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Abstract This paper deals with the max–min and min–max regret versions of the
maximum weighted independent set problem on interval graphs with uncertain vertex
weights. Both problems have been recently investigated by Talla Nobibon and Leus
(Optim Lett 8:227–235, 2014), who showed that they are NP-hard for two scenarios
and strongly NP-hard if the number of scenarios is a part of the input. In this paper,
new complexity and approximation results for the problems under consideration are
provided, which extend the ones previously obtained. Namely, for the discrete scenario
uncertainty representation it is proven that if the number of scenarios K is a part of
the input, then the max–min version of the problem is not at all approximable. On the
other hand, its min–max regret version is approximable within K and not approximable
within O(log1−ε K ) for any ε > 0 unless the problems in NP have quasi polynomial
algorithms. Furthermore, for the interval uncertainty representation it is shown that
the min–max regret version is NP-hard and approximable within 2.
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1 Introduction

We are given a family I = {I1, I2, . . . , In} of closed intervals of real line, where
Ii = [ai , bi ], i ∈ [n] (we use [n] to denote the set {1, . . . n}). The intervals in I are
not necessarily distinct. An undirected graph G = (V, E) with |V | = n vertices and
|E | = m edges is called an interval graph for I if vi ∈ V corresponds to Ii and
there is an edge (vi , v j ) ∈ E if and only if the intervals Ii and I j have nonempty
intersection. An independent set X in G is a subset of the vertices of G such for any
vi , v j ∈ X it holds (vi , v j ) /∈ E . We will use � to denote the set of all independent sets
in G. For each vertex vi ∈ V a nonnegative weight wi is specified. In the maximum
weighted independent set problem (IS for short), we seek an independent set X in G
of the maximum total weight F(X) = ∑

vi ∈X wi . Contrary to the problem in general
graphs, IS for interval graphs is polynomially solvable [8]. It has some important
practical applications and we refer the reader to [9,10] for a description of them.

In [10] the following robust versions of the IS problem have been recently investi-
gated. Suppose that the vertex weights are uncertain and they are specified as a scenario
set �. Namely, each scenario S ∈ � is a vector (wS

1 , . . . , wS
n ) of nonnegative integral

vertex weights which may occur. Now the weight of a solution X depends on a sce-
nario and we will denote it by F(X, S) = ∑

vi ∈X wS
i . Let F∗(S) = maxX∈� F(X, S)

be the weight of a maximum weighted independent set in G under scenario S. In this
paper, we wish to investigate the following two robust problems:

Max-Min IS : opt1 = max
X∈�

min
S∈�

F(X, S),

Min-Max Regret IS : opt2 = min
X∈�

Z(X) = min
X∈�

max
S∈�

(F∗(S) − F(X, S)).

The quantity Z(X) is called the maximum regret of solution X . There are two popu-
lar methods of defining scenario set � (see, e.g., [4,6]). For the discrete uncertainty
representation set � = {S1, . . . , SK } contains K explicitly given scenarios. For the
interval uncertainty representation, for each vertex vi an interval [wi , wi ] of its pos-
sible weights is specified and � is the Cartesian product of all these intervals.

Both uncertainty representations have been studied in [10], where it has been shown
that for the discrete uncertainty representation the max–min and min–max regret ver-
sions of IS are NP-hard when K = 2 and strongly NP-hard when the number of
scenarios K is a part of input. Furthermore, some pseudopolynomial algorithms for
both problems, when K is constant, have been provided. For the interval uncertainty
representation, the Max–Min IS problem can be trivially reduced to a determinis-
tic polynomially solvable counterpart, but the complexity of Min–Max Regret IS
remained open.

Our results We extend the complexity results obtained in [10] and provide new approx-
imation ones for both discrete and interval uncertainty representations. Namely, for
the discrete scenario uncertainty representation, we establish that when the number
of scenarios K is a part of the input, the Max–Min IS problem is not at all approx-
imable, the Min–Max Regret IS problem is approximable within K and not approx-
imable within O(log1−ε K ) for any ε > 0 unless NP∈DTIME(npolylog n). We also
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Complexity of the robust weighted independent set problems 429

show that both Max–Min IS and Min–Max Regret IS have fully polynomial-time
approximation schemes (FPTAS’s), when K is constant. Furthermore, for the inter-
val uncertainty representation, we prove that Min–Max Regret IS is NP-hard and
approximable within 2.

2 Complexity and approximation results

In this section, we extend the complexity results for the Max–Min IS and Min–Max
Regret IS problems provided in the recent paper [10] and give new approximation
ones for both discrete and interval uncertainty representations. We start by considering
the discrete scenario uncertainty representation.

Theorem 1 If K is a part of the input, then Max–Min IS is strongly NP-hard and
not at all approximable unless P = N P.

Proof We provide a polynomial time reduction from the following Vertex Cover
problem, which is known to be strongly NP-complete [3]. We are given an undirected
graph G = (V, E), |V | = n, and an integer L . A subset of the vertices W ⊆ V is a
vertex cover of G if for each (v,w) ∈ E either v ∈ W or w ∈ W (or both). We ask if
there is a vertex cover W of G such that |W | ≤ L . We now construct an instance of
Max–Min IS as follows. We first create a family of intervals I = {Ii j : i ∈ [n], j ∈
[L]}, where Ii j = [2 j, 2 j + 1] for each i ∈ [n] and j ∈ [L]. It is easy to check that
the resulting interval graph G ′ corresponding to I is composed of L separate cliques
of size n and each maximal independent set in G ′ contains exactly L vertices, one
from every clique (see Fig. 1)—note that the intervals from I refer to the vertices
in G ′. We now form scenario set � as follows. For each edge (vk, vl) ∈ E , we create
scenario under which the weights of intervals (resp. vertices) Ik j and Il j are equal to 1
for each j ∈ [L] and the weights of the remaining intervals (resp. vertices) equal 0
(see Table 1).

We now show that there is a vertex cover of size at most L if and only if opt1 ≥ 1
in the constructed instance of Max–Min IS. Suppose that there is a vertex cover W
of G such that |W | ≤ L . We lose nothing by assuming that |W | = L . One can
easily meet this assumption by adding arbitrary additional vertices to W , if necessary.
Hence W = {vi1 , . . . , viL }. Let us choose an independent set X consisting of the
vertices in G ′ that correspond to the intervals Ii1,1, . . . , IiL ,L . From the construction

Fig. 1 An instance of Vertex Cover for L = 3 and the corresponding interval graph G′

123



430 A. Kasperski, P. Zieliński

Table 1 Scenario set � for the
instance from Fig. 1

The independent set
X = {I21, I32, I53} corresponds
to the vertex cover
W = {v2, v3, v5} of size 3

(1, 2) (1, 3) (2, 4) (3, 4) (3, 5) (4, 5)

I11 1 1 0 0 0 0

I21I21I21 1 0 1 0 0 0

I31 0 1 0 1 1 0

I41 0 0 1 1 0 1

I51 0 0 0 0 1 1

I12 1 1 0 0 0 0

I22 1 0 1 0 0 0

I32I32I32 0 1 0 1 1 0

I42 0 0 1 1 0 1

I52 0 0 0 0 1 1

I13 1 1 0 0 0 0

I23 1 0 1 0 0 0

I33 0 1 0 1 1 0

I43 0 0 1 1 0 1

I53I53I53 0 0 0 0 1 1

of the scenario set, it follows that F(X, S) ≥ 1 for all S ∈ � and, consequently,
opt1 ≥ 1. Assume now that opt1 ≥ 1. So, there is an independent set X in G ′ such
that F(X, S) ≥ 1 under each scenario S ∈ �. The independent set X consists of the
vertices corresponding to the intervals Ii1,1, . . . , IiL ,L . Consider the set of vertices
W = {vi1, . . . , viL }, |W | ≤ L . From the construction of � it follows that each edge
of G is covered by W . Therefore, W is a vertex cover of size at most L .

We are now ready to establish the inapproximability result. If the answer to Vertex
Cover is ‘yes’, then opt1 ≥ 1, and if the answer is ‘no’, then opt1 = 0 (since all the
vertex weights are nonnegative integers). Hence, any ρ(n)-approximation algorithm
for Max–Min IS, i.e. the algorithm which outputs a solution X̂ for Max–Min IS such
that opt1 ≤ ρ(n) minS∈� F(X̂ , S), where ρ(n) > 1, would solve the NP-complete
Vertex Cover problem in polynomial time. This negative result is still true when
all the vertex weights are positive, and thus F(X, S) > 0 for each S ∈ �. To see this it
is enough to replace each 0 with 1 and each 1 with (L + 1)ρ(n) in the construction of
scenario set �. Now, if the answer to Vertex Cover is ‘yes’ then opt1 ≥ (L +1)ρ(n)

and if the answer is ‘no’, then opt1 ≤ L . Applying the ρ(n)-approximation algorithm
to the constructed instance of Max–Min IS we could solve the NP-complete Vertex
Cover problem in polynomial time. �	

It has been shown in [10] that Min–Max Regret IS is strongly NP-hard when the
number of scenarios is a part of the input. In order to establish the inapproximability
result, we will use the following variant of the Label Cover problem (see e.g., [2,7]):

Label Cover: We are given a regular bipartite graph G = (V ∪ W, E), E ⊆
V × W ; a set of labels [N ] and for each edge (v,w) ∈ E a map (partial)
σv,w : [N ] → [N ]. A labeling of G is an assignment of a subset of labels
to each of the vertices of G, i.e. a function l : V ∪ W → 2[N ]. We say that
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Complexity of the robust weighted independent set problems 431

a labeling satisfies an edge (v,w) ∈ E if there exist a ∈ l(v) and b ∈ l(w)

such that σv,w(a) = b. A total labeling is a labeling that satisfies all edges. We
seek a total labeling whose value defined by maxx∈V ∪W |l(x)| is minimal. This
minimal value is denoted by val(L), where L is the input instance.

Theorem 2 ([7]) There exists a constant γ > 0 such that for any language L ∈ N P,
any input w and any N > 0, one can construct a Label Cover instance L with the
following properties in time polynomial in the instance’s size:

• The number of vertices in L is |w|O(log N ),
• If w ∈ L, then val(L) = 1,
• If w �∈ L, then val(L) > N γ .

The following theorem will be needed to prove a lower bound on the approximation
of Min–Max Regret IS.

Theorem 3 There exists a constant γ > 0 such that for any language L ∈ N P, any
input w, and any N > 0, one can construct an instance of Min–Max Regret IS
with the following properties:

• If w ∈ L, then opt2 ≤ 1,
• If w �∈ L, then opt2 ≥ N γ � := g,
• The number of intervals is at most |w|O(log N )N and the number of scenarios is at

most |w|O(g log N )N g.

Proof Let L ∈ N P and L = (G = (V ∪ W, E), N , σ ) be the instance of Label
Cover constructed for L (see Theorem 2). We now build the corresponding instance
of Min–Max Regret IS in the following way. We first number the edges of G
from 1 to |E | in arbitrary way. Then, for each edge (v,w) ∈ E , we create a family
of at most N intervals Iv,w = {I i, j

v,w : σv,w(i) = j, i ∈ [N ]}. If (v,w) has a
number r ∈ {1, . . . , |E |}, then all the intervals in Iv,w are equal to [2r, 2r + 1]. We
set I = ∪(v,w)∈EIv,w. It is easily seen that the corresponding interval graph G ′ for
I is composed of exactly |E | separate cliques and each maximal independent set in
this graph contains exactly |E | intervals, one from each clique. Note that the intervals
from I refer to the vertices in G ′. Fix vertex v ∈ V . For each g-tuple of pairwise
distinct edges (v,w1), . . . , (v,wg) incident to v and for each g-tuple of intervals

(I i1, j1
v,w1 , . . . , I

ig, jg
v,wg ) ∈ Iv,w1 × · · · × Iv,wg , where the labels i1, . . . , ig are pairwise

distinct, we form scenario under which all these intervals (resp. the vertices in G ′)
have the weight equal to 0 and all the remaining intervals (resp. the vertices in G ′) have
the weight equal to 1. We proceed in this way for each vertex v ∈ V . Choose vertex
w ∈ W . For each g-tuple of pairwise distinct edges (v1, w), . . . , (vg, w) incident to w

and for each g-tuple of intervals (I i1, j1
v1,w , . . . , I

ig, jg
vg,w ) ∈ Iv1,w × · · · × Ivg,w, where

the labels j1, . . . , jg are pairwise distinct, we form scenario under which all these
intervals (resp. the vertices) have the weight equal to 0 and all the remaining intervals
(resp. the vertices) have the weight equal to 1. We repeat this construction for each
vertex w ∈ W . Finally, we add one scenario under which each vertex in G ′ has the
weight equal to 1. We ensure in this way that the scenario set formed is not empty.
An easy computation shows that in the above instance of Min–Max Regret IS
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the cardinality of set I is at most |E |N and the cardinality of the scenario set � is
at most |V ||W |g N g + |W ||V |g N g + 1. Hence and from the fact that the number of
vertices (and also edges) in G is |w|O(log N ) (see Theorem 2), we have that |I| is at
most |w|O(log N )N and |�| is at most |w|O(g log N )N g .

Assume now that w ∈ L . Hence, there exists a total labeling l, which assigns
exactly one label l(v) to each v ∈ V and exactly one label l(w) to each w ∈ W . Let
us choose the interval I l(v),l(w)

v,w ∈ Iv,w for each (v,w) ∈ E . The vertices that refer to
these intervals form an independent set X in G ′. There is at most one interval (vertex)
with 0 weight under each scenario, and so F(X, S) ≥ |E | − 1 under each S ∈ �.
Since F∗(S) = |E | for each S ∈ �, opt2 ≤ 1. Suppose that w /∈ L , which gives
val(L) > N γ and, in consequence, val(L) > N γ � = g. Assume, on the contrary,
that opt2 < g. Thus, there is an independent set X in G ′ such that F(X, S) > |E | − g
under each scenario S ∈ �. Note that X corresponds to a total labeling l which
assigns labels i to v and j to w when the interval I i j

u,v is selected from I i, j
v,w. From

the construction of �, we conclude that l assigns less than g distinct labels to each
vertex x ∈ V ∪ W , since otherwise F(X, S) = |E | − g for some scenario S ∈ �.
Hence, we get val(L) < g, a contradiction. �	
Theorem 4 If K is a part of the input, then Min–Max Regret IS is not approximable
within O(log1−ε K ), for any ε > 0, unless NP∈DTIME(npolylog n)

Proof Let γ be a constant from Theorem 3. Consider a language L ∈ NP and an
input w. Fix any constant β > 0 and set N = �logβ/γ |w|�. Theorem 3 allows us
to construct an instance of Min–Max Regret IS with the number of scenarios K
asymptotically bounded by |w|αNγ log N N Nγ

for some constant α > 0, opt2 ≤ 1 if w ∈
L and opt2 ≥ logβ |w|� if w /∈ L . We get log K ≤ αN γ log N log |w|+ N γ log N ≤
α′ logβ+2 |w| for some constant α′ > 0 and sufficiently large |w|. Therefore, log |w| ≥
(1/α′) log1/(β+2) K and the gap is at least logβ |w|� ≥ 1/α′ logβ/(β+2) K �. The
constant β > 0 can be arbitrarily large, and so the gap is O(log1−ε K ) for any ε =
2/(β + 2) > 0. Note that, the instance of Min–Max Regret IS can be built in
O(|w|polylog|w|) time, which completes the proof. �	

We now show that Min–Max Regret IS admits an approximation algorithm
with some guaranteed worst case ratio, contrary to Max–Min IS, which is not at
all approximable, when K is a part of the input (see Theorem 1). Namely, there
exists a simple K -approximation algorithm, which outputs an optimal solution to
the deterministic IS problem with the vertex weights computed as follows: ŵi :=
1
K

∑
k∈[K ] w

Sk
i , i ∈ [n]. This can be done in O(K n + T (n)) time, where T (n) is the

time for solving the deterministic IS problem (e.g., T (n) = O(n log n), see [9]).

Theorem 5 Min–Max Regret IS is approximable within K .

Proof The proof is adapted from [1, the proof of Proposition 4] to Min–Max Regret
IS. Let ŵi = 1

K

∑
k∈[K ] w

Sk
i be the average weight of vertex vi ∈ V over all sce-

narios. Let X∗ be an optimal solution to Min–Max Regret IS and let X̂ be an
optimal solution for the deterministic weights ŵi , i ∈ [n]. Clearly, X̂ can be com-
puted in polynomial time. The following inequalities hold: opt2 = maxk∈[K ](F∗(Sk)−
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Fig. 2 A hard example for the K -approximation algorithm. The optimal independent set is marked in black

F(X∗, Sk)) ≥ 1
K

∑
k∈[K ](F∗(Sk)− F(X∗, Sk)) ≥ 1

K

∑
k∈[K ](F∗(Sk)− F(X̂ , Sk)) ≥

1
K maxk∈[K ](F∗(Sk)− F(X̂ , Sk)). Hence the maximum regret of X̂ is at most K ·opt2.

To see that the bound is tight consider a sample problem shown in Fig. 2,
where an interval graph composed of 2K vertices and the corresponding scenario
set with K scenarios are shown. The average weight of each vertex equals 1/K .
Hence the algorithm may return the independent set X̂ = {v12, v22, v32, . . . , vK 2}
whose maximal regret is equal to K . But the maximal regret of the independent set
X∗ = {v11, v21, v31, . . . , vK−1,1, vK 2} is equal to 1. �	

It turns out that Max–Min IS and Min–Max Regret IS have FPTAS’s, when K
is constant.

Theorem 6 If K is constant, then both Max–Min IS and Min–Max Regret IS
admit FPTAS’s.

Proof The fact that Max–Min IS admits an FPTAS follows from [1, Theorem 1]
and the existence of the pseudopolynomial algorithm for this problem, provided
in [10], whose running time can be expressed by a polynomial in wmax and n, where
wmax = maxi∈[n],k∈[K ] wSk

i . An FPTAS for Min–Max Regret IS is a consequence
of [1, Theorem 2] and the existence of the pseudopolynomial algorithm for Min–Max
Regret IS, built in [10], whose running time can be expressed by a polynomial in U
and n, where U is an upper bound on opt2 such that U ≤ K · L and L is a lower bound
on opt2. Of course, such lower and upper bounds can be provided by executing the
K -approximation algorithm (see Theorem 5). �	

We now turn to the interval uncertainty representation. For a given solution X ∈ �,
let SX be the scenario under which the weights of vi ∈ X are wi and the weights of
vi /∈ X are wi for i ∈ [n]. It has been shown in [10] that the maximal regret of X is
Z(X) = F∗(SX ) − F(X, SX ). This property will be useful in proving the next two
results. The first theorem gives an answer to a question about the complexity of Min–
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Fig. 3 The interval graph for the reduction

Max Regret IS under the interval uncertainty representation (only Max–Min IS
has been known to be polynomially solvable [10], so far).

Theorem 7 Min–Max Regret IS under interval uncertainty representation is NP-
hard.

Proof We show a polynomial time reduction from the following Partition problem
which is known to be NP-complete [3]. We are given a collection C = (a1, . . . , an) of
positive integers. We ask if there is a subset I ⊆ [n] such that

∑
i∈I ai = ∑

[n]\I ai .

Let us define b = 1
2

∑
i∈[n] ai . We now build the corresponding instance of Min–Max

Regret IS as follows. The family of intervals I contains two intervals Ii1 = Ii2 =
[2i, 2i + 1] for each i ∈ [n] and one interval J = [1, 2n + 1]. The corresponding
interval graph for I is shown in Fig. 3. The intervals from I and the interval J refer
to the vertices in G.

Observe that each maximal independent set in G contains either one vertex J or
exactly n vertices, one from each Ii1, Ii2, i ∈ [n]. The interval weight of Ii1 is equal
to [3b − 3

2 ai , 3b], the interval weight of Ii2 is equal to [3b − ai , 3b − ai ], and the
interval weight of vertex J is [0, 3nb−b]. We now show that the answer to Partition
is ‘yes’ if and only if there is an independent set X is G such that opt2 ≤ 3

2 b.
Suppose that the answer to Partition is ‘yes’. Let I ⊆ [n] be such that

∑
i∈I ai =∑

i /∈I ai = b. Let us form an independent set X in G by choosing the vertices Ii1 for
i ∈ I and Ii2 for i /∈ I . It holds F(X, SX ) = ∑

i∈I (3b − 3
2 ai ) + ∑

i /∈I (3b − ai ) =
3nb− 5

2 b and F∗(SX ) = max{3nb−b,
∑

i∈I 3b+∑
i /∈I (3b−ai )} = 3nb−b. Hence

Z(X) = 3nb − b − 3nb + 5
2 b = 3

2 b.
Assume now that opt2 ≤ 3

2 b, so there is an independent set X in G such that Z(X) ≤
3
2 b. It must be X �= {J } since Z({J }) ≥ 3nb. Hence X is formed by the vertices Ii1, Ii2
for i ∈ [n]. From the construction of graph G it follows that X contains either Ii1 or Ii2
for each i ∈ [n] (but not both). Let I be the subset of [n] such that Ii1 ∈ X for each i ∈ I .
It holds F(X, SX ) = ∑

i∈I (3b − 3
2 ai )+∑

i /∈I (3b − ai ) = 3nb − 2b − 1
2

∑
i∈I ai and

F∗(SX ) = max{3nb−b,
∑

i /∈I 3b+∑
i∈I (3b−ai )} = max{3nb−b, 3nb−∑

i∈I ai }.
In consequence

Z(X) = max

{

b + 1

2

∑

i∈I

ai , 2b − 1

2

∑

i∈I

ai

}
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and Z(X) ≤ 3
2 b implies that

∑
i∈I ai = b and, consequently, I forms a partition of

C. �	
We now provide a simple approximation algorithm with a performance ratio of 2.

It outputs an optimal solution to the IS problem with the deterministic vertex weights
being the midpoints of the corresponding weight intervals, i.e. ŵi := 1

2 (wi + wi ) for
all i ∈ [n]. Obviously, its running time is O(T (n)), where T (n) is time for solving
the IS problem.

Theorem 8 Min–Max Regret IS under interval uncertainty representation is
approximable within 2.

Proof The analysis will be similar to that in [5]. The difference is that the underlying
deterministic problems discussed in [5] are minimization ones, whereas the determin-
istic IS is a maximization problem. So, the result obtained in [5] cannot be directly
applied to Min–Max Regret IS. Let ŵi = 1

2 (wi + wi ) for all i ∈ [n] and let X̂
be an optimal solution for the deterministic weights ŵi , i ∈ [n]. Let us choose any
X ∈ �. It holds

∑
vi ∈X̂ (wi + wi ) ≥ ∑

vi ∈X (wi + wi ), which implies:

∑

vi ∈X̂\X

wi −
∑

vi ∈X\X̂

wi ≥
∑

vi ∈X\X̂

wi −
∑

vi ∈X̂\X

wi .

Therefore, Z(X) fulfills the following inequality:

Z(X) ≥ F(X̂ , SX ) − F(X, SX ) =
∑

vi ∈X̂\X

wi −
∑

vi ∈X\X̂

wi ≥
∑

vi ∈X\X̂

wi −
∑

vi ∈X̂\X

wi .

(1)
Clearly, F(X̂ , SX̂ ) = F(X, SX̂ ) + ∑

vi ∈X̂\X wi − ∑
vi ∈X\X̂ wi . Hence Z(X̂) =

F∗(SX̂ ) − F(X̂ , SX̂ ) = F∗(SX̂ ) − F(X, SX̂ ) + ∑
vi ∈X\X̂ wi − ∑

vi ∈X̂\X wi . Since

Z(X) ≥ F∗(SX̂ ) − F(X, SX̂ ), the maximal regret of X̂ can be bounded as follows:

Z(X̂) ≤ Z(X) +
∑

vi ∈X\X̂

wi −
∑

vi ∈X̂\X

wi . (2)

Inequalities (1) and (2) imply Z(X̂) ≤ 2Z(X) for any X ∈ �, and Z(X̂) ≤ 2 · opt2.
The bound of 2 is tight which is shown in Fig. 4. The interval graph is a clique

composed of 3 vertices. The corresponding interval weights are shown in Fig. 4. The
algorithm may return solution X = {v3}. But Z(X) = 2 while a trivial verification
shows that opt2 = 1. �	

Fig. 4 A hard example for the
2-approximation algorithm
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3 Conclusions

In this paper, we have studied the max–min and min–max regret versions of the
maximum weighted independent set problem on interval graphs with uncertain vertex
weights modeled by scenarios. We have provided new complexity and approximation
results on the problems, that complete the ones previously obtained in the literature.
For the discrete scenario uncertainty representation, we have shown that if the number
of scenarios K is a part of the input, then the max–min version of the problem is
not at all approximable, the min–max regret version is approximable within K and
not approximable within O(log1−ε K ) for any ε > 0 unless the problems in NP
have quasi polynomial algorithms. Furthermore, both problems admit FTPAS’s, when
K is constant. For the interval uncertainty representation, we have proved that the
min–max regret version is NP-hard, providing in this way an answer to a question
about the complexity of the problem. We have also shown that it is approximable
within 2. There are still some open questions regarding the min–max regret version
of the problem. It would be interesting to provide an approximation algorithm with
better than K approximation ratio for the discrete uncertainty representation (when
K is part of input) and better than 2 approximation ratio for the interval uncertainty
representation. We also do not know whether the latter problem is strongly NP-hard,
so it may be solved in pseudopolynomial time and even admits an FPTAS.
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