Skip to main content

Advertisement

Log in

Proteomic study of calpeptin-induced differentiation on calpain-interacting proteins of C2C12 myoblast

  • Published:
In Vitro Cellular & Developmental Biology - Animal Aims and scope Submit manuscript

Abstract

Studies on skeletal muscle cell specification and development have demonstrated in the past that calpains interact with various transcriptional factors in regulating the cellular function. It has therefore, been assumed that transcriptional factors like myogenin, MyoD, Myf5, and MRF4 that are active during the myogenic differentiation might be affected and degraded by calpains. Therefore, to examine the biochemical adaptations of myoblasts during myocyte formation and muscle development comprehensively, the current study was designed to identify the effect of calpeptin (calpain inhibitors) on protein expression during differentiation of C2C12 mouse myoblast. Cells were proliferated to near 80% confluence under Dulbecco's modified eagle medium and differentiated further in 2% HS with 50 μM calpeptin. Incubated cells were collected at 0, 12, and 72 h and later the cell proteins were focused onto pH 4–7 IEF strip, followed by 12.5% SDS-PAGE. Obtained spots on the gels were compared and matched using commercial 2-DE analysis software and matched spots were identified by MALDI-ToF and/or Q-Tof systems. Conclusively, cell differentiation was observed to be active from 12 to 72 h however, calpeptin affected the differentiation process and cut down the rate of fusion by approximately 50%. Out of 41 proteins identified, 12 proteins were found to be upregulated where as 29 proteins were downregulated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Figure 1.
Figure 2.
Figure 3.

Similar content being viewed by others

References

  • Adinolfi S.; Iannuzzi C.; Prischi F.; Pastore C.; Iametti S.; Martin S. R.; Bonomi F.; Pastore A. Bacterial frataxin CyaY is the gatekeeper of iron-sulfur cluster formation catalyzed by IscS. Nat. Struct. Mol. Biol. 16(4): 390–396; 2009.

    Article  PubMed  CAS  Google Scholar 

  • Arcuri C.; Giambanco I.; Bianchi R.; Donato R. Annexin V, annexin VI, S100A1 and S100B in developing and adult avian skeletal muscles. Neuroscience 109: 371–388; 2002.

    Article  PubMed  CAS  Google Scholar 

  • Blackwood R. A.; Ernst J. D. Characterization of Ca2 (+)-dependent phospholipid binding, vesicle aggregation and membrane fusion by annexins. Biochem. J. 266: 195–200; 1999.

    Google Scholar 

  • Blomgren K.; Zhu C.; Wang X.; Karlsson J. O.; Leverin A. L.; Bahr B. A.; Mallard C.; Hagberg H. Synergistic activation of caspase-3 by m-calpain after neonatal hypoxia-ischemia: a mechanism of “pathological apoptosis”? J. Biol. Chem. 276: 10191–10198; 2001.

    Article  PubMed  CAS  Google Scholar 

  • Borges J. C.; Ramos C. H. Protein folding assisted by chaperones. Protein Pept. Lett. 12(3): 257–261; 2005.

    Article  PubMed  CAS  Google Scholar 

  • Carvajal J. J.; Pook M. A.; Santos M.; Doudney K.; Hillermann R.; Minogue S.; Williamson R.; Hsuan J. J.; Chamberlain S. The Friedreich’s ataxia gene encodes a novel phosphatidylinositol-4- phosphate 5-kinase. Nat. Genet. 14(2): 157–162; 1996.

    Article  PubMed  CAS  Google Scholar 

  • Daly K. A.; Lefévre C.; Nicholas K.; Deane E.; Williamson P. Characterization and expression of Peroxiredoxin 1 in the neonatal tammarwallaby (Macropus eugenii). Comp. Biochem. Physiol. B Biochem. Mol. Biol. 49: 108–119; 2008.

    Article  Google Scholar 

  • De Maio A. Heat shock proteins: facts, thoughts, and dreams. Shock (Augusta, Ga.) 11(1): 1–12; 1999.

    Article  Google Scholar 

  • Debiasi R. L.; Pike B.; Squier M. K. Reovirus-induced apoptosis is preceded by increased cellular calpain activity and is blocked by calpain inhibitors. J. Virol. 73: 695–701; 1999.

    PubMed  CAS  Google Scholar 

  • Dedieu S.; Mazeres G.; Cottin P.; Brustis J. J. Involvement of myogenic regulator factors during fusion in the cell line C2C12. Int. J. Dev. Biol. 46: 235–241; 2002.

    PubMed  CAS  Google Scholar 

  • Dedieu S.; Poussard S.; Mazeres G.; Grise F.; Dargelos E.; Cottin P.; Brustis J. J. Myoblast migration is regulated by calpain through its involvement in cell attachment and cytoskeletal organization. Exp. Cell Res. 292: 187–200; 2004.

    Article  PubMed  CAS  Google Scholar 

  • Delgado I.; Huang X.; Zhang L.; Hatcher R.; Gao B.; Zhang P. Dynamic gene expression during the onset of myoblast differentiation in vitro. Genomics 82(2): 109–121; 2003.

    Article  PubMed  CAS  Google Scholar 

  • Dodson M. V.; Mathison B. A. Comparison of ovine and rat muscle-derived satellite cells: response to insulin. Tis. Cell 20: 909–918; 1988.

    Article  CAS  Google Scholar 

  • Fernando P.; Kelly J. F.; Balazsi K.; Slack R. S.; Megeney L. A. Caspase 3 activity is required for skeletal muscle differentiation. Proc Natl Acad Sci USA 99: 11025–11030; 2002.

    Article  PubMed  CAS  Google Scholar 

  • Franco A. A.; Odom R. S.; Rando T. A. Regulation of antioxidant enzyme gene expression in response to oxidative stress and during differentiation of mouse skeletal muscle. Free Radic. Biol. Med. 27: 1122–1132; 1999.

    Article  PubMed  CAS  Google Scholar 

  • Fusaro G.; Dasgupta P.; Rastogi S.; Joshi B.; Chellappan S. Prohibitin induces the transcriptional activity of p53 and is exported from the nucleus upon apoptotic signaling. J. Biol. Chem. 278(48): 47853–47861; 2003.

    Article  PubMed  CAS  Google Scholar 

  • Goll G. E.; Thompson V. F.; Li H.; Wei W.; Cong J. The calpain system. Physiol. Rev. 83: 731–801; 2003.

    PubMed  CAS  Google Scholar 

  • Hartman D. J.; Hoogenraad N. J.; Condron R.; Hoj P. B. Identification of a mammalian 10-kDa heat shock protein, a mitochondrial chaperonin 10 homologue essential for assisted folding of trimeric ornithine transcarbamoylase in vitro. Proc Natl Acad Sci USA 89: 3394–3398; 1992.

    Article  PubMed  CAS  Google Scholar 

  • Kim J.; Jung Y. K. Calpeptin suppresses tumor necrosis factor-α-induced death and accumulation of p53 in L929 mouse sarcoma cells. Apoptosis 7: 115–121; 2002.

    Article  PubMed  CAS  Google Scholar 

  • Knepper-Nicolai B.; Savill J.; Brown S. B. Constitutive apoptosis in human neutrophils requires synergy between calpains and the proteasome downstream of caspases. J. Biol. Chem. 273: 30530–30536; 1998.

    Article  PubMed  CAS  Google Scholar 

  • Kulkarni S.; Saido T. C.; Suzuki K.; Fox J. E. Calpain mediates integrin-induced signaling at a point upstream of Rho family members. J. Biol. Chem. 274: 21265–21275; 1999.

    Article  PubMed  CAS  Google Scholar 

  • Lebart M. C.; Benyamin Y. Calpain involvement in the remodeling of cytoskeletal anchorage complexes. FEBS J. 273: 3415–3426; 2006.

    Article  PubMed  CAS  Google Scholar 

  • Lee Y. M.; Park S. H.; Shin D. I.; Hwang J. Y.; Park B.; Park Y. J.; Lee T. H.; Chae H. Z.; Jin B. K.; Oh T. H.; Oh Y. J. Oxidative modification of peroxiredoxin is associated with drug-induced apoptotic signaling in experimental models of Parkinson disease. J. Biol. Chem. 283: 9986–9998; 2008.

    Article  PubMed  CAS  Google Scholar 

  • Lodish H.; Berk A.; Matsudaira P.; Kaiser C. A.; Krieger M.; Scott M. P.; Zipursky S. L.; Darnell J. “3”. Molecular cell biology. 5th ed. W.H. Freeman and CO, New York, pp 66–72; 2004.

    Google Scholar 

  • Mazeres G.; Leloup L.; Daury L.; Cottin P.; Brustis J. J. Myoblast attachment and spreading are regulated by different patterns of ubiquitous calpains. Cell Motil. Cytoskeleton 63: 193–207; 2006.

    Article  PubMed  CAS  Google Scholar 

  • Molinari M.; Carafoli E. Calpains: a cytosolic proteinase active at the membranes. J. membr. Biology 156: 1–8; 1997.

    Article  CAS  Google Scholar 

  • Moyen C.; Goudenege S.; Poussard S.; Ssassi A. H.; Brustis J. J.; Cottin P. Involvement of microcalpain (CAPN1) in muscle cell differentiation. The international. J. Biochem. Cell Biol. 36(4): 728–743; 2004.

    Article  CAS  Google Scholar 

  • Pariat M.; Salvat C.; Bebien M.; Brockly F.; Altieri E.; Carillo S.; Jariel-Encontre I.; Piechaczyk M. The sensitivity of c-Jun and c-Fosproteins to calpains depends on conformational determinants of the mono-mers and not on formation of dimers. Biochem. J. 345: 129–138; 2000.

    Article  PubMed  CAS  Google Scholar 

  • Parmar H.; Melov S.; Samper E.; Ljung B. M.; Cunha G. R.; Benz C. C. Hyperplasia, reduced E-cadherin expression, and developmental arrest in mammary glands oxidatively stressed by loss of mitochondrial superoxide dismutase. Breast 14: 256–263; 2005.

    Article  PubMed  Google Scholar 

  • Perrin B. J.; Huttenlocher A. Calpain. Int. J. Biochem. Cell Biol. 34: 722–725; 2002.

    Article  PubMed  CAS  Google Scholar 

  • Petit V.; Thiery J. P. Focal adhesions: structure and dynamics. Biol. Cell 92: 477–494; 2000.

    Article  PubMed  CAS  Google Scholar 

  • Runembert I.; Queffeulou G.; Federici P.; Vrtovsnik F.; Colucci-Guyon E.; Babinet C. Vimentin affects localization and activity of sodium- glucose cotransporter SGLT1 in membrane rafts. J. Cell Sci. 115: 713–724; 2002.

    PubMed  CAS  Google Scholar 

  • Salinthone S.; Tyagi M.; Gerthoffer W. T. Small heat shock proteins in smooth muscle. Pharmacol. Ther. 119(1): 44–54; 2008.

    Article  PubMed  CAS  Google Scholar 

  • Schoenwaelder S. M.; Burridge K. Evidence for a calpeptin protein-tyrosine phosphatase upstream of the small GTPase rho. J. Biol. Chem. 274: 14359–14367; 2000.

    Article  Google Scholar 

  • Shimokawa T.; Kato M.; Ezaki O.; Hashimoto S. Transcritional regulation of muscle specific genes during myoblast differentiation. Biochem. Biophys. Res. Communic 246: 287–292; 1998.

    Article  CAS  Google Scholar 

  • Sorimachi H.; Suzuki K. The structure of calpain. J. Biochem. 129: 653–664; 2001.

    Article  PubMed  CAS  Google Scholar 

  • Suzuki K.; Sorimachi H. A novel aspect of calpain activation. FEBS Lett. 433: 1–4; 1998.

    Article  PubMed  CAS  Google Scholar 

  • Tannu N. S.; Rao V. K.; Chaudhary R. M.; Giorgianni F.; Saeed A. E.; Gao Y.; Raghow R. Comparative proteomes of the proliferating C2C12 myoblasts and fully differentiated myotubes reveal the complexity of the skeletal muscle differentiation program. Mol. Cell. Proteomics 3: 1065–1082; 2004.

    Article  PubMed  CAS  Google Scholar 

  • Tarricone E.; Ghirardello A.; Zampieri S.; Elisa R. M.; Doria A.; Gorza L. Cell stress response in skeletal muscle myofibers. Ann. N. Y. Acad. Sci. 1069: 472–476; 2006.

    Article  PubMed  Google Scholar 

  • Wu C. Heat shock transcription factors: structure and regulation. Annu. Rev. Cell Dev. Biol. 11: 441–469; 1995.

    Article  PubMed  CAS  Google Scholar 

  • Yajima Y.; Kawashima S. Calpain function in the differentiation of mesenchymal stem cells. Biol. Chem. 383: 757–764; 2002.

    Article  PubMed  CAS  Google Scholar 

  • Zhao S. H.; Nettleton D.; Liu W.; Fitzsimmons C.; Ernst C. W.; Raney N. E. Complementary DNA macroarray analyses of differential gene expression in porcine fetal and postnatal muscle. J. Anim. Sci. 81: 2179–2188; 2003.

    PubMed  CAS  Google Scholar 

Download references

Acknowledgment

This work has been conducted and partly supported by a grant from Next-Generation BioGreen 21 Program (no. PJ008191), Rural Development Administration, Republic of Korea.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. H. Hwang.

Additional information

Editor: T. Okamoto

Rights and permissions

Reprints and permissions

About this article

Cite this article

Singh, N.K., Shiwani, S. & Hwang, I.H. Proteomic study of calpeptin-induced differentiation on calpain-interacting proteins of C2C12 myoblast. In Vitro Cell.Dev.Biol.-Animal 48, 175–185 (2012). https://doi.org/10.1007/s11626-012-9484-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11626-012-9484-1

Keywords

Navigation