Skip to main content

Advertisement

Log in

Keratinocyte growth factor and thiazolidinediones and linolenic acid differentiate characterized mammary fat pad adipose stem cells isolated from prepubertal Korean black goat to epithelial and adipogenic lineage

  • Published:
In Vitro Cellular & Developmental Biology - Animal Aims and scope Submit manuscript

Abstract

The study was conducted to know and investigate the mechanism involved during mesenchymal to epithelial transition to unravel questions related to mammary gland development in prepubertal Korean black goat. We, therefore, biopsied mammary fat pad and isolated adipose cells and characterized with stemness factors (CD34, CD13, CD44, CD106, and vimentin) immunologically and through their genetic expression. Furthermore, characterized cells were differentiated to adipogenic (thiazolidinediones and α-linolenic acid) and epithelial (keratinocyte growth factor) lineages. Thiazolidinediones/or in combination with α-linolenic acid demonstrated significant upregulation of adipo-Q, PPAR-γ, CEBP-α, LPL, and resistin. Adipose stem cells in induction mixture (5 μg/ml insulin, 1 μg/ml hydrocortisone, and 10 ng/ml epidermal growth factor) and subsequent treatment with 10 ng/ml keratinocyte growth factor revealed their trans-differentiating ability to epithelial lineage. From 2 d onwards, the cells under keratinocyte growth factor influenced cells to assume rectangular (2–4 d) to cuboidal (8–10 d) shapes. Ayoub–Shklar stain developed brownish-red pigment in the transformed cells. Though, expressions of K8 and K18 were noted to be highly significant (p < 0.01) but expressions of epithelial membrane antigens and epithelial specific antigens were also significant (p < 0.05) compared to 0 d. Conclusively, epithelial transformations of mammary adipose stem cells would add up knowledge to develop therapeutic regimen to deal with mammary tissue injury and diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Figure 1.
Figure 2.
Figure 3.
Figure 4.
Figure 5.
Figure 6.

Similar content being viewed by others

References

  • Abdanipour A.; Tiraihi T.; Delshad A. Transdifferentiation of the adipose tissue-derived stem cells into neuron-like cells expressing neurotrophins by selegiline. Iran Biomed. J. 15: 113–121; 2011.

    PubMed Central  PubMed  CAS  Google Scholar 

  • Andreadis S. T.; Hamoen K. E.; Yarmush M. L.; Morgan J. R. Keratinocyte growth factor induces hyperproliferation and delays differentiation in a skin equivalent model system. FASEB J. 15: 898–906; 2001.

    Article  PubMed  CAS  Google Scholar 

  • Arumugam S. B.; Trentz O. A.; Arikketh D.; Senthinathan V.; Rosario B.; Mohandas P. V. A. Detection of embryonic stem cell markers in adult human adipose tissue-derived stem cells. Indian J. Pathol. Microbiol. 54: 501–508; 2011.

    Article  PubMed  Google Scholar 

  • Baer P. C.; Bereiter-Hahn J.; Missler C. et al. Conditioned medium from renal tubular epithelial cells initiates differentiation of human mesenchymal stem cells. Cell Proliferation 42: 29–37; 2009.

    Article  PubMed  CAS  Google Scholar 

  • Baer P. C.; Geiger H. Adipose-derived mesenchymal stromal/stem cells: tissue localization, characterization, and heterogeneity, stem cells international, doi:10.1155/2012/812693; 2012.

  • Barber M. C.; Travers M. T.; Finley E.; Flint D. J.; Vermon R. G. Growth-hormone-prolactin interactions in the regulation of mammary and adipose-tissue acetyl-CoA carboxylase activity and gene expression in lactating rats. Biochem. J. 285: 469–475; 1992.

    PubMed Central  PubMed  CAS  Google Scholar 

  • Bunnell B. A.; Flaat M.; Gagliardi C.; Patel B.; Ripoll C. Adipose-derived stem cells: isolation, expansion, and differentiation. Methods. 45: 115–120; 2008.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Cano A.; Perez-Moreno M. A.; Rodrigo I.; Locascio A.; Blanco M. J.; del Barrio M. G.; Portillo F.; Nieto M. A. The transcription factor snail controls epithelialmesenchymal transitions by repressing E-cadherin expression. Nat. Cell Biol. 2: 76–83; 2000.

    Article  PubMed  CAS  Google Scholar 

  • Carvalho A. M.; Alves A. L. G.; Golim M. A.; Moroz A. Isolation and immunophenotypic characterization of mesenchymal stem cells derived from equine species adipose tissue. Vet. Immunol. Immunopathol. 132: 303–306; 2009.

    Article  CAS  Google Scholar 

  • Cinti S. Reversible physiological transdifferentiation in the adipose organ. Proc. Nutr. Soc. 68: 340–349; 2009.

    Article  PubMed  Google Scholar 

  • Clayton H.; Titley I.; dM. Vivanco, M. Growth and differentiation of progenitor/stem cells derived from the human mammary gland. Exp. Cell Res. 297: 444–460; 2004.

  • Deckelbaum R. J.; Worgall T. S.; Seo T. n-3 Fatty acids and gene expression. Am. J. Clin. Nutr. 83(6 suppl): 1520–1525; 2006.

    Google Scholar 

  • Dontu G.; Abdallah W. M.; Foley J. M.; Jackson K. W.; Clarke M. F.; Kawamura M. J.; Wicha M. S. In vitro propagation and transcriptional profiling of human mammary stem/progenitor cells. Genes Dev. 17: 1253–1270; 2003.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Drasin D.; Robin T. P.; Ford H. L. Breast cancer epithelial-to-mesenchymal transition: examining the functional consequences of plasticity. Breast Cancer Res. 13: 226; 2011.

    Article  PubMed Central  PubMed  Google Scholar 

  • Dubois-Marshall S.; Thomas J. S.; Faratian D.; Harrison D. J.; Katz E. Two possible mechanisms of epithelial to mesenchymal transition in invasive ductal breast cancer. Clin Exp Metastasis. 28: 811–818; 2011.

    Article  PubMed  CAS  Google Scholar 

  • Edmond J. Essential polyunsaturated fatty acids and the barrier to the brain: the components of a model for transport. J. Mol. Neurosci. 16: 181–193; 2001.

    Article  PubMed  CAS  Google Scholar 

  • Fukiage K.; Aoyama T.; Shibata K. R. et al. Expression of vascular cell adhesion molecule-1 indicates the differentiation potential of human bone marrow stromal cells. Biochem. Biophys. Res. Commun. 365: 406–412; 2008.

    Article  PubMed  CAS  Google Scholar 

  • Gomperts B. N.; Belperio J. A.; Fishbein M. C.; Keane M. P.; Burdick M. D.; Strieter R. M. Am. J. Respir. Cell Mol. Biol. 37: 48–57; 2007.

    CAS  Google Scholar 

  • Green H.; Kehinde O. Sublines of mouse 3T3 cells that accumulate lipid. Cell 1: 113–116; 1974.

    Article  CAS  Google Scholar 

  • Gronthos S.; Franklin D. M.; Leddy H. A.; Robey P. G.; Storms R. W.; Gimble J. M. Surface protein characterization of human adipose tissue-derived stromal cells. J. Cell. Physiol. 189: 54–63; 2001.

    Article  PubMed  CAS  Google Scholar 

  • Hanley W. D.; Burdick M. M.; Konstantopoulos K.; Sackstein R. CD44 on LS174T colon carcinoma cells possesses E-selectin ligand activity. Cancer Res. 65: 5812–5817; 2005.

    Article  PubMed  CAS  Google Scholar 

  • Jeffrey M. G.; Katz A. J.; Bunnell B. A. Adipose-derived stem cells for regenerative medicine. Circ. Res. 100: 1249–1260; 2007.

    Article  CAS  Google Scholar 

  • Jones J. R.; Barrick C.; Kim K. A.; Lindner J.; Blondeau B.; Fujimoto Y.; Shiota M.; Kesterson R. A.; Khan B. B.; Magnuson M. A. Deletion of PPAR-gamma in adipose tissues of mice protects against high fat diet-induced obesity and insulin resistance. Proc. Natl. Acad. Sci. U. S. A. 102: 6207–6212; 2005.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Jung E. M.; Kwon O.; Kwon K. S. et al. Evidences for correlation between the reduced VCAM-1 expression and hyaluronan synthesis during cellular senescence of human mesenchymal stem cells. Biochem. Biophys. Res. Commun. 404: 463–469; 2011.

    Article  PubMed  CAS  Google Scholar 

  • Katz A. J.; Tholpady A.; Tholpady S. S.; Shang H.; Ogle R. C. Cell surface and transcriptional characterization of human adipose-derived adherent stromal (hADAS) cells. Stem Cells 23: 412–423; 2005.

    Article  PubMed  CAS  Google Scholar 

  • Khan W. S.; Tew S. R.; Adesida A. B. et al. Human infrapatellar fat pad-derived stem cells express the pericyte marker 3G5 and show enhanced chondrogenesis after expansion in fibroblast growth factor-2. Arthritis Res. Ther. 10: 74; 2008.

    Article  CAS  Google Scholar 

  • Kolf C. M.; Cho E.; Tuan R. S. Mesenchymal stromal cells. Biology of adult mesenchymal stem cells: regulation of niche, self-renewal, and differentiation. Arthritis Res. Ther. 9: 204; 2007.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Kundrotas G. Surface markers distinguishing mesenchymal stem cells from fibroblasts. Acta Medica Lituanica. 19(1): 75–79; 2012.

    Google Scholar 

  • Lee J. M.; Dedhar S.; Kalluri R.; Thompson E. W. The epithelial–mesenchymal transition: new insights in signaling, development, and disease. J. Cell Biol. 172: 973–981; 2006.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Li H.; Zimmerlin L.; Marra K. G. et al. Adipogenic potential of adipose stem cell subpopulations. Plast. Reconstr. Surg. 128: 663–672; 2011.

    Article  PubMed  CAS  Google Scholar 

  • Liu W.; Li R.; Dou K. F. Convenient and efficient enrichment of the CD133+ liver cells from rat fetal liver cells as a source of liver stem/progenitor cells. Stem Cell Rev 7(1): 94–102; 2011.

    Article  PubMed  CAS  Google Scholar 

  • Long J. L.; Zuk P.; Berke G. S.; Chhetri D. K. Epithelial differentiation of adipose-derived stem cells for laryngeal tissue engineering. Laryngoscope 120: 125–131; 2010.

    Article  PubMed  CAS  Google Scholar 

  • Luu H. H.; Zhang R.; Haydon R. C.; Rayburn E.; Kang Q.; Si W.; Park J. K.; Wang H.; Peng Y.; Jiang W.; He T. C. Wnt/β-catenin signaling pathway as novel cancer drug targets. Curr. Cancer Drug Targets 4: 653–671; 2004.

    Article  PubMed  CAS  Google Scholar 

  • Mani S. A.; Guo W.; Liao M. J.; Eaton E. N.; Ayyanan A.; Zhou A. Y.; Brooks M.; Reinhard F.; Zhang C. C.; Shipitsin M.; Campbell L. L.; Polyak K.; Brisken C.; Yang J.; Weinberg R. A. The epithelial–mesenchymal transition generates cells with properties of stem cells. Cell 133: 704–715; 2008.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • McNeil M. Adiopocyte staining with Oil-Red-O. Pennington Laboratory, Molecular Endocrinology, Pennington Biomedical Research Centre, Baton Rouge, LA; 2005.

  • Micalizzi D. S.; Farabaugh S. M.; Ford H. L. Epithelial–mesenchymal transition in cancer: parallels between normal development and tumor progression. J. Mammary Gland Biol. Neoplasia 15: 117–134; 2010.

    Article  PubMed Central  PubMed  Google Scholar 

  • Mina-Osorio P.; Winnicke B.; O’Connor C.; Grant C. L.; Vogel L. K.; Rodriguez-Pinto D. et al. CD13 is a noval mediator of monocytic/endothelial cell adhesion. J. Leukoc Biol. 84: 448–459; 2008.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Morel A. P.; Lievre M.; Thomas C.; Hinkal G.; Ansieau S.; Puisieux A. Generation of breast cancer stem cells through epithelial–mesenchymal transition. PLoS One 3: 2888; 2008.

    Article  CAS  Google Scholar 

  • Napier S. L.; Healy Z. R.; Schnaar R. L.; Konstantopoulos K. Selectin ligand expression regulates the initial vascular interactions of colon carcinoma cells: the roles of CD44v and alternative sialofucosylated selectin ligands. J. Biol. Chem. 282: 3433–3441; 2007.

    Article  PubMed  CAS  Google Scholar 

  • Ooi Y. Y.; Ramasamy R.; Vidyadaran S. Mouse bone marrow mesenchymal stem cells acquire CD45- CD106+ immunophenotype only at later passages. Med. J. Malaysia 63: 65–6; 2008.

    PubMed  Google Scholar 

  • Ouji Y.; Yoshikawa M.; Shirol A.; Ishizaka S. Wnt-10b secreted from lymphocytes promotes differentiation of skin epithelial cells. Biochem. Biophys. Res. Commun. 342: 1063–1069; 2006.

    Article  PubMed  CAS  Google Scholar 

  • Qi K.; Hall M.; Deckelbaum R. J. Long-chain polyunsaturated fatty acid accretion in brain. Curr. Opin. Clin. Nutr. Metab. Care 5: 133–138; 2002.

    Article  PubMed  CAS  Google Scholar 

  • Ren Y.; Wu H.; Zhou X.; Wen J.; Jin M.; Cang M.; Guo X.; Wang Q.; Liu D.; Ma Y. Isolation, expansion, and differentiation of goat adipose-derived stem cells. Res. Vet. Sci. 93: 404–411; 2012.

    Article  PubMed  CAS  Google Scholar 

  • Rodeheffer M. S.; Birsoy K.; Friedman J. M. Identification of white adipocyte progenitor cells in vivo. Cell 135: 240–249; 2008.

    Article  PubMed  CAS  Google Scholar 

  • Sampath H. Polyunsaturated fatty acid regulation of genes of lipid metabolism. Annu. Rev. Nutr. 25: 317–340; 2005.

    Article  PubMed  CAS  Google Scholar 

  • Singh N. K.; Kinjavdekar P.; Amarpal S.; Singh G. R.; Pratap K. Evaluation of epidural xylazine and ketamine for the management of post-traumatic pain in goats. Indian J. Vet. Surg. 22(2): 73–78; 2001.

    Google Scholar 

  • Sotiropoulou P. A.; Perez S. A.; Salagianni M.; Baxevanis C. N.; Papamichail M. Characterization of the optimal culture conditions for clinical scale production of human mesenchymal stem cells. Stem Cells. 24: 462–471; 2006.

    Article  PubMed  Google Scholar 

  • Suga H.; Shigeura T.; Inoue K.; Kato H.; Aoi N.; Murase S.; Sato K.; Gonda K.; Koshima I.; Yoshimura K. Rapid expansion of human adipose derived stromal cells preserving multipotency. Cytotherapy 9: 738–745; 2007.

    Article  PubMed  CAS  Google Scholar 

  • Szpirer C.; Riviere M.; Cortese R.; Nakamura T.; Islam M. Q.; Levan G.; Szpirer J. Chromosomal localization in man and rat of the genes encoding the liver-enriched transcription factors C/EBP, DBP and HNF1/LFB-1 (CEBP, DBP, and transcription factor 1, TCF1, respectively) and of the hepatocyte growth factor/scatter factor gene (HGF). Genomics 13: 293–300; 1992.

    Article  PubMed  CAS  Google Scholar 

  • Tapp H.; Hanley Jr. E. N.; Patt J. C.; Gruber H. E. Adipose-derived stem cells: characterization and current application in orthopaedic tissue repair. Exp. Biol. Med. 234: 1–9; 2009.

    Article  CAS  Google Scholar 

  • Thomas S. N.; Zhu F.; Schnaar R. L.; Alves C. S.; Konstantopoulos K. Carcinoembryonic antigen and CD44 variant isoforms cooperate to mediate colon carcinoma cell adhesion to E- and L-selectine in shear flow. J. Biol. Chem. 283: 15647–15655; 2008.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Trimboli A. J.; Fukino K.; de Bruin A.; Wei G.; Shen L.; Tanner S. M.; Creasap N.; Rosol T. J.; Robinson M. L.; Eng C.; Ostrowski M. C.; Leone G. Direct evidence for epithelial–mesenchymal transitions in breast cancer. Cancer Res. 68: 937–945; 2008.

    Article  PubMed  CAS  Google Scholar 

  • Ukkola O.; Santaniemi M. Adiponectin: a link between excess adiposity and associated comorbidities? J. Mol. Med. 80: 696–702; 2002.

    Article  PubMed  CAS  Google Scholar 

  • Uzan B.; Figeac F.; Portha B.; Movasasat J. Mechanisms of KGF mediated signaling in pancreatic duct cell proliferation and differentiation. Plos One 4: e4734; 2009.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Varma M. J.; Breuls R. G.; Schouten T. E.; Jurgens W. J.; Bontkes H. J.; Schuurhuis G. J.; van Ham S. M.; van Milligen F. J. Phenotypical and functional characterization of freshly isolated adipose tissue-derived stem cells. Stem Cells Dev. 16: 91–104; 2007.

    Article  PubMed  Google Scholar 

  • Vassaux G.; Grel R. N.; Ailhaud G.; Gaillard D. Proliferation and differentiation of rat adipose precursor cells in chemically defined medium: differential action of anti-adipogenic agents. J. Cell. Physiol. 161: 249–256; 1994.

    Article  PubMed  CAS  Google Scholar 

  • Vidal M.; Kilroy G.; Johnson J.; López M.; Moore R.; Gimble J. Cell growth characteristics and differentiation frequency of adherent equine bone marrow-derived mesenchymal stromal cells: adipogenic and osteogenic capacity. Vet Surg 35: 601–610; 2006.

    Article  PubMed  Google Scholar 

  • Vidal M. A.; Walker N. J.; Napoli E.; Borjesson D. L. Evaluation of senescence in mesenchymal stem cells isolated from equine bone marrow, adipose tissue, and umbilical cord tissue. Stem Cells Dev. 21: 273–283; 2012.

    Article  PubMed  Google Scholar 

  • Vieira N. M.; Brandalise V.; Zucconi E.; Jazedje T.; Secco M.; Nunes V. A. Human multipotent adipose-derived stem cells restore dystrophin expression of Duchenne skeletal-muscle cells in vitro. Biol. Cell 100: 231–241; 2008.

    Article  PubMed  CAS  Google Scholar 

  • Wagner W.; Wein F.; Seckinge A. et al. Comparative character-istics of mesenchymal stem cells from human bone marrow, adipose tissue, and umbilical cord blood. Exp. Hematol. 33: 1402–1416; 2005.

    Article  PubMed  CAS  Google Scholar 

  • Williams K. J.; Picou A. A.; Kish S. L. et al. Isolation and characterization of porcine adipose tissue-derived adult stem cells. Cells Tissues Organs 188: 251–258; 2008.

    Article  PubMed  Google Scholar 

  • Yang X. F.; He X.; He J. et al. High efficient isolation and systematic identification of human adipose-derived mesenchymal stem cells. J. Biomed. Sci. 18: 59; 2011.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Zhao C.; Meng L.; Hu H.; Wang X.; Shi F.; Wang Y.; Li Q.; Lin A. Spontaneously immortalized bovine mammary epithelial cells exhibit a distinct gene expression pattern from the breast cancer cells. BMC Cell Biol. 11: 82; 2010.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The research was fully supported and facilitated from National Research Foundation of Korea (grant no.120130344) and was partly supported by research grant from Kangwon national University (grant no. 120100910) and (grant no. 120131475).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. K. Singh.

Additional information

Editor: T. Okamoto

Rights and permissions

Reprints and permissions

About this article

Cite this article

Reza, A.M.M.T., Shiwani, S., Singh, N.K. et al. Keratinocyte growth factor and thiazolidinediones and linolenic acid differentiate characterized mammary fat pad adipose stem cells isolated from prepubertal Korean black goat to epithelial and adipogenic lineage. In Vitro Cell.Dev.Biol.-Animal 50, 194–206 (2014). https://doi.org/10.1007/s11626-013-9690-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11626-013-9690-5

Keywords

Navigation