Skip to main content
Log in

A brown alga Sargassum fulvellum facilitates neuronal maturation and synaptogenesis

  • Published:
In Vitro Cellular & Developmental Biology - Animal Aims and scope Submit manuscript

Abstract

Sargassum fulvellum (Turner) C. Agardh is an edible brown macroalgae having pharmacological importance. In previous reports, we described the screening of marine algae for their neuritogenic activity in developing hippocampal neurons and found that ethanol extract of S. fulvellum (SFE) possesses promising neurite-outgrowth-promoting activity. In this study, we evaluated whether the initial neurite promoting effect of SFE was followed on the further neuronal maturation and synapse formation. SFE exhibited dose-dependent effect on neurite maturation with an optimum concentration of 5 μg/mL. The initial neuronal differentiation is significantly promoted by SFE. Subsequently, compared with control culture, SFE increased the indices of axonal and dendritic developments such as the number and the length of primary processes, and branching frequencies. In addition to its effect on neurite development, SFE significantly increased the number of puncta for postsynaptic density-95, synaptic vesicle 2, and synapse (about 35%, 67%, and 125%, respectively, of control). Moreover, SFE dose-dependently protects neurons from naturally occurring death in normal culture condition. Taken together, our data demonstrate that SFE can promote neuronal maturation and synaptogenesis and support neuronal survival, suggesting the beneficial effect of this alga in nervous system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Figure 1.
Figure 2.
Figure 3.
Figure 4.
Figure 5.
Figure 6.

Similar content being viewed by others

References

  • Brewer G. J.; Torricelli J. R.; Evege E. K.; Price P. J. Optimized survival of hippocampal neurons in B27-supplemented Neurobasal™, a new serum-free medium combination. J. Neurosci. Res. 35: 567–576; 1993.

    Article  PubMed  CAS  Google Scholar 

  • Connor B.; Dragunow M. The role of neuronal growth factors in neurodegenerative disorders of the human brain. Brain Res. Brain Res. Rev. 27: 1–39; 1998.

    Article  PubMed  CAS  Google Scholar 

  • Donguibogam Committee. Donguibogam Committee, translated Donguibogam. Bubinmunwha Press, Seoul, South Korea. 2198;1999.

  • Dotti C. G.; Sullivan C. A.; Banker G. A. The establishment of polarity by hippocampal neurons in culture. J. Neurosci. 8: 1454–1488; 1988.

    PubMed  CAS  Google Scholar 

  • Goslin K.; Asmussen H.; Banker G. Rat hippocampal neurons in low-density culture. In: Banker G.; Goslin K. (eds) Culturing nerve cells. MIT Press, Cambridge, MA, pp 339–370; 1998.

    Google Scholar 

  • Greene L. A.; Tischler A. S. Establishment of a noradrenergic clonal line of rat adrenal pheochromocytoma cells which respond to nerve growth factor. Proc. Natl. Acad. Sci. USA 73: 2424–2428; 1976.

    Article  PubMed  CAS  Google Scholar 

  • Hannan M. A.; Kang J. Y.; Hong Y. K.; Lee H.; Choi J. S.; Choi I. S.; Moon I. S. The marine alga Gelidium amansii promotes the development and complexity of neuronal cytoarchitecture. Phytother. Res; 2012. doi:10.1002/ptr.4684.

  • Hefti F. Is Alzheimer’s disease caused by lack of nerve growth factor? Ann. Neurol. 13: 109–110; 1983.

    Article  PubMed  CAS  Google Scholar 

  • Henderson C. E. Role of neurotrophic factors in neuronal development. Curr. Opin. Neurobiol. 6: 64–70; 1996.

    Article  PubMed  CAS  Google Scholar 

  • Ina A.; Hayashi K.-I.; Nozaki H.; Kamei Y. Pheophytin a, a low molecular weight compound found in the marine brown alga Sargassum fulvellum, promotes the differentiation of PC12 cells. Int. J. Dev. Neurosci. 25: 63–68; 2007.

    Article  PubMed  CAS  Google Scholar 

  • Ippolito D. M.; Eroglu C. Quantifying synapses: an immunocytochemistry-based assay to quantify synapse number. J. Vis. Exp. 45: e2270; 2010.

    Google Scholar 

  • Jo E. H.; Cho S. D.; Ahn N. S.; Jung J. W.; Yang S. R.; Park J. S.; Hwang J. W.; Lee S. H.; Park J. R.; Kim S. J.; Park H. K.; Lee Y. S.; Kang K. S. Inhibition of human breast carcinoma by BLC (Sargassum fulvellum) and BLC/HEN egg in vitro and in vivo. Korean J. Vet. Res. 45: 85–91; 2005.

    Google Scholar 

  • Kamei Y.; Tsang C. K. Sargaquinoic acid promotes neurite outgrowth via protein kinase A and MAP kinases-mediated signaling pathways in PC12D cells. Int. J. Dev. Neurosci. 21: 255–262; 2003.

    Article  PubMed  CAS  Google Scholar 

  • Kang J. Y.; Khan M. N. A.; Park N. H.; Cho J. Y.; Lee M. C.; Fujii H.; Hong Y. K. Antipyretic, analgesic, and anti-inflammatory activities of the seaweed Sargassum fulvellum and Sargassum thunbergii in mice. J. Ethnopharmacol. 116: 187–190; 2008.

    Article  PubMed  CAS  Google Scholar 

  • Koh J. Y.; Choi D. W. Quantitative determination of glutamate mediated cortical neuronal injury in cell culture by lactate dehydrogenase efflux assay. J. Neurosci. Meth. 20: 83–90; 1987.

    Article  CAS  Google Scholar 

  • Lee E.; Son H. Adult hippocampal neurogenesis and related neurotrophic factors. BMB Rep. 42: 239–244; 2009.

    Article  PubMed  CAS  Google Scholar 

  • Moon I. S.; Cho S. J.; Jin I.; Walikonis R. A simple method for combined fluorescence in situ hybridization and immunocytochemistry. Mol. Cell 24: 76–82; 2007.

    CAS  Google Scholar 

  • Schaeffer E. L.; Novaes B. A.; da Silva E. R.; Skaf H. D.; Mendes-Neto A. G. Strategies to promote differentiation of newborn neurons into mature functional cells in Alzheimer brain. Prog. Neuropsychopharmacol. Biol. Psychiatry 33: 1087–1102; 2009.

    Article  PubMed  CAS  Google Scholar 

  • Seress L. Morphological changes of the human hippocampal formation from midgestation to early childhood. In: Nelson C. A.; Luciana M. (eds) Handbook of developmental cognitive neuroscience. MIT Press, Cambridge, MA, pp 45–58; 2001.

    Google Scholar 

  • Sholl D. A. Dendritic organization in the neurons of the visual and motor cortices of the cat. J. Anat. 87: 387–406; 1953.

    PubMed  CAS  Google Scholar 

  • Siegel G. J.; Chauhan N. B. Neurotrophic factors in Alzheimer’s and Parkinson’s disease brain. Brain Res. Brain Res. Rev. 33: 199–227; 2000.

    Article  PubMed  CAS  Google Scholar 

  • Suh K. T. Classification of herbs in decoction part of Donguibogam. Ph.D. Thesis. Kyungsung University, Busan, Korea; 138; 1997.

  • Supèr H.; Soriano E. The organization of the embryonic and early postnatal murine hippocampus. II. Development of entorhinal, commissural, and septal connections studied with the lipophilic tracer DiI. J. Comp. Neurol. 344: 101–120; 1994.

    Article  PubMed  Google Scholar 

  • Tsang C. K.; Ina A.; Goto T.; Kamei Y. Sargachromenol, a novel nerve growth factor-potentiating substance isolated from Sargassum macrocarpum, promotes neurite outgrowth and survival via distinct signaling pathways in PC12D cells. Neurosci. 132: 633–643; 2005.

    Article  CAS  Google Scholar 

Download references

Acknowledgment

This work was supported by Global Healthcare Industry RIS Center, Ministry of Knowledge Economy, Korea. MAH wishes to thank National Institute for International Education (NIIED), Korea, for financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Il Soo Moon.

Additional information

Editor: T. Okamoto

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hannan, M.A., Kang, JY., Hong, YK. et al. A brown alga Sargassum fulvellum facilitates neuronal maturation and synaptogenesis. In Vitro Cell.Dev.Biol.-Animal 48, 535–544 (2012). https://doi.org/10.1007/s11626-012-9537-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11626-012-9537-5

Keywords

Navigation