zhou M, Wang Q, Sun J, Li X, Xu L, Yang H, Shi H, Ning S, Chen L, Li Y, He T, Zheng Y (2009) In silico detection and characteristics of novel microRNA genes in the Equus caballus genome using an integrated ab initio and comparative genomic approach. Genomics 94(2):125–131

    Article  CAS  Google Scholar 

Download references

Funding

This work was supported by the earmarked fund for the China Agriculture Research System (CARS-35), the Basic Work of Science and Technology Project (2014FY120800), and Guangdong Sailing Program (2014YT02H042).

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization: Xiaolong Yuan and Jiaqi Li

Investigation: Xi Deng, Xiaofeng Zhou, Ailing Zhang, and Yan Xin

Writing – original draft: Xiaolong Yuan

Writing – review and editing: Zhe Zhang, Hao Zhang, and Jiaqi Li

All authors read and approved the final manuscript.

Corresponding author

Correspondence to Jiaqi Li.

Ethics declarations

All experiments in the present study were performed in accordance with the guidelines of the Animal Care and Use Committee of South China Agricultural University Guangzhou, China (approval number: SCAU#2013-10).

Competing interest

The authors declare that they have no competing interests.

Additional information

Editor: Tetsuji Okamoto

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yuan, X., Deng, X., Zhou, X. et al. MiR-126-3p promotes the cell proliferation and inhibits the cell apoptosis by targeting TSC1 in the porcine granulosa cells. In Vitro Cell.Dev.Biol.-Animal 54, 715–724 (2018). https://doi.org/10.1007/s11626-018-0292-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11626-018-0292-0

Keywords

Navigation