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Abstract We introduce a new class of mappings, called duplomonotone, which is
strictly broader than the class of monotone mappings. We study some of the main prop-
erties of duplomonotone functions and provide various examples, including nonlinear
duplomonotone functions arising from the study of systems of biochemical reactions.
Finally, we present three variations of a derivative-free line search algorithm for finding
zeros of systems of duplomonotone equations, and we prove their linear convergence
to a zero of the function.

Keywords Generalized monotonicity · Duplomonotone mapping · Monotone
mapping · Global convergence · Line search method · Derivative-free algorithm ·
Biochemical reactions

1 Introduction

Monotone mappings have been extensively studied in the literature, see for instance [6,
Chapter 12] or the recent monograph [1]. In many practical problems, though, the
monotonicity assumption turns out to be too strong. Consequently, several generalized
notions of monotonocity have been introduced and thoroughly studied by various
authors in order to relax it while keeping some of the useful properties of monotone
mappings, see [2,4] and the references therein.
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570 F. J. Aragón Artacho, R. M. T. Fleming

In mathematical models of biochemical reaction networks [3], a problem arises of
finding a zero of functions that are typically not monotone (see Example 5). These func-
tions seem to have a generalized monotonicity property that has not yet appeared in the
literature but can be exploited to find a zero of such functions. In this paper we intro-
duce this new class of generalized monotone mappings, which we call duplomonotone,
and present a rather simple derivative-free line search algorithm that can be used to
find a zero of a duplomonotone function.

The paper is organized as follows: in Sect. 2 we introduce duplomonotone map-
pings, analyze their basic properties and provide various illustrative examples; in
Sect. 3 we present three variations of a derivative-free line search algorithm for find-
ing a zero of a duplomonotone function, and we prove their linear convergence under
strong duplomonotonicity plus some Lipschitz-type assumption on the points of the
lower level set defined by the initial point.

Throughout, ‖ · ‖ denotes the Euclidean norm, while the usual inner product is
denoted by 〈·, ·〉. We say that F is a set-valued mapping from R

m to R
n , denoted

by F : R
m ⇒ R

n , if for every x ∈ R
m , F(x) is a subset of R

n . The gradient
of a differentiable function f : R

m → R
n at some point x ∈ R

m is denoted by
∇ f (x) ∈ R

m×n .

2 Duplomonotonicity

Recall that a function f : R
m → R

m is said to be monotone when

〈 f (x) − f (y), x − y〉 ≥ 0 for all x, y ∈ R
m,

and strictly monotone if this inequality is strict whenever x 	= y. Further, f is called
strongly monotone for some σ > 0 when

〈 f (x) − f (y), x − y〉 ≥ σ‖x − y‖2 for all x, y ∈ R
m .

We introduce next a new property that is implied by monotonicity.

Definition 1 A function f : R
m → R

m is called duplomonotone with constant τ̄ > 0
if

〈 f (x) − f (x − τ f (x)), f (x)〉 ≥ 0 whenever x ∈ R
m, 0 ≤ τ ≤ τ̄ , (1)

and strictly duplomonotone if this inequality is strict whenever f (x) 	= 0. The function
f is said to be strongly duplomonotone for some σ > 0 with constant τ̄ > 0 if

〈 f (x) − f (x − τ f (x)), f (x)〉 ≥ στ‖ f (x)‖2 whenever x ∈ R
m, 0 ≤ τ ≤ τ̄ . (2)

The modulus of strong duplomonotonicity is the supremum of the constants σ for
which (2) holds.
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Globally convergent algorithms for finding zeros 571

Remark 1 Letting σ be zero in (2) will allow us to handle both duplomonotonicity
and strong duplomonotonicity at the same time. Hence, we refer to this as f being
strongly duplomonotone with σ ≥ 0.

Obviously, every (strongly) monotone function is (strongly) duplomonotone. In
the next simple example we show that the converse is not true in general: the class
of duplomonotone functions is strictly broader than the class of monotone functions.
Thus, we have:

monotonicity
⇒
	⇐ duplomonotonicity

Example 1 Given a matrix A ∈ R
m×m , consider the linear function f (x) := Ax .

Recall that the symmetric part of A is the matrix As := 1
2 (A + AT ). The mapping f

is monotone if and only if As is positive semidefinite (see e.g. [6, Example 12.2]). On
the other hand, f is duplomonotone if and only if there is some τ̄ > 0 such that, for
any x ∈ R

m , one has

0 ≤ 〈 f (x) − f (x − τ f (x)), f (x)〉 = τ xT AT A2x, whenever 0 ≤ τ ≤ τ̄ ;

that is, f is duplomonotone if and only if
(

AT A2
)

s is positive semidefinite. Further-
more, f is strongly duplomonotone for σ > 0 if and only if for any x ∈ R

m and any
positive τ , one has

0 ≤ 〈 f (x) − f (x − τ f (x)), f (x)〉 − στ‖ f (x)‖2 = τ xT AT A2x − στ xT AT Ax

= τ xT AT (A − σ I )Ax,

where I denotes the identity mapping. Therefore, f is strongly duplomonotone for
σ > 0 if and only if

(
AT (A − σ I )A

)
s = AT (As − σ I )A is positive semidefinite.

If A is symmetric, then
(

AT A2
)

s = A3, whose eigenvalues have the same sign as
those of A. Thus, for A symmetric, the function f is duplomonotone if and only if
f is monotone. However, this may not be the case if A is asymmetric. As a simple
example, if we take

A :=
[

2 0
2 0

]
, (3)

then,

As =
[

2 1
1 0

]
,

which is not positive semidefinite, while

(
AT A2

)

s
=

[
16 0
0 0

]
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572 F. J. Aragón Artacho, R. M. T. Fleming

is positive semidefinite. Thus, f ((x, y)T ) = (2x, 2x)T is duplomonotone but is not
monotone. Moreover, it is not difficult to check that f is not even quasimonotone.1 In
fact, f is strongly duplomonotone with modulus σ = 2. Indeed,

AT (A − σ I )A =
[

8(2 − σ) 0
0 0

]
,

which is positive semidefinite if and only if σ ≤ 2. ♦

A strictly monotone function has at most one zero. This is not the case for
duplomonotone functions: even under strong duplomonotonicity we can see that the
function f (x) = Ax with A given by (3) has a zero at (0, y)T for every y ∈ R. In
fact, the zero function is strongly duplomonotone for any σ > 0.

We have shown a function in Example 1 that is duplomonotone but not quasi-
monotone. It is interesting to note that there are also functions that are quasimonotone
but not duplomonotone, e.g. f (x) = −|x | for x ∈ R.

Example 2 Given a matrix A ∈ R
m×m and a vector b ∈ R

m , consider the affine
function f (x) := Ax + b. By [6, Example 12.2], f is monotone if and only if As is
positive semidefinite. On the other hand, f is duplomonotone if and only if

(Ax + b)T A(Ax + b) ≥ 0 for all x ∈ R
m;

that is, f is duplomonotone if and only if As is positive semidefinite on the range of
f . For example, one can check that for A given in (3) and any b = (b1, b2)

T ∈ R
2,

the function f is duplomonotone if and only if b1 = b2. ♦

Next we present a direct characterization of duplomonotonicity in terms of the
Euclidean norm.

Proposition 1 A function f : R
m → R

m is strongly duplomonotone for σ ≥ 0 if and
only if there is some constant τ̄ > 0 such that for all x ∈ R

m and all 0 ≤ τ ≤ τ̄ one
has

‖ f (x − τ f (x))‖2 ≤ (1 − 2στ)‖ f (x)‖2 + ‖ f (x − τ f (x)) − f (x)‖2. (4)

Proof For any x ∈ R
m and any τ > 0, we have.

‖ f (x − τ f (x))‖2 = ‖( f (x − τ f (x)) − f (x)) + f (x)‖2

= ‖ f (x − τ f (x)) − f (x)‖2 + ‖ f (x)‖2

+ 2〈 f (x − τ f (x)) − f (x), f (x)〉.

1 A function f : R
m → R

m is quasimonotone if the following implication holds:

〈 f (x), y − x〉 > 0 ⇒ 〈 f (y), y − x〉 ≥ 0,

for every x, y ∈ R
m . Monotonicity implies quasimonotonicity.
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Globally convergent algorithms for finding zeros 573

The stated equivalence follows then from the definition of strong duplomonotonicity
of f . 
�

The following example shows the importance of considering the constant τ̄ in the
definition of duplomonotonicity: there are functions for which (1) does not hold for
all τ > 0. One could also define a weaker notion of duplomonotonicity where the
constant τ̄ in (1) depends on each point x . Nevertheless, this property might be too
weak to guarantee the convergence of the line search algorithms in Sect. 3, as we need
to ensure that the step size is bounded away from zero.

Example 3 Let f : R
2 → R

2 be given by f (x) := (x1x2
2 , x2)

T for x := (x1, x2)
T ∈

R
2. It is easy to check that f is not monotone: if we take x := (−3, 0)T and y :=

(−1, 1)T , we have

〈 f (x) − f (y), x − y〉 = −1.

On the other hand, after some algebraic manipulation, one can show that for all x :=
(x1, x2)

T ∈ R
2, one has

〈 f (x) − f (x − τ f (x)), f (x)〉 =
(
(τ − 1)2x2

1 x4
2 + (2 − τ)x2

1 x2
2 + 1

)
τ x2

2 ,

which is nonnegative for all τ ∈ [0, 2]. Thus, f is duplomonotone with constant τ̄ = 2.
If τ > 2, the expression above can be negative for some x ∈ R

2. Indeed, choose any
ε > 0 and let z := (z1,

√
ε/2/(ε + 1)) for some z1 ∈ R. Then,

〈 f (z) − f (z − (2 + ε) f (z)), f (z)〉 = −(ε4 + 2ε3)z2
1 + 4ε4 + 16ε3 + 20ε2 + 8ε

8(ε + 1)4 ,

which is negative for z2
1 sufficiently big. ♦

The next result shows that if a function is both Lipschitz continuous and strongly
duplomonotone for σ > 0, then σ is bounded above by the Lipschitz constant.

Proposition 2 If a function f : R
m → R

m is Lipschitz continuous with constant
� > 0 and strongly duplomonotone for σ > 0, with f 	≡ 0, then σ ≤ �.

Proof Because of the Lipschitz continuity, we have

‖ f (x − τ f (x)) − f (x)‖ ≤ �τ‖ f (x)‖ for all x ∈ R
m, τ > 0.

Let τ̄ > 0 be the strong duplomonotonicity constant in (2), and pick any z ∈ R
m such

that f (z) 	= 0. Then

σ τ̄‖ f (z)‖2 ≤ 〈 f (z) − f (z − τ̄ f (z)), f (z)〉 ≤ ‖ f (z − τ̄ f (z)) − f (z)‖‖ f (z)‖
≤ �τ̄‖ f (z)‖2,

whence σ ≤ �. 
�
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574 F. J. Aragón Artacho, R. M. T. Fleming

In the following result we show a direct consequence of duplomonotonicity for
differentiable functions.

Proposition 3 Let f : R
m → R

m be differentiable. The following assertions hold.

(i) If f is duplomonotone, then

f (x)T ∇ f (x) f (x) ≥ 0 for all x ∈ R
m . (5)

(ii) If f is strongly duplomonotone for σ > 0, then

f (x)T ∇ f (x) f (x) ≥ σ‖ f (x)‖2 for all x ∈ R
m . (6)

Proof Assume that f satisfies (2) with σ ≥ 0 and τ̄ > 0. Fix x ∈ R
m and choose an

arbitrary τ ∈ (0, τ̄ ]. Dividing (2) by τ we get

−
〈

f (x − τ f (x)) − f (x)

τ
, f (x)

〉
≥ σ‖ f (x)‖2,

and taking the limit as τ ↘ 0, we obtain f (x)T ∇ f (x) f (x) ≥ σ‖ f (x)‖2. 
�
Remark 2 (i) In general, strict duplomonotonicity does not imply that equality in (5)

is only achieved when f (x) = 0, in the same way that strict monotonicity does
not imply positive definiteness of ∇ f (x).

(ii) Observe that both assertions also hold under the weaker notion of duplomonotonic-
ity where the constant τ̄ depends on each x ∈ R

m .

For differentiable functions in one dimension, the notions of (strong) duplomono-
tonicity and (strong) monotonicity agree. In fact, Proposition 4 establishes that the
concepts of monotonicity and duplomonotonicity coincide for continuous functions
in one dimension.2 This is not the case if the function is not continuous, as we show
in Example 4.

Corollary 1 Let f : R → R be differentiable. Then f is (strongly) monotone if and
only if f is (strongly) duplomonotone.

Proof This is just a consequence of Proposition 3 and the fact that f is (strongly)
monotone with constant σ ≥ 0 if and only if f ′(x) ≥ σ . 
�
Proposition 4 Let f : R → R be continuous. Then f is monotone if and only if f is
duplomonotone.

Proof Suppose that f is duplomonotone with constant τ̄ > 0. If there is some z ∈ R

such that f (z) > 0, then we claim that there is an open interval containing z such
that f (z) is both nondecreasing and positive on it. Indeed, by continuity of f , there
is some δ0 > 0 such that f (x) > f (z)/2 > 0 for all x ∈ (z − δ0, z + δ0). Set

2 This result and the proof included here is due to the referee of this paper, who noticed that the Dirichlet
function in Example 4 is not monotone because it is not continuous.
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Globally convergent algorithms for finding zeros 575

δ := min {δ0, τ̄ f (z)/4}. Choose any x, y ∈ (z − δ, z + δ) with x > y, and set
τ := x−y

f (x)
∈ (0, τ̄ ). Then, x − τ f (x) = y. From the duplomonotonicity of f , we

deduce

0 ≤ f (x) − f (x − τ f (x)) = f (x) − f (y).

Hence, f is nondecreasing and positive on (z − δ, z + δ), as claimed.
Observe now that f has to be positive and nondecreasing on (z − δ,+∞), again by

continuity of f . Therefore, if we set a := inf {x ∈ R | f (x) > 0} ∈ R ∪ {−∞,+∞},
it follows that {x ∈ R | f (x) > 0} = (a,+∞) and f is nondecreasing on (a,+∞).
Using the same argument, we deduce that {x ∈ R | f (x) < 0} = (−∞, b) with b ∈
R ∪ {−∞,+∞} and f is nondecreasing on (−∞, b). Thus, f is monotone. 
�
Example 4 Consider the function f : R → R defined for x ∈ R by

f (x) :=
{

0, if x ∈ Q;
1, if x 	∈ Q.

The function f is not monotone (not even locally):

( f (π) − f (4))(π − 4) = π − 4 < 0.

On the other hand, f is duplomonotone: for any x ∈ Q the duplomonotonicity
condition (1) trivially holds since f (x) = 0, while for any x 	∈ Q and any τ > 0 we
have

( f (x) − f (x − τ f (x))) f (x) = 1 − f (x − τ) ≥ 0.

Furthermore, one can easily check that this function is not strongly duplomonotone. A
slight modification of this example yields a function that is strongly duplomonotone,
but still not monotone: let g : R → R be defined for x ∈ R by

g(x) :=
{

0, if x ∈ Q;
x, if x 	∈ Q.

Again, the function g is not monotone (not even locally), since

(g(π) − g(4))(π − 4) = π(π − 4) < 0.

In this case, g is strongly duplomonotone for σ = 1 with constant τ̄ = 1: for any
x 	∈ Q and any τ ∈ [0, 1] we have

(g(x) − g(x − τg(x))) g(x) − τg(x)2 = (x − g((1 − τ)x))x − τ x2

=
{

(1 − τ)x2, if (1 − τ)x ∈ Q

0, if (1 − τ)x 	∈ Q

≥ 0.

123



576 F. J. Aragón Artacho, R. M. T. Fleming

Therefore, without differentiability, the concepts of monotonicity and duplomono-
tonicity may be quite different, even in one dimension. ♦

In the next proposition we introduce a property that implies duplomonotonicity, but
is still weaker than monotonicity (see Example 5). This property has a characterization
for differentiable functions analogous to the positive-semidefiniteness of the Jacobian
for monotone functions, see e.g. [6, Proposition 12.3].

Proposition 5 Let f : R
m → R

m be differentiable. Then, for any σ ≥ 0, the following
two properties are equivalent:

(i) 〈 f (x − τ1 f (x)) − f (x − τ2 f (x)), f (x)〉 ≥ σ(τ2 − τ1)‖ f (x)‖2 for all x ∈ R
m ,

0 ≤ τ1 ≤ τ2 ≤ τ̄ ;
(ii) f (x)T ∇ f (x − τ f (x)) f (x) ≥ σ‖ f (x)‖2 for all x ∈ R

m , τ ∈ [0, τ̄ ].
Proof Assume that (i) holds. Choose any x ∈ R

m and any τ ∈ [0, τ̄ ). For all t ∈
(0, τ̄ − τ ] one has

−〈 f (x − (t + τ) f (x)) − f (x − τ f (x)), f (x)〉 ≥ σ t‖ f (x)‖2.

Thus, dividing by t and taking the limit as t ↘ 0,

σ‖ f (x)‖2 ≤ −
〈
lim
t↘0

f (x − (t + τ) f (x)) − f (x − τ f (x))

t
, f (x)

〉

= 〈∇ f (x − τ f (x))T f (x), f (x)〉,

so (ii) follows.
Conversely, assume that (ii) holds. Pick any x ∈ R

m and any 0 ≤ τ1 ≤ τ2 ≤ τ̄ .
Consider the function

h(λ) := 〈 f (x−(λτ1+(1−λ)τ2) f (x))− f (x − τ2 f (x)) − σλ(τ2 − τ1) f (x), f (x)〉

for λ ∈ R. Then, by (ii),

h′(λ) = 〈∇ f (x − (λτ1 + (1 − λ)τ2) f (x))T (τ2 − τ1) f (x) − σ(τ2 − τ1) f (x), f (x)〉
≥ 0,

for all λ ∈ [0, 1], whence,

0 = h(0) ≤ h(1) = 〈 f (x − τ1 f (x)) − f (x − τ2 f (x)) − σ(τ2 − τ1) f (x), f (x)〉,

which implies (i). 
�
Our motivation to characterize duplomonotone mappings arose from mathematical

modeling of networks of (bio)chemical reactions, an increasingly prominent applica-
tion of mathematical and numerical optimization. The next example introduces a very
simple (bio)chemical reaction network, involving three molecules and three reactions,
where each row of x corresponds to the logarithmic abundance of some molecule and
each row of − f (x) corresponds to the rate of change of abundance per unit time.
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Globally convergent algorithms for finding zeros 577

Example 5 Consider the function f : R
3 → R

3 defined for x ∈ R
3 by f (x) :=

([F, R] − [R, F]) exp([F, R]T x), where exp(·) denotes the component-wise expo-
nential,

F :=
⎡

⎣
0 0 1
1 0 0
0 1 0

⎤

⎦ , R :=
⎡

⎣
1 0 0
0 1 0
0 0 1

⎤

⎦ ,

and [ · , · ] is the horizontal concatenation operator. That is, for any x := (x1, x2, x3)
T ∈

R
3 we have

f (x) =
⎡

⎣
2ex1 − ex2 − ex3

−ex1 + 2ex2 − ex3

−ex1 − ex2 + 2ex3

⎤

⎦ .

The function f is not monotone because ∇ f (x) is not positive semidefinite for all
x ∈ R

3. For instance, if z := (0, 0, log(2))T and w := (3, 3, 2)T , we have

wT ∇ f (z)w = −2.

Nevertheless, the function f is duplomonotone because, in fact, it satisfies Proposi-
tion 5(ii) with σ = 0. Indeed, if we define

ϕ(x, τ ) := 〈 f (x) − f (x − τ f (x)), f (x)〉,

we have

∂ϕ

∂τ
(x, τ ) = 〈∇ f (x − τ f (x))T f (x), f (x)〉. (7)

After some algebraic manipulation, we obtain

ϕ(x, τ ) = 3ex1+τ(−2ex1+ex2 +ex3 )(−2ex1 + ex2 + ex3)

+ 3ex2+τ(ex1−2ex2 +ex3 )(ex1 − 2ex2 + ex3)

+ 3ex3+τ(ex1+ex2 −2ex3 )(ex1 + ex2 − 2ex3)

+ (−2ex1 + ex2 + ex3)2 + (ex1 − 2ex2 + ex3)2

+ (ex1 + ex2 − 2ex3)2.

Thus,

∂ϕ

∂τ
(x, τ ) = 3ex1+τ(−2ex1+ex2 +ex3 )(−2ex1 + ex2 + ex3)2

+ 3ex2+τ(ex1−2ex2 +ex3 )(ex1 − 2ex2 + ex3)2

+ 3ex3+τ(ex1+ex2 −2ex3 )(ex1 + ex2 − 2ex3)2

≥ 0,

and because of (7), we have that Proposition 5(ii) holds for all τ > 0.
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578 F. J. Aragón Artacho, R. M. T. Fleming

Indeed, the function f is strictly duplomonotone because ∂ϕ
∂τ

(x, τ ) > 0 for all
x 	∈ Ω , where

Ω :=
{

x ∈ R
3 | f (x) = 0

}
=

{
(x1, x2, x3)

T ∈ R
3 | x1 = x2 = x3

}
.

Hence, ϕ(x, τ ) > ϕ(x, 0) = 0 for all x 	∈ Ω and all τ > 0; that is, f is strictly
duplomonotone. ♦

The sum of two monotone operators is clearly monotone. Further, if a mapping F
is monotone, one can easily show that for all α > 0 the mapping F + α I is strongly
monotone. Do these properties also hold for duplomonotone functions? The answer
is negative in general. As we show in the next example, duplomonotonicity can be
destroyed by the addition of a monotone linear function of arbitrarily small slope.

Example 6 Consider the matrix

A :=
[

0 1
0 0

]
.

By Example 1, the function f (x) := Ax is duplomonotone, since AT A2 = 02×2.
Choose any α > 0 and consider the function g(x) := Bx , with B := A + α I . Then,

(
BT B2

)

s
=

[
α3 3

2α2

3
2α2 α3 + 2α

]
.

The eigenvalues of
(
BT B2

)
s are α3 + α ± 1/2α

√
9α2 + 4. If α ∈ (0, 1/2), we have

that α3 + α − 1/2α
√

9α2 + 4 < 0. Therefore, the function g = f + α I is not
duplomonotone for any α ∈ (0, 1/2). ♦

A direct consequence of Proposition 3 is that − f (x) is a descent direction for
‖ f (·)‖2 at any point x ∈ R

m when f is duplomonotone. This property inspires the
derivative-free algorithms in Sect. 3 for finding zeros of the function f .

Corollary 2 Let f : R
m → R

m be differentiable and strongly duplomonotone for
σ > 0. Then, for all x ∈ R

m, either f (x) = 0 or the vector − f (x) provides a descent
direction for the merit function ‖ f (·)‖2 at the point x.

Proof Observe that, for any x ∈ R
m, we have ∇ (‖ f (·)‖2

)
(x) = 2∇ f (x) f (x). Thus,

inequality (6) implies that

〈∇
(
‖ f (·)‖2

)
(x),− f (x)〉 = −2〈∇ f (x) f (x), f (x)〉 ≤ −2σ‖ f (x)‖2. (8)

The assertion follows. 
�
It is straightforward to extend the definition of duplomonotonicity for set-valued

mappings.

Definition 2 A set-valued mapping F : R
m ⇒ R

m is called duplomonotone with
constant τ̄ > 0 if for all x ∈ R

m and all τ ∈ [0, τ̄ ] one has
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Globally convergent algorithms for finding zeros 579

〈y0 − y1, y0〉 ≥ 0 whenever y0 ∈ F(x), y1 ∈ F(x − τ y0).

The mapping F is said to be strongly duplomonotone for some σ > 0 with constant
τ̄ > 0 if for all x ∈ R

m and all τ ∈ [0, τ̄ ] one has

〈y0 − y1, y0〉 ≥ στ‖y0‖2 whenever y0 ∈ F(x), y1 ∈ F(x − τ y0).

One can easily extend the characterization of duplomonotonicity given in Proposi-
tion 1 to set-valued mappings.

Proposition 6 A set-valued mapping F : R
m ⇒ R

m is strongly duplomonotone for
σ ≥ 0 if and only if there is some τ̄ > 0 such that for all x ∈ R

m and all τ ∈ [0, τ̄ ]
one has

‖y1‖2 ≤ (1 − 2στ)‖y0‖2 + ‖y1 − y0‖2 whenever y0 ∈ F(x), y1 ∈ F(x − τ y0).

We will not explore duplomonotone set-valued mappings any further here, as it is
beyond the scope of the present paper.

3 Derivative-free algorithms for systems of duplomonotone equations

In this section we consider the problem of finding solutions of systems of nonlinear
equations

f (x) = 0, (9)

where f : R
m → R

m is strongly duplomonotone for σ > 0. Corollary 2 drives us
to consider the following derivative-free line search algorithm for finding zeros of
f .

Algorithm 1: Backtracking (with σ > 0 known)

Fix a precision ε > 0. Choose any x0 ∈ R
m , 0 < α < 2σ , 0 < β < 1, and set

k := 0.
while ‖ f (xk)‖ > ε do

Compute λk := 1
α
β pk , where pk is the smallest positive integer such that

‖ f (xk − λk f (xk))‖2 ≤ (1 − αλk)‖ f (xk)‖2. (10)

xk+1 := xk − λk f (xk);
k := k + 1;

end

Observe that, when f is differentiable, the step size acceptance criteria (10) is
implied by the usual Armijo rule for the function ‖ f (·)‖2 and the direction dk :=
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− f (xk). Indeed, given some constant c ∈ (0, 1), the Armijo rule for ‖ f (·)‖2 will
search for a step size λk satisfying

‖ f (xk + λkdk)‖2 ≤ ‖ f (xk)‖2 + 2cλkdT
k ∇ f (xk) f (xk)

= ‖ f (xk)‖2 − 2cλk f (xk)
T ∇ f (xk) f (xk).

Proposition 3(ii) gives us

‖ f (xk)‖2 − 2cλk f (xk)
T ∇ f (xk) f (xk) ≤ (1 − 2σcλk)‖ f (xk)‖2.

Taking α := 2σc, we get 0 < α < 2σ , and (10) follows.
The steepest descent algorithm could be applied to find solutions to nonlinear

equations of type (9) whenever the function f has a computable Jacobian. The main
advantage of Algorithm 1 relative to the steepest descent method is that no derivative
information is needed. On the other hand, note that one cannot assure in general that
the steepest descent method will converge to a zero of the function f , but to a critical
point of ‖ f (·)‖2 (for more details, see e.g. [5, Chapter 11]). This is not a concern under
strong duplomonotonicity for σ > 0: in this case, any critical point of ‖ f (·)‖2 will
be a zero of f . Indeed, otherwise one would have ∇ (‖ f (·)‖2

)
(x̃) = 0 and f (x̃) 	= 0

for some x̃ ∈ R
m . Then

0 = ∇
(
‖ f (·)‖2

)
(x̃) = 2∇ f (x̃) f (x̃),

whence, by Proposition 3(ii),

0 = f (x̃)T ∇ f (x̃) f (x̃) ≥ σ‖ f (x̃)‖2 > 0,

which is a contradiction.
If f is Lipschitz continuous with a known constant � > 0 and is also strongly

duplomonotone for σ > 0 with constant τ̄ > 0, then, as a direct consequence of the
characterization in Proposition 1, we get

‖ f (x − τ f (x))‖2 ≤ (1 − 2στ + �2τ 2)‖ f (x)‖2, (11)

for all x ∈ R
m and all 0 ≤ τ ≤ τ̄ . The right-hand side of (11) attains its mini-

mum (with respect to τ ∈ [0, τ̄ ]) at τ � := min
{
σ/�2, τ̄

}
. Thus, if σ/�2 ≤ τ̄ , we

have

‖ f (x − τ � f (x))‖2 ≤
(

1 − σ 2

�2

)
‖ f (x)‖2. (12)

This makes us consider the following variation of Algorithm 1, where the step size is
chosen constant.
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Algorithm 2: Constant step length min
{
σ/�2, τ̄

}

Fix a precision ε > 0. Choose any x0 ∈ R
m , and set k := 0 and

λ := min
{
σ/�2, τ̄

}
.

while ‖ f (xk)‖ > ε do
xk+1 := xk − λ f (xk);
k := k + 1;

end

As a direct consequence of (12) we have that Algorithm 2 is (globally) linearly
convergent to a zero of f , and moreover, the Lipschitz assumption can be relaxed as
follows.

Theorem 1 Let f : R
m → R

m be strongly duplomonotone for σ > 0 with constant
τ̄ > 0. Let x0 ∈ R

m be an initial point, and assume there exists some constant � > 0
such that

‖ f (x − τ f (x)) − f (x)‖ ≤ �τ‖ f (x)‖ for all x ∈ L(x0) and all 0 ≤ τ ≤ τ̄ , (13)

where L(x0) is the lower level set defined by

L(x0) := {
x ∈ R

m : ‖ f (x)‖ ≤ ‖ f (x0) |} . (14)

Set λ := min
{
σ/�2, τ̄

}
. Then the iteration xk+1 := xk − λ f (xk) satisfies

‖ f (xk+1)‖ ≤
√

1 − 2σλ + �2λ2 ‖ f (xk)‖;

whence, f (xk) is linearly convergent to zero. Thus, if f is continuous, any accumula-
tion point of the sequence xk is a zero of f .

Proof It follows from the argumentation above. 
�
Even when f is known to be Lipschitz continuous, its Lipschitz constant might not

be easy to compute. The next result shows that in this case Algorithm 1 can be used,
and the step size λk can always be found by a backtracking technique where λk is
bounded away from zero and the algorithm is linearly convergent. We denote by �·�
the ceiling function, i.e., the smallest following integer to a given number.

Theorem 2 Let f : R
m → R

m be strongly duplomonotone for σ > 0 with con-
stant τ̄ > 0. Let x0 ∈ R

m be an initial point, and assume that there is a positive
constant � such that (13) holds. Then, for all 0 < α < 2σ and all 0 < β < 1,
Algorithm 1 generates a sequence xk such that f (xk) is linearly convergent to zero
with rate

√
1 − β p, where

p :=
⌈

1

log β
(log α + min {log(τ̄ ), log (2σ − α) − 2 log �})

⌉
. (15)

Thus, if f is continuous, any accumulation point of the sequence xk is a zero of f .
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Proof Let x ∈ L(x0). We will prove that the step size (1/α)β p with p as in (15)
always satisfies (10), i.e., that we have

‖ f (x − (1/α)β p f (x))‖2 ≤ (1 − β p)‖ f (x)‖2. (16)

Proposition 1 gives us

‖ f (x − τ f (x))‖2 ≤ (1 − 2στ)‖ f (x)‖2 + ‖ f (x − τ f (x)) − f (x)‖2, (17)

for all τ ∈ [0, τ̄ ]. Take p as in (15), that is,

p :=
⌈

max

{
log(ατ̄ )

log β
,

log α + log (2σ − α) − 2 log �

log β

}⌉
.

Then (13) holds for all 0 < τ ≤ (1/α)β p . This, together with (17), implies that

‖ f (x − τ f (x))‖2 ≤ (1 − 2στ + �2τ 2) | f (x)‖2 whenever 0 < τ ≤ 1

α
β p.

Moreover, we have that 1 − 2στ + �2τ 2 ≤ 1 − ατ if and only if τ ≤ (2σ − α)/�2.
The definition of p implies that (1/α)β p ≤ (2σ − α)/�2; hence,

‖ f (x − τ f (x))‖2 ≤ (1 − ατ)‖ f (x)‖2 whenever 0 < τ ≤ 1

α
β p,

which implies (16). Therefore, given a point xk generated by Algorithm 1, the integer
pk can always be found and it satisfies pk ≤ p. Thus, λk = (1/α)β pk ≥ (1/α)β p,
and we have

‖ f (xk+1)‖2 = ‖ f (xk − λk f (xk)‖2 ≤ (1 − αλk)‖ f (xk)‖2 ≤ (1 − β p)‖ f (xk)‖2,

which in particular yields xk+1 ∈ L(x0), and the claims in the statement follow. 
�
Remark 3 Notice that: (i) the constant � in (13) does not need to be known in order to
use Algorithm 1, but is involved in the rate of convergence, and (ii) Lipschitz continuity
of the function f on L(x0) implies (13).

Even if f is known (or conjectured) to be both Lipschitz continuous and strongly
duplomonotone for σ > 0, in practical situations the values of both the Lipschitz con-
stant and σ might be unknown or difficult to compute. The following modification of
Algorithm 1 permits finding an adequate step size by a double backtracking technique,
where an additional backtracking is performed in order to find an appropriate value of
the parameter α in (10) such that α < 2σ .
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Algorithm 3: Double backtracking (with σ > 0 unknown)

Fix a precision ε > 0, and a minimum and a maximum step size
0 < λmin < λmax.
Choose any x0 ∈ R

m , 0 < α < λ−1
max, 0 < β < 1, and set k := 0.

while ‖ f (xk)‖ > ε do
λk := λmax;
while ‖ f (xk − λk f (xk))‖2 > (1 − αλk)‖ f (xk)‖2 do

λk := βλk ;
if λk < λmin then

α := αβ;
λk := λmax;

end
end
xk+1 := xk − λk f (xk);
k := k + 1;

end

Theorem 3 Let f : R
m → R

m be strongly duplomonotone for σ > 0 with constant
τ̄ > 0. Let x0 ∈ R

m be an initial point, and assume that there exists some positive
constants � such that (13) holds. Then, for all positive constants λmin and λmax such
that there exists some integer q with λmin ≤ βqλmax < min

{
2σ/�2, τ̄

}
, Algorithm

3 generates a sequence xk such that f (xk) is linearly convergent to zero with rate√
1 − αβ p+qλmax, where

p :=
⌈

log(2σ − �2βqλmax) − log(α)

log(β)

⌉
. (18)

Thus, if f is continuous, any accumulation point of the sequence xk is a zero of f .

Proof Denote by α0 the initial value of α in Algorithm 3. Proposition 1 together
with (13) gives us

‖ f (x − τ f (x))‖2 ≤ (1 − 2στ + �2τ 2)‖ f (x)‖2 whenever x ∈ L(x0), 0 < τ ≤ τ̄ .

Further, we have that 1 − 2στ + �2τ 2 ≤ 1 − α0β
pτ with 0 < τ ≤ τ̄ if and only if

0 < τ ≤ min
{
(2σ − α0β

p)/�2, τ̄
}
. By assumption, there exists some positive integer

q such that λmin ≤ βqλmax < min
{
2σ/�2, τ̄

}
. By the definition of p in (18), we have

βqλmax ≤ (2σ − α0β
p)/�2. Hence,

λmin ≤ βqλmax ≤ min

{
2σ − α0β

p

�2 , τ̄

}
.

Thus, for all x ∈ L(x0), we have

‖ f (x − (βqλmax) f (x))‖2 ≤ (1 − α0β
p+qλmax)‖ f (x)‖2. (19)
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Finally, observe that there is some positive integer s such that βsλmax < λmin.
Therefore, given xk , a new point xk+1 is guaranteed to be found in a finite number
of steps of Algorithm 3, because the double backtracking loop can only be executed
a maximum of sp + q times (after a maximum of sp iterations the value of α will
be equal to αβ p, after which, a maximum of q iterations will be enough to find an
appropriate step size λk). Thus, we have αλk ≥ α0β

p+qλmax. Consequently, by the
acceptance criteria of the step size in Algorithm 3, we have

‖ f (xk+1)‖2 ≤ (1 − αλk)‖ f (xk) |2 ≤ (1 − α0β
p+qλmax)‖ f (x)‖2,

and the claims follow. 
�
Remark 4 (i) The condition λmin ≤ βqλmax < min

{
2σ/�2, τ̄

}
in Theorem 3 is

needed to avoid the possibility of an infinite loop in an iteration of the algorithm.
Nevertheless, we believe this condition should not be too difficult to guarantee
in practice, as it basically requires that λmin is not “too big” and β is not “too
small”.

(ii) Certainly, the constant β used for updating α can be chosen different from the
constant β used for updating λk , and Theorem 3 would remain valid with slight
changes. Nonetheless, we have decided to use the same constant to ease the
notation and the analysis.

(iii) In Algorithm 3,the constant α is required to be smaller than λ−1
max to avoid unnec-

essary iterations (otherwise, the initial step λk = λmax would always be too big,
since 1 − αλk would be negative).
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