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Abstract
In this paper, we study optimal control problems containing ordinary control sys-
tems, linear with respect to a control variable, described by fractional Dirichlet and
Dirichlet–Neumann Laplace operators and a nonlinear integral performance index.
The main result is a theorem on the existence of optimal solutions for such problems.
In our approach we use a characterization of a weak lower semicontinuity of integral
functionals.

Keywords Spectral representation of a self-adjoint operator · Dirichlet and
Dirichlet–Neumann boundary conditions · Fractional Laplace operator · Existence of
optimal solutions · Lower semicontinuity of integral functionals

1 Introduction

During the last few decades fractional calculus has been attracted the intersts of
many scientists. Recent investigations shown that many phenomena can be accurately
described by using differential operators of fractional orders. There exist a lot of types
of such operators. In particular, fractional Laplace operators appear in many fields
of science; for example in economics [2,15], probability [2,6,7,14], mechanics [5,7],
material science [4], fluid mechanics and hydrodynamics [8,11–13,28–30].
They can be defined in many ways (e.g. Fourier transform [16,17], hypersingular
integral [16], Riesz potential operator [23], Bochner’s definition [27], spectral decom-
position [3,15]).
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Another field of research, in which fractional Laplacians appear, is optimal control
theory. In [21], the following two optimal control problems are studied:

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

{
((−Δk)

β)x(t) = g(t, x(t), u(t)), t ∈ (0, π) a.e., (Eqk)

u(t) ∈ M ⊂ R
m, t ∈ (0, π),

J (x, u) =
π∫

0
f0(t, x(t), u(t))dt → min,

(Pk)

where k = 1, 2, β > 1
4 , g : (0, π) ×R

n × M → R
n and f0 : (0, π) ×R

n × M → R.
Here, the control system (Eq1) is described by the one-dimensional Dirichlet Laplace
operator (−Δ1)

β of order β, while (Eq2) involves the Dirichlet–Neumann Laplace
operator (−Δ2)

β . These operators are defined through the spectral decomposition
of the Laplace operator −Δ in (0, π) with zero Dirichlet and Dirichlet–Neumann
boundary conditions, respectively (cf. Sect. 2). Themain result, obtained in cited paper,
are the necessary optimality conditions for the problems (Pk), k = 1, 2 (Pontryagin
maximum principle).

In this paper we study the existence of optimal solutions of problems (Pk), k = 1, 2,
where β > 1

2 and control systems (Eq1) and (Eq2) are linear with respect to the
control variable u. Precisely, we consider the following problems:

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

{
(−Δk)

βx(t) = f (t, x(t)) + B(t)u(t), t ∈ (0, π) a.e., (Ek)

u(t) ∈ M ⊂ R
m, t ∈ (0, π),

J (x, u) =
π∫

0
f0(t, x(t), u(t))dt → min,

(OCPk)

where k = 1, 2, B : (0, π) → R
n×m , f : (0, π) × R

n → R
n and f0 : (0, π) × R

n ×
M → R.

Our study is based on the L1 weak lower-semicontinuity of integral functionals [26].
The existence of optimal solutions is also investigated in [9], where an optimal control
problemwith a fractional Dirichlet Laplacian, defined inRn is considered. The control
system, studied there, has a variational structure and the cost functional depends also
on the fractional Laplacian.

The paper is organized as follows. In Sect. 2, we give necessary notions and facts
concerning ordinary Dirichlet and Dirichlet–Neumann Laplace operators of fractional
order. In Sect. 3, based on a some version of a global implicit function theorem [18],
we formulate and prove a theorem on the existence of a unique solution of the control
sysytems (Ek), k = 1, 2. In Sect. 4, we derive the main result of this paper, namely a
theoremon the existence of optimal solutions for problems (OCPk), k = 1, 2. Section 5
contains an illustrative, theoretical example. We finish with Sect. A containing some
basics from the spectral theory of self-adjoint operators in a real Hilbert space.
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2 Preliminaries

This part of the paper concerns fractional ordinary Dirichlet and mixed Dirichlet–
Neumann Laplace operators. Definitions of these operators are based on the spectral
integral representation theorem for a self-adjoint operator in a Hilbert space (cf. [19]
and Appendix A).

One-dimensionalDirichlet and Dirichlet–Neumann

Laplaceoperators of fractional order

Let us consider the one-dimensional Laplace operator−Δ on the interval (0, π) given
by

−Δu = −u′′. (1)

We define the following spaces of functions:

HD := H1
0 ∩ H2 and HDN := {z ∈ H2; z(0) = z′(π) = 0},

where H1
0 = H1

0 ((0, π),Rn) and H2 = H2((0, π),Rn) are classical Sobolev spaces.

We recall that conditions z(0) = z(π) = 0 (hidden in the definition of HD) and
z(0) = z′(π) = 0 are called Dirichlet and Dirichlet–Neumann boundary con-
ditions, respectively. Moreover, HD and HDN are dense subspeces of the space
L2 = L2((0, π),Rn).

The operator −Δ : HD ⊂ L2 → L2 given by (1) under Dirichlet boundary con-
ditions is called the Dirichlet Laplace operator and denoted by −ΔD . Similarly, by
the Dirichlet–Neumann Laplace operator −ΔDN : HDN ⊂ L2 → L2 we mean the
operator −Δ under Dirichlet–Neumann boundary conditions.

In an elementary way one can show that operators −ΔD and −ΔDN are self-adjoint.
Moreover, their spectrum is given by

σ(−ΔD) = σp(−ΔD) = { j2; j = 1, 2, . . . },
σ (−ΔDN ) = σp(−ΔDN ) =

{(
j − 1

2

)2 ; j = 1, 2, . . .
}

,

respectively and the eigenspaces Eig j (−ΔD) (associated with the eigenvalues λ j =
j2), Eig j (−ΔDN ) (associated with the eigenvalues λ j = ( j − 1

2

)2
) are sets

Eig j (−ΔD) = {c sin j t; c ∈ R
n},

Eig j (−ΔDN ) = {d sin ( j − 1
2

)
t; d ∈ R

n}.
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It is well known that systems of functions

ci, j =

⎛

⎜
⎜
⎝0, . . . , 0,

√
2

π
sin j t

︸ ︷︷ ︸
i

, 0, . . . , 0

⎞

⎟
⎟
⎠ , i = 1, . . . , n, j = 1, 2, . . . ,

di, j =

⎛

⎜
⎜
⎝0, . . . , 0,

√
2

π
sin
(
j − 1

2

)
t

︸ ︷︷ ︸
i

, 0, . . . , 0

⎞

⎟
⎟
⎠ , i = 1, . . . , n, j = 1, 2, . . .

are complete orthonormal systems in L2.
Now, let us assume that β > 0. We define the operator

(−ΔD)β : D((−ΔD)β) ⊂ L2 → L2

in the following way (cf. [19, Theorem 2.1])

(−ΔD)βx(t) =
⎛

⎜
⎝

∫

σ(−ΔD)

λβE(dλ)x

⎞

⎟
⎠ (t) =

∞∑

j=1

( j2)βa j

√
2

π
sin j t

for x ∈ D((−ΔD)β), where

D((−ΔD)β) =
{

x(t) =
⎛

⎜
⎝

∫

σ(−ΔD)

1E(dλ)x

⎞

⎟
⎠ (t) =

∞∑

j=1

a j

√
2

π
sin j t ∈ L2;

∫

σ(−ΔD)

∣
∣λβ
∣
∣2 ‖E(dλ)x‖2L2 =

∞∑

j=1

((
j2
)β
)2

|a j |2 < ∞
}

(here E is the spectral measure for the operator−ΔD and a j

√
2
π
sin j t is the projection

of x on the n-dimensional eigenspace Eig j (−ΔD)).

The operator (−ΔD)β is called the fractional Dirichlet Laplace operator of order β

and the function (−ΔD)βx - the fractional Dirichlet Laplacian of order β of x .
Similarly, we define the fractional Dirichlet–Neumann Laplace operator of order β

(−ΔDN )β : D((−ΔDN )β) ⊂ L2 → L2.
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It is given by

(−ΔDN )βx(t) =
⎛

⎜
⎝

∫

σ(−ΔDN )

λβF(dλ)x

⎞

⎟
⎠ (t) =

∞∑

j=1

((
j − 1

2

)2
)β

b j

√
2

π
sin
(
j − 1

2

)
t

for x ∈ D((−ΔDN )β), where

D((−ΔDN )β) =
{

x(t) =
⎛

⎜
⎝

∫

σ(−ΔDN )

1F(dλ)x

⎞

⎟
⎠ (t) =

∞∑

j=1

b j

√
2

π
sin
(
j − 1

2

)
t ∈ L2;

∫

σ(−ΔDN )

∣
∣λβ
∣
∣2 ‖F(dλ)x‖2L2 =

∞∑

j=1

(((
j − 1

2

)2
)β
)2

|b j |2 < ∞
}

(here F is the spectral measure for the operator −ΔDN and b j

√
2
π
sin
(
j − 1

2

)
t is the

projection of x on the n-dimensional eigenspace Eig j (−ΔDN )).

Remark 1 To shorten the notation, in the rest of this paper the fractional Dirichlet
(Dirichlet–Neumann) Laplace operator of order β is denoted by (−Δ1)

β ((−Δ2)
β).

Now, we formulate some useful facts concerning mentioned operators and their
domains (cf. [19]).

Lemma 1 The spaces D((−Δk)
β), k = 1, 2 are complete with the scalar products

〈x, y〉kβ = 〈x, y〉L2 + 〈(−Δk)
βx, (−Δk)

β y
〉

L2 , k = 1, 2.

The above result follows from the fact that operators (−Δk)
β), k = 1, 2 are self-

adjoint, so also closed.
In our paper we shall use a scalar products given by

〈x, y〉k∼β = 〈(−Δk)
βx, (−Δk)

β y
〉

L2 , k = 1, 2, (2)

which generate equivalent norms ‖·‖kβ and ‖·‖k∼β in D((−Δk)
β) due to the following

Poincaré inequalities:

‖x‖2L2 ≤ ‖x‖21∼β
, x ∈ D((−Δ1)

β) (3)

‖x‖2L2 ≤ 16β‖x‖22∼β
, x ∈ D((−Δ2)

β). (4)
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784 R. Kamocki

The proof of (3) can be found in [19, formula (11)]. Analogously, we prove inequality
(4):

‖x‖2L2 =
∞∑

j=1

|b j |2 ≤
∞∑

j=1

(((2 j − 1)2)β)2|b j |2

=16β
∞∑

j=1

((( j − 1
2 )

2)β)2|b j |2 = 16β‖x‖22∼β
, x ∈ D((−Δ2)

β).

Lemma 2 If β > 1
4 then

‖x‖L∞ ≤
√

2
π
ζ(4β)‖x‖1∼β , x ∈ D((−Δ1)

β), (5)

‖x‖L∞ ≤4β
√

2
π
ζ(4β)‖x‖2∼β , x ∈ D((−Δ2)

β), (6)

so embeddings

D((−Δk)
β) ⊂ L∞, k = 1, 2

are continuous (here ζ is the Riemann zeta function given by ζ(γ ) =
∞∑
k=1

1
kγ ).

Proof For the convenience of the reader, we recall the proof of the inequality (6) which
can be found in [21] (the proof of (5) for n = 1 can be found in [19]).
Let x ∈ D((−Δ2)

β). Then

|x(t)|2 =
∣
∣
∣
∣
∣
∣

∞∑

j=1

b j

√
2

π
sin( j − 1

2 )t

∣
∣
∣
∣
∣
∣

2

=
n∑

i=1

∣
∣
∣
∣
∣
∣

∞∑

j=1

bij

√
2

π
sin( j − 1

2 )t

∣
∣
∣
∣
∣
∣

2

≤ 2

π

n∑

i=1

⎛

⎝
∞∑

j=1

|bij |
⎞

⎠

2

= 2

π

n∑

i=1

⎛

⎝
∞∑

j=1

(( j − 1
2 )

2)β |bij |
(( j − 1

2 )
2)β

⎞

⎠

2

≤ 2

π

⎛

⎝
∞∑

j=1

1

((( j − 1
2 )

2)β)2

⎞

⎠
n∑

i=1

⎛

⎝
∞∑

j=1

((( j − 1
2 )

2)β)2|bij |2
⎞

⎠

≤ 2

π
‖x‖22∼β

⎛

⎝
∞∑

j=1

1

((( j − 1
2 j)

2)β)2

⎞

⎠ = 2

π
‖x‖22∼β

⎛

⎝
∞∑

j=1

1

((( 12 j)
2)β)2

⎞

⎠

= (4β)2
2

π
‖x‖22∼β

ζ(4β) < ∞, t ∈ (0, π) a.e.

Hence, we obtain inequality (6).
The proof is completed. �
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Lemma 3 If β > 1
2 then the operators

[(−Δk)
β ]−1 : L2 � g → xg ∈ L2, k = 1, 2

are compact.

Proof The proof of this fact for k = 1 (in the case of n = 1) is given in [19,
proof of Lemma 5.1]. It is analogous for vector valuable functions, so we present
only the sketch of it in the case of k = 2.
Let F ∈ L2((0, π),Rn) be any bounded (by a constant D) set in L2((0, π),Rn) and
consider a function

f (t) =
∞∑

j=1

b f
j

√
2

π
sin( j − 1

2 )t ∈ F .

In the same way as in [19, Section 5.3] we can show that there exists a unique function

x f (t) =
∞∑

j=1

c f
j

√
2

π
sin( j − 1

2 )t

such that

(−Δ2)
βx f (t) = f (t).

Consequently,

∞∑

j=1

(
( j − 1

2 )
2
)β

c f
j

√
2

π
sin( j − 1

2 )t =
∞∑

j=1

b f
j

√
2

π
sin( j − 1

2 )t,

so

c f
j = b f

j
(
( j − 1

2 )
2
)β .

Let us consider the set of functions

F := {x̃ f : f ∈ F},

where

x̃ f : (−∞,∞) � t →
{
x f (t); t ∈ (0, π)

0; otherwise.
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786 R. Kamocki

Then, for any fixed h ∈ (0, π) we have

∞∫

−∞
|x̃ f (t + h) − x̃ f (t)|2dt =

h∫

0

|x f (t)|2dt +
π−h∫

0

|x f (t + h) − x f (t)|2dt +
π∫

π−h

|x f (t)|2dt

=I1 + I2 + I3.

Using the Hölder inequality (for series) we obtain

I1 =
h∫

0

n∑

i=1

∣
∣
∣
∣
∣
∣

∞∑

j=1

(bij )
f

(
( j− 1

2 )2
)β

√
2

π
sin( j − 1

2 )t

∣
∣
∣
∣
∣
∣

2

dt ≤ 2

π

h∫

0

n∑

i=1

⎛

⎝
∞∑

j=1

|(bij ) f |
(
( j− 1

2 )2
)β

⎞

⎠

2

dt

≤ 2

π
h

∞∑

j=1

|b f
j |2

∞∑

j=1

1
(
( j− 1

2 )2
)2β ≤ 16β 2

π
h‖ f ‖2L2ζ(4β) ≤ 16β 2

π
Dζ(4β)h.

Similarly we estimate the term I3. Now, we estimate the term I2.

π−h∫

0

|x f (t + h)−x f (t)|2dt =
π−h∫

0

∣
∣
∣
∣
∣
∣

∞∑

j=1

b f
j

(
( j− 1

2 )2
)β

√
2
π

(
sin( j − 1

2 )(t + h) − sin( j − 1
2 )t
)

∣
∣
∣
∣
∣
∣

2

dt

≤
π−h∫

0

n∑

i=1

⎛

⎝
∞∑

j=1

|(bij ) f |
(
( j− 1

2 )2
)β

√
2
π

∣
∣
∣
∣2 sin

( j− 1
2 )h
2 cos

(

( j − 1
2 )t + ( j− 1

2 )h
2

)∣
∣
∣
∣

⎞

⎠

2

dt

≤ 8

π

π−h∫

0

n∑

i=1

⎛

⎝
∞∑

j=1

|(bij ) f |
(
( j− 1

2 )2
)β

∣
∣
∣
∣sin

( j− 1
2 )h
2

∣
∣
∣
∣

⎞

⎠

2

dt

≤ 8

π
(π − h)

∞∑

j=1

|b f
j |2

∞∑

j=1

sin2
( j− 1

2 )h
2

(
( j− 1

2 )2
)2β ≤ 8D

∞∑

j=1

( j− 1
2 )h

2
(
( j− 1

2 )2
)2β

= 4Dh
∞∑

j=1

1
(
j− 1

2

)4β−1 = 2D16βζ(4β − 1)h.

Analogously, we estimate terms I1, I2, I3 for any fixed h ∈ (−π, 0).
Finally,

∞∫

−∞
|x̃ f (t + h) − x̃ f (t)|2dt ≤ const |h|, |h| ≤ π.

Consequently,

lim|h|→0
‖τh x̃ − x̃‖L2(R,Rn) = 0 uniformly on F ,
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Existence of optimal solutions to Lagrange problems for… 787

where τh x̃(t) = x̃(t + h), so the set

F |(0,π) = {x f : f ∈ F}

is relatively compact in L2((0, π),Rn).
The proof is completed. �
Remark 2 The relatively compactness of F follows from the following Kolmogorov-
Fréchet-Riesz theorem (cf. [10, Theorem 4.26]):

Theorem 1 (Kolmogorov-Fréchet-Riesz) Let F be a bounded set in L p(RN ) with
1 ≤ p < ∞. Assume that

lim|h|→0
‖τh f − f ‖L p = 0 uni f ormly in f ∈ F ,

i.e.

∀ε>0 ∃δ>0 such that ‖τh f − f ‖L p < ε, ∀ f ∈F , ∀h∈RN wi th |h| < δ.

Then the closure of F|Ω in L p(RN ) is compact for any measurable set Ω ⊂ R
N with

finite measure.
(Here F|Ω denotes the restrictions to of the functions in F).

Using the above lemma and analogous arguments as in the proof of [19, Lemma 5.2]
we obtain

Corollary 1 Let k = 1, 2 and β > 1
2 . If xn⇀x0 weakly in D((−Δk)

β) then xn → x0
strongly in L2 and (−Δk)

βxn⇀(−Δk)
βx0 weakly in L2.

3 Existence and uniqueness of a solution to the control systems (E1)
and (E2)

The main result of this section is a theorem on the existence of a unique solution to the
control systems (Ek), k = 1, 2. In the proof of this fact we use the following result.

Theorem 2 (Corollary 3.3, [18]) Let X be a real Banach space, Y a non-empty set,
and H a real Hilbert space. If F : X × Y → H is continuously differentiable with
respect to x ∈ X and

– for any y ∈ Y the functional

φy : X � x → 1

2
‖F(x, y)‖2 ∈ R (7)

satisfies the Palais-Smale (PS) condition1,

1 Let X be a real Banach space and I : X → R denotes a functional of class C1. We say that I satisfies
the Palais-Smale (PS) condition if any sequence (xl )l∈N such that
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788 R. Kamocki

– F ′
x (x, y) : X → Y is bijective for any (x, y) ∈ X × Y such that F(x, y) = 0 and

F(x, y) /∈ (ImF ′
x (x, y))

⊥ (8)

for any (x, y) ∈ X × Y such that F(x, y) �= 0

then, for any y ∈ Y , there exists a unique xy ∈ X such that F(xy, y) = 0.

In the rest of this paper we assume that β > 1
2 . Let us define the following set of

controls:

UM := {u ∈ L2((0, π),Rm); u(t) ∈ M, t ∈ (0, π)}.

We have

Theorem 3 Let us fix k = 1, 2. If

(A1) f is measurable in t ∈ (0, π), continuously differentiable in x ∈ R
n and

| f (t, x)| ≤ a(t)|x | + b(t), t ∈ (0, π) a.e., x ∈ R
n, (9)

| fx (t, x)| ≤ a(t)δ(|x |), t ∈ (0, π) a.e., x ∈ R
n, (10)

where δ ∈ C(R+
0 ,R+

0 ) and a, b ∈ L2((0, π),R+) is such that

√
2

π
ζ(4β)‖a‖L2 < 1 i f k = 1, (11)

√
2

π
ζ(4β)‖a‖L2 <

1

4β
i f k = 2, (12)

(A2) B ∈ L∞((0, π),Rn×m)

(A3) for any pair (x, u) ∈ D((−Δk)
β)×UM one of the following three conditions

are satisfied

(a)

‖Λ‖L1 ≤ π

2ζ(2β)
i f k = 1, (13)

‖Λ‖L1 ≤ π

2ζ(2β)4β
i f k = 2, (14)

(b) Λ(t) ≤ 0, t ∈ (0, π) a.e.,
(c) Λ ∈ L∞((0, π),Rn×n) and ‖Λ‖L∞ < 1,

where Λ(·) = fx (·, x(·))

– |I (xl )| ≤ M for all l ∈ N and some M > 0,
– I ′(xl ) → 0,

admits a convergent subsequence (I ′(xl ) denotes the Fréchet differential of I at xl ).
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Existence of optimal solutions to Lagrange problems for… 789

then for any fixed control u ∈ UM there exists a unique solution xu ∈ D((−Δk)
β) of

the control system (Ek).

Proof Let us fix k = 1, 2 and define the operator

Fk : D((−Δk)
β) × UM � (x, u) → (−Δk)

βx(t) − f (t, x(t)) − B(t)u(t) ∈ L2.

It is sufficient to show that Fk satisfies all assumptions of Theorem 2.

– Using assumptions (A1), (A2) and analogous arguments as in [19, Proposi-
tion 5.1], we check that the mapping Fk is continuously differentiable with respect
to x ∈ D((−Δk)

β) and the differential (Fk)x : D((−Δk)
β) → L2 of Fk at the

point (x, u) is given by

(Fk)x (x, u)h = (−Δk)
βh(t) − fx (t, x(t))h(t)

for any fixed u ∈ UM .2

– (c) Now, we show that for any u ∈ UM the functional

φk
u : D((−Δk)

β) � x → 1

2
‖Fk(x, u)‖2 ∈ R

satisfies the Palais-Smale condition.
First, let us observe that the growth condition (9) and conditions (11), (12) guar-
antee coercivity of φk

u for any u ∈ UM (it is sufficient to use the same arguments as
in the proof of [19, Lemma 5.3]). Moreover, it is continuously differentiable with
respect to x and its differential (φk

u)
′ : D((−Δk)

β) → R is given by

(φk
u)′(x)h =

π∫

0

〈
(−Δk)

β x(t) − f (t, x(t)) − B(t)u(t), (−Δk)
βh(t) − fx (t, x(t))h(t)

〉
dt

for any h ∈ D((−Δk)
β). Let x0 ∈ D((−Δk)

β) and (xl)l∈N ⊂ D((−Δk)
β). Then

(φk
u)

′(xl) − (φk
u)

′(x0)(xl − x0) = ‖xl − x0‖2∼ β
2

+
5∑

i=1

ψk
i (xl),

2 In order to prove a differentiability property of the mapping F2 (then (−�2)
β = (−�DN )β denotes the

Dirichlet–Neumann Laplace operator of order β) we use the estimation (6) instead of (5).
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where

ψk
1 (xl) =

π∫

0

〈
(−Δk)

βxl(t), fx (t, xl(t))(x0(t) − xl(t))
〉
dt,

ψk
2 (xl) =

π∫

0

〈
(−Δk)

βx0(t), fx (t, x0(t))(xl(t) − x0(t))
〉
dt,

ψk
3 (xl) =

π∫

0

〈 f (t, xl(t)), fx (t, xl(t))(xl(t) − x0(t))〉 dt,

ψk
4 (xl) =

π∫

0

〈 f (t, x0(t)), fx (t, x0(t))(x0(t) − xl(t))〉 dt,

ψk
5 (xl) =

π∫

0

〈
f (t, x0(t)) − f (t, xl(t)), (−Δk)

βxl(t) − (−Δk)
βx0(t)

〉
dt .

Using analogous arguments as in the proof of [19, Proposition 5.3] (including
coercivity of φk

u , Corollary 1 and the Lebesque dominated convergence theorem)
we conclude that there exists a subsequence (xl j ) j∈N such that

ψk
i (xl j ) −→

j→∞ 0, i = 1, . . . , 5, k = 1, 2.

This means that xl j −→ x0 in D((−Δk)
β), so for any u ∈ UM the functional φk

u
satisfies the Palais-Smale condition.

– Analogously as in [19, Proposition 5.2] (using the assumption (A3)) we show that
for any pair (x, u) ∈ D((−Δk)

β) × UM the differential (Fk)x is bijective3.

The proof is completed. �
We also have the following two results

Proposition 1 If M is a bounded set and assumptions (A1), (A2), (A3) of Theorem 3
are satisfied then there exists constants C1,C2 > 0 (inpedendent on u) such that for
any control u ∈ UM

‖xu‖k∼β ≤ Ck, k = 1, 2. (15)

Proof Let us fix k = 1, 2 and any control u ∈ UM . Let C be a constant such that
|u(t)| ≤ C for a.e. t ∈ (0, π). Assume that xu ∈ D((−Δk)

β) is a solution of the

3 The proof of the fact that the mapping (F2)x (x∗, u∗) is bijective is analogous to the proof of bijectivity
of (F1)x (x∗, u∗) (cf. [19, Proposition 5.2] - the condition (13) is replaced with (14)).
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control system (Ek), corresponding to u. Then, using (9), we obtain

‖xu‖k∼β =‖(−Δk)
βxu‖L2 =

⎛

⎝

π∫

0

| f (t, xu(t)) + B(t)u(t)|2 dt
⎞

⎠

1
2

≤
⎛

⎝

π∫

0

|a(t)|2|xu(t)|2dt
⎞

⎠

1
2

+
⎛

⎝

π∫

0

|B(t)|2|u(t)|2dt
⎞

⎠

1
2

+ ‖b‖L2

≤‖a‖L2‖xu‖L∞ + C
√

π‖B‖L∞ + ‖b‖L2 .

Thus and from Lemma 2 we have

‖xu‖k∼β ≤
⎧
⎨

⎩

√
2
π
ζ(4β)‖a‖L2‖xu‖k∼β + C

√
π‖B‖L∞ + ‖b‖L2 i f k = 1

4β
√

2
π
ζ(4β)‖a‖L2‖xu‖k∼β + C

√
π‖B‖L∞ + ‖b‖L2 i f k = 2.

This means that

‖xu‖k∼β ≤ Ck,

where

Ck =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

√
πC‖B‖L∞+‖b‖

L2

1−
√

2
π

ζ(4β)‖a‖L2
i f k = 1

√
πC‖B‖L∞+‖b‖L2

1−4β

√
2
π

ζ(4β)‖a‖L2
i f k = 2.

The proof is completed. �
Proposition 2 Let us fix k = 1, 2. Assume that all assumptions of Theorem 3 are
satisfied and the set M is convex and compact. If (ul)l∈N ⊂ UM is a sequence of
controls and (xl)l∈N ⊂ D((−Δk)

β) is a sequence of corresponding solutions of the
control system (Ek) then there exist a control u0 ∈ UM, a function x0 ∈ D((−Δk)

β)

and a subsequence (li )i∈N such that the pair (x0, u0) satisfies (Ek) and

(Z1) xli −→
i→∞ x0 strongly in L2,

(Z2) (−Δk)
βxli ⇀(−Δk)

βx0 weakly in L2,
(Z3) uli ⇀

i→∞u0 weakly in L2((0, π),Rm).

Proof Let us fix k = 1, 2 and consider a sequence of controls (ul)l∈N ∈ UM and a
sequence of corresponding solutions (xl)l∈N ⊂ D((−Δk)

β) of the system (Ek). Using
the standard arguments we check that compactness and convexity of the set M imply
a convexity, boundedness and closure of the set UM in L2((0, π),Rm). This means
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that UM is sequentially weakly compact, while L2((0, π),Rm) is a reflexive space.
Consequently, there exist a subsequence (uli )i∈N and u0 ∈ UM such that

uli ⇀
i→∞u0 weakly in L2((0, π),Rm),

so the condition (Z3) of this proposition is satisfied.
From Proposition 1 it follows that the sequence of norms ‖xl‖k∼β is bounded, so, there
exist a subsequence (xli )i∈N and a function x0 ∈ D((−Δk)

β) such that

xli ⇀
i→∞x0 weakly in D((−Δk)

β).

Consequently, Corollary 1 implies convergences (Z1) and (Z2).
Now, we show that the x0 is a solution of (Ek), corresponding to u0. Indeed, first we
note that since the matrix B is essentially bounded on (0, π), therefore

Buli ⇀
i→∞Bu0 weakly in L2.

Moreover, using condition (9) and Lemma 2 we have

∣
∣ f (t, xli (t)) − f (t, x0(t))

∣
∣2 ≤2

(
| f (t, xli (t))|2 + | f (t, x0(t))|2

)

≤2a2(t)(‖xli ‖2L∞ + |x0(t)|2)

≤
⎧
⎨

⎩

2a2(t)
(
2
π
ζ(4β)‖xli ‖2k∼β

+ |x0(t)|2
)

i f k = 1

2a2(t)
(
16β 2

π
ζ(4β)‖xli ‖2k∼β

+ |x0(t)|2
)

i f k = 2

≤
{
2a2(t)

( 2
π
ζ(4β)C2

k + |x0(t)|2
)

i f k = 1

2a2(t)
(
16β 2

π
ζ(4β)C2

k + |x0(t)|2
)

i f k = 2,

whereCk , k = 1, 2 are constants fromProposition 1. Consequently, from the Lebesque
dominated convergence theorem it follows that

f (·, xli (·)) −→
i→∞ f (·, x0(·)) strongly in L2.

Then, of course

f (·, xli (·)) ⇀
i→∞ f (·, x0(·)) weakly in L2.

Thus, using (Z2) we get

(−Δk)
βxli (·) − f (·, xli (·)) − B(·)uli (·) ⇀

k→∞(−Δk)
βx0(·) − f (·, x0(·)) − B(·)u0(·)
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weakly in L2((0, π),Rn). On the other hand, (xli ) is a solution of (Ek), corresponding
to (uli ), so we have

(−Δk)
βxli (t) − f (t, xli (t)) − B(t)uli (t) = 0, t ∈ (0, π) a.e.

This means that

(−Δk)
βx0(t) − f (t, x0(t)) − B(t)u0(t) = 0, t ∈ (0, π) a.e.

The proof is completed. �

4 Existence of optimal solutions

In this section we shall prove the main result of this paper, namely a theorem on the
existence of optimal solutions of the problems (OCPk), k = 1, 2.
Let us fix k = 1, 2. We shall say, that a pair (x∗, u∗) ∈ D((−Δk)

β)×UM is a globally
optimal solution of the problem (OCPk), if x∗ is the solution of the control system
(Ek), corresponding to the control u∗ and

J (x∗, u∗) ≤ J (x, u)

for every pair (x, u) ∈ D((−Δk)
β) × UM satisfying (Ek).

We have

Theorem 4 Let us fix k = 1, 2 and assume that

1. M is convex and compact,
2. hypothesis (A1), (A2) and (A3) of Theorem 3 are satisfied,
3. f0(·, x, u) is measurable on (0, π) for all x ∈ R

n and u ∈ M,
4. f0(t, ·, ·) is continuous on R

n × M for a.e. t ∈ (0, π),
5. f0(t, x, ·) is convex on M for a.e. t ∈ (0, π) and all x ∈ R

n,
6. there exist a summable function ψ : (0, π) → R

+
0 and a constant c ≥ 0 such that

f0(t, x, u) ≥ −ψ(t) − c|x | (16)

for a.e. t ∈ (0, π) and all x ∈ R
n, u ∈ M.

Then the problem (OCPk) possesses an optimal solution (x0, u0) ∈ D((−Δk)
β)×UM.

Proof Let us fix k = 1, 2 and denote

μ = inf
{
J (xu, u), u ∈ UM

}
. (17)
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It is clear that μ ≤ J (xu, u) for any pair (xu, u) ∈ D((−Δk)
β) × UM . The condition

(16), the Hölder inequality, Poincaré inequalities (3), (4) and Proposition 1 imply

J (xu, u) =
π∫

0

f0(t, xu(t), u(t))dt ≥ −
π∫

0

ψ(t)dt − c

π∫

0

|xu(t)|dt

≥ −
π∫

0

ψ(t)dt − c
√

π‖xu‖L2

≥ −
π∫

0

ψ(t)dt −
{
c
√

π‖xu‖k∼β i f k = 1

c
√

π4β‖xu‖k∼β i f k = 2

≥ −
π∫

0

ψ(t)dt −
{
c
√

πCk i f k = 1

c
√

π4βCk i f k = 2
> −∞,

where C1,C2 are constants from Proposition 1. This means that −∞ < μ ≤ +∞.
If μ = +∞ then the existence of optimal solutions is obvious.
So, let us assume that −∞ < μ < +∞ and (xl , ul)l∈N ∈ D((−Δk)

β) × UM be a
minimizing sequence of the functional J . This means that

lim
l→∞J (xl , ul) = μ.

From Proposition 2 it follows that there exist a pair (x0, u0) ∈ D((−Δk)
β) ×UM and

a subsequence (li )i∈N such that the pair (x0, u0) satisfies (Ek) and

uli ⇀
i→∞u0 weakly in L2((0, π),Rm),

xli →
i→∞ x0 strongly in L2.

Thus, we obtain respective convergences in L1((0, π),Rm) and L1((0, π),Rn),
respectively.
Now, let us consider a function f̂0 : (0, π) × R

n × M → R given by

f̂0(t, x, u) :=
{
f0(t, x, u); t ∈ T

−ψ(t) − c|x |; t /∈ T ,

where T ⊂ (0, π) is a set of the full measure consist of points, for which conditions
4, 5, 6 are satisfied. Then the function f̂0 satisfies mentioned conditions for all t ∈
(0, π). From [22, Proposition 3.2] and [24, section IV § 3 Theorem 6] it follows that
f̂0 isL((0, π))×B(Rn ×M)measurable. Moreover, it can be extended to the function
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f̃0 : (0, π) × R
n × R

m → R given by

f̃0(t, x, u) :=
{
f̂0(t, x, u); (t, x, y) ∈ (0, π) × R

n × M

+∞; (t, x, y) /∈ (0, π) × R
n × M .

[20, Lemma 16] guarantees L((0, π)) × B(Rn × R
m) - measurability of f̃0. This

function is also lower semicontinuous with respect to (x, u) ∈ R
n ×R

m for any fixed
t ∈ (0, π), convex with respect to u ∈ R

m for any fixed (t, x) ∈ (0, π) × R
n and

satisfies inequality (16) for all points (t, x, u) ∈ (0, π) × R
n × R

m . Consequently,
using a theorem on the L1-weak lower semicontinuity of integral functionals (cf. [26])
we assert that

J̃ (x0, u0) ≤ lim inf
i→∞ J̃ (xli , uli ),

where

J̃ (x, u) =
π∫

0

f̃0(t, x(t), u(t))dt .

Thus, since

J (x0, u0) = Ĵ (x0, u0) = J̃ (x0, u0) and J (xli , uli ) = Ĵ (xli , uli ) = J̃ (xli , uli ),

where

Ĵ (x, u) =
b∫

a

f̂0(t, x(t), u(t))dt,

therefore

J (x0, u0) ≤ lim inf
i→∞ J (xli , uli ).

Hence

μ ≤ J (x0, u0) ≤ lim inf
i→∞ J (xli , uli ) = lim

i→∞J (xli , uli ) = μ,

so

J (x0, u0) = μ = inf
{
J (xu, u), u ∈ UM

}
.

The proof is completed. �
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5 Illustrative example

In this section we present the the following theoretical problems

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

{
(−Δk)

βx1(t) = a sin t(sin x1(t) + sin x2(t)) + et u(t),

(−Δk)
βx2(t) = a sin t(sin x1(t) − sin x2(t)) + t2u(t),

t ∈ (0, π) a.e. (Equk)

u(t) ∈ [−1, 1], t ∈ (0, π),

J (x, u) =
π∫

0
(sin t + cos t | sin x1(t)| + sin t |x2(t)| + u2(t))dt → min,

(18)
where k = 1, 2, β > 1

2 and a > 0.
We see that B : (0, π) → R

2×1 and

B(t) =
[
et

t2

]

,

f : (0, π) × R
2 → R

2 and

f (t, x1, x2) = (a sin t(sin x1 + sin x2), a sin t(sin x1 − sin x2)) ,

f0 : (0, π) × R
2 × [−1, 1] → R and

f0(t, x1, x2, u) = sin t + cos t | sin x1| + sin t |x2| + u2.

It is clear that f is measurable with respect to t , continuously differentiable on R2

and4,

| f (t, x)| = | f (t, (x1, x2))| = √
2a| sin t |

√

sin2 x1 + sin2 x2 ≤ 2a + a|x |,
| fx (t, x)|2×2 = | fx (t, (x1, x2))|2×2 = √

2a| sin t |
√
cos2 x1 + cos2 x2 ≤ 2a

for a.e. t ∈ (0, π) and all x ∈ R
2.

Consequently, conditions (9), (10) are satisfied with a(t) := a, b(t) := 2a and δ(s) :=
2. Let us note that conditions (11), (12) hold if

a <

{
1√

2ζ(4β)
, i f k = 1

1
4β

√
2ζ(4β)

, i f k = 2.

Moreover, if

a ≤
{

1
4ζ(2β)

, i f k = 1
1

4β+1ζ(2β)
, i f k = 2

4 | · | denotes an Euclidean norm inR2 and | · |2×2 is a matrix norm given by |A|2×2 =
√∑2

i=1
∑2

j=2 a
2
i j .
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then conditions (13), (14) are satisfied.
Of course, the function f0 satisfies assumptions 3,4,5 of Theorem 4. The assumption
6 also holds because

f0(t, x, u) = f0(t, (x1, x2), u) ≥ −1 − |x1| − |x2| ≥ −1 − 2|x |

for a.e. t ∈ (0, π) and all x ∈ R
2, u ∈ [−1, 1].

Consequently, we proved the following

Theorem 5 If

a <

⎧
⎨

⎩

min
{

1√
2ζ(4β)

, 1
4ζ(2β)

}
, i f k = 1

min
{

1
4β

√
2ζ(4β)

, 1
4β+1ζ(2β)

}
, i f k = 2

=
{

1
4ζ(2β)

, i f k = 1
1

4β+1ζ(2β)
, i f k = 2

then problems (18) have optimal solutions ((x1, x2), u) ∈ D((−Δk)
β) × U[−1,1],

k = 1, 2.
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A Basics of self-adjoint operators in a Hilbert space

In this section we give the necessary notions and facts concerning a theory of
unbounded self-adjoint operators in a real Hilbert space (cf. [19]). More details can be
found in [1,25], where all results are obtained in the case of a complex Hilbert space.
Nevertheless, their proofs can be reproduced (if required, with small changes) in the
case of a real Hilbert space.
So, in this section we shall assume that H is a real Hilbert space with a scalar product
〈·, ·〉H .

A.1 Self-adjoint operator

Let T : D(T ) ⊂ H → H be a densely defined linear operator (D(T ) = H ) with the
domain D(T ). We define

D(T ∗) := {x ∈ H ; ∃z∈H 〈x, T y〉H = 〈z, y〉H , f or all y ∈ D(T )}. (19)

For x ∈ D(T ∗) we denote T ∗x = z (this element is uniquely determined due to the
density of D(T )). The operator T ∗ : D(T ∗) ⊂ H → H is called the adjoint operator
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to T . If T = T ∗ and D(T ) = D(T ∗), then T is called self-adjoint. We note that
whenever T is self-adjoint operator one has

〈T x, y〉H = 〈x, T y〉H , f or all x, y ∈ D(T ).

A.2 Spectral integral and decomposition theorem

LetB be a σ - algebra of Borel subsets ofR andP(H) denotes the set of all orthogonal
projection operators onto closed linear subspaces of H . A set function E : B → P(H)

is called a spectral measure (or a decomposition of the identity) if

1. for any x ∈ H the set function B � P → E(P)x is σ - additive,
2. E(R) = I (here I denotes the identity operator on H ),
3. E(P ∩ Q) = E(P) ◦ E(Q), for P, Q ∈ B.
LetW be the union of all open sets V ⊂ R such that E(V ) = 0. Then the complement
R\W is called a support of a spectral measure E and denoted by supp(E).
Let assume that u : R → R defined a.e. E is a bounded Borel measurable function.
Then in the usual way one can show (via a sequence of simple functions) that for any
x ∈ H there exists the integral (with respect to the vector measure E(·)x)

+∞∫

−∞
u(λ)E(dλ)x .

We define the integral with respect to the spectral measure E

+∞∫

−∞
u(λ)E(dλ) : H → H

in the following way

⎛

⎝

+∞∫

−∞
u(λ)E(dλ)

⎞

⎠ x =
+∞∫

−∞
u(λ)E(dλ)x .

One proves that the above operator is linear, continuous and Hermitian.
Now, let u : R → R defined a.e. E be an unbounded Borel measurable function. Let
us define the sequence of functions un :

un(λ) =
{
u(λ), i f |u(λ)| ≤ n

0, i f |u(λ)| > n.
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Functions un are Borel measurable and bounded. Consequently, there exist integrals

+∞∫

−∞
fn(λ)E(dλ), n ∈ N.

Let us consider the set

D =
⎧
⎨

⎩
x ∈ H :

+∞∫

−∞
|u(λ)|2‖E(dλ)x‖2H < ∞

⎫
⎬

⎭
. (20)

One can show that D is a dense linear subspace of H and for x ∈ D there exists the
limit

lim
n→∞

+∞∫

−∞
un(λ)E(dλ)x .

So, we can define the operator
+∞∫
−∞

u(λ)E(dλ) : D ⊂ H → H in the following

way:

⎛

⎝

+∞∫

−∞
u(λ)E(dλ)

⎞

⎠ x = lim
n→∞

+∞∫

−∞
un(λ)E(dλ)x .

One can prove that

∥
∥
∥
∥
∥
∥

+∞∫

−∞
u(λ)E(dλ)x

∥
∥
∥
∥
∥
∥

2

H

=
+∞∫

−∞
|u(λ)|2‖E(dλ)x‖2H (21)

and the operator
∫ +∞
−∞ u(λ)E(dλ) is self-adjoint.

If u : R → R is a Borel measurable function and ω ∈ B then

∫

ω

u(λ)E(dλ) :=
+∞∫

−∞
χω(λ)u(λ)E(dλ),

where χω is a characteristic function of the set ω.
In order to define the spectral integral in the case of a Borel measurable function
u : P → R, where P ∈ B contains the support supp(E), it is sufficient to extend u
on R to any Borel measurable function.
Now, we formulate a spectral decomposition theorem which plays a crucial role in the
spectral theory of self-adjoint operators.
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Theorem 6 (Spectral decomposition theorem for self-adjoint operators) Let T :
D(T ) ⊂ H → H be a self-adjoint operator such that the resolvent set ρ(T ) is
non-empty. Then there exists a unique spectral measure E with the closed support
supp(E) = σ(T ) such that

T =
+∞∫

−∞
λE(dλ) =

∫

σ(T )

λE(dλ). (22)

In conclusion of this section we shall define a function of a self-adjoint operator. Let
T : D(T ) ⊂ H → H be a self-adjoint operator with ρ(T ) �= ∅. From Theorem 6 it
follows that T has the integral representation given by (22). For a Borel measurable
function u : R → R defined a.e. E we define the operator u(T ) as follows

u(T ) =
+∞∫

−∞
u(λ)E(dλ) =

∫

σ(T )

u(λ)E(dλ). (23)

According to general properties of the spectral integrals presented above, the domain
D(u(T )) is given by (20), the equality (21) holds and u(T ) is self-adjoint. Moreover,
its spectrum is given by

σ(u(T )) = u(σ (T )),

provided that u is continuous on σ(T ).
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