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We have observed that an assumption was overlooked by us in the statements of
Theorems 3.1, 3.3, and 4.3 of the above mentioned paper. We give below the complete
formulations of these results. The proofs given in the initial article are now valid.

Theorem 3.1 Suppose that g : X → Z is continuous, Q is a closed convex proper and
pointed cone, x ∈ M ∩ dom s is a local solution of (Ps), where s : X → R ∪ {+∞}
is locally Lipschitz around x relative to its domain with constant L > 0. If there
exists a neighborhood U of x such that U ∩ M ⊂ dom s and g is metrically regular
at x ∈ M = g−1(−Q) relative to −Q (with regularity modulus m > 0), then
for every q ∈ Q\{0}, x is a local minimum (without constraints) of the function
s + Lm‖q‖ · (μQ,q ◦ g).

Theorem 3.3 Suppose that x ∈ M is a local solution of (Pv), g : X → Z is
continuous, v is locally Lipschitz around x and ϕK ,k is Lipschitz relative to its domain.

If there exists a neighborhood U of x such that U ∩ M ⊂ v−1(v(x) + Rk − K )
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and g is metrically regular at x relative to −Q, then for every q ∈ Q\{0},
there exists η > 0 s.t. x is a local minimum (without constraints) of the function
ϕK ,k ◦ (v(·) − v(x)) + η(μQ,q ◦ g).

Theorem 4.3 Take x ∈ M as a local solution of (Pv) and take k ∈ K \{0}, q ∈ Q\{0}.
Suppose that there exists a neighborhood U of x such that U ∩ M ⊂ v−1(v(x)+ Rk −
K ) and

(i) g is continuous and metrically regular at x relative to −Q.
(ii) v is locally Lipschitz around x and ϕK ,k is Lipschitz relative to its domain.

(iii) the function h : (X × R)2 → X, h(α, β, γ, δ) := α −γ is metrically subregular
at the point (x, 0, x, μQ,q(g(x))) with respect to Gr(ϕK ,k ◦ (v(·) − v(x)))↑ ×
Gr(μQ,q ◦ g)↑.

(iv) (ϕK ,k ◦ (v(·) − v(x)))↑ is proto-differentiable at x relative to 0 or (μQ,q ◦ g)↑
is proto-differentiable at x relative to μQ,q(g(x)).

Then there exists η > 0 s.t., for any u ∈ X,

D↑(ϕK ,k ◦ (v(·) − v(x)))(x)(u) + ηD↑(μQ,q ◦ g)(x)(u) ≥ 0.
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