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1388 P. J. C. Dickinson et al.

1 The error

The second and the third author of this paper considered, in [4], the following quadratic
optimization problem as an extension of that considered in [3], where K ⊆ R

n is a
nonempty set, B ⊆ {1, . . . , n} is an index set, Q ∈ Sn is a symmetric matrix, b ∈ R

m

and c ∈ R
n are vectors, and A ∈ R

m×n is a matrix, with a�
1 , . . . , a�

m ∈ R
n denoting

its rows:

inf
x∈R

n
xT Qx + 2cTx

s.t. Ax = b

x j ∈ {0, 1} for all j ∈ B
x ∈ K.

(QP)

An assumption connected with this problem is as follows:

Assumption 1 If we have x ∈ K such that Ax = b then x j ∈ [0, 1] for all j ∈ B.

This assumption can be made to hold by either adding the constraints directly to K or
by adding slack variables with nonnegative constraints.

It was claimed that if Assumption 1 holds then (QPC), as given below, is a refor-
mulation of (QP), by which we mean that the optimal values of both problems are
equal.

inf
(x,X)∈R

n×Sn
〈Q, X〉 + 2cTx

s.t. Ax = b

Diag(AX AT) = b ◦ b

x j = X j j for all j ∈ B(
1 xT

x X

)
∈ C∗

{1}×K,

(QPC)

where (b ◦ b)T: = (b2
1, b2

2, . . . , b2
m)T, i.e. the Hadamard product. Also recall from [4,

Lemma 4] that for a set L ⊆ R
n+1 we have

C∗
L = cl conv cone{xxT | x ∈ L}

= conv{xxT | x ∈ cl coneL}.

The first author has constructed the following two counter examples showing that
Assumption 1 holding is not a sufficient condition for (QPC) being a reformulation
of (QP):

Example 1 Let us consider the following example for (QP) with n = 1, m = 0,
B = {1} and K = (0, 1]:

inf{x ∈ R | x ∈ {0, 1}, x ∈ K} = 1.
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Erratum to: On the set-semidefinite representation of nonconvex quadratic programs 1389

Assumption 1 holds for the problem, and the corresponding version of (QPC) is

inf

{
x ∈ R

∣∣∣∣
(

1 x
x x

)
∈ C∗

{1}×K
}

.

We have that

(
1
x

)(
1
x

)T

∈ C∗
{1}×K for all x ∈ (0, 1], therefore, as C∗

{1}×K is closed,

we have that

(
1 0
0 0

)
∈ C∗

{1}×K. From this it can be seen that the optimal value of the

corresponding version of (QPC) equals zero, and thus the optimal values of these two
problems are not equal.

Example 2 We let

K1 = conv cone

⎧⎨
⎩
⎛
⎝1

0
1

⎞
⎠ ,

⎛
⎝1

1
1

⎞
⎠ ,

⎛
⎝1

0
0

⎞
⎠
⎫⎬
⎭

= {x ∈ R
3 | x1 − x3 ≥ 0, x3 − x2 ≥ 0, x2 ≥ 0},

K2 = conv cone

⎧⎨
⎩
⎛
⎝1

0
1

⎞
⎠ ,

⎛
⎝1

1
1

⎞
⎠ ,

⎛
⎝1

1
0

⎞
⎠
⎫⎬
⎭

= {x ∈ R
3 | x1 − x3 ≥ 0, x1 − x2 ≥ 0, −x1 + x2 + x3 ≥ 0}.

We now consider the following example for (QP) with n = 3, m = 2, B = ∅ and
K = K1 ∪ K2:

inf{−x2
1 | x2 = 3, x3 = 2, x ∈ K}.

It can be seen that

{x ∈ K1 | x2 = 3, x3 = 2} = ∅,

{x ∈ K2 | x2 = 3, x3 = 2} = conv

⎧⎨
⎩
⎛
⎝3

3
2

⎞
⎠ ,

⎛
⎝5

3
2

⎞
⎠
⎫⎬
⎭ .

Therefore the optimal value for the problem (QP) is equal to −25. One can however
verify that the corresponding version of (QPC) has the optimal value −∞ and thus the
optimal values of these two problems are not equal.

The error in the paper in fact comes from [4, Lemma 9], in the last paragraph of the
proof. In this, the mistake was effectively in assuming that for a set Y1 defined by linear
equality constraints and a convex set Y2, we have that Y1 ∩ (cl Y2) ⊆ cl (Y1 ∩ Y2),
which is not true in general.
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1390 P. J. C. Dickinson et al.

2 Repairing the error

In this section we essentially provide two new versions of Theorem 10 from [4], where
we decided to provide a detailed study of two different situations where Theorem 10
still holds. We do this using the asymptotic cone, where we recall that for a nonempty
set K ⊆ R

n , the asymptotic cone is defined as follows and we note that this is always
a closed cone:

K∞: = {x ∈ R
n | ∃{(λi , xi ) | i ∈ N} ⊆ R+ × K such that lim

i→∞ λi =0, lim
i→∞ λi xi =x}.

We begin by presenting the following lemma from [1], where they used an equivalent
definition of the asymptotic cone.

Lemma 3 [1, Lemma 2.1.1] Let K ⊆ R
n be a nonempty closed set. Then

cl cone({1} × K) = cone({1} × K) ∪ ({0} × K∞).

Together with Lemma 4 in [4] we obtain the following.

Corollary 4 Let K ⊆ R
n be a nonempty closed set. Then

C∗
{1}×K = conv{zzT | z ∈ cone({1} × K) ∪ ({0} × K∞)}.

By applying Carathéodory’s Theorem we get the following corollary.

Corollary 5 Let K ⊆ R
n be a nonempty closed set, let Y ∈ C∗

{1}×K and let M equal
the dimension of the space containing C∗

{1}×K. Then there exists λ1, . . . , λp > 0 and
x1, . . . , xp ∈ K and d1, . . . , dq ∈ K∞ such that p + q = M and

Y =
p∑

i=1

λi

(
1
xi

)(
1
xi

)T

+
q∑

i=1

(
0
di

)(
0
di

)T

.

We define the following sets related to the problems (QP) and (QPC)

Feas+(QP): = conv

{(
1
x

)(
1
x

)T
∣∣∣∣∣ x ∈ Feas(QP)

}
,

Feas+ (QPC): =
{(

1 xT

x X

) ∣∣∣∣ (x, X) ∈ Feas (QPC)

}
,

L∞: = {d ∈ K∞ | aT
j d = 0 for all j = 1, . . . , m},

L+∞: = conv

{(
0
d

)(
0
d

)T
∣∣∣∣∣ d ∈ L∞

}
.

Note that this notation is the same as that used in [2–4] with one difference that the
definition of L∞ uses the asymptotic cone.
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Erratum to: On the set-semidefinite representation of nonconvex quadratic programs 1391

We now define the following assumptions. Although these assumptions are cur-
rently quite technical, later we shall show that some combinations of them can be
implied by simpler assumptions.

Assumption 2 K ⊆ R
n is closed, and, if there exists an x ∈ K such that Ax = b,

then (d) j = 0 for all d ∈ L∞, j ∈ B.

Assumption 3 The optimal value of (QPC), denoted Val (QPC), is not equal to −∞.

Assumption 4 For all d ∈ L∞, y ∈ Feas(QP), λ̃ ∈ R+, there exists a λ ∈ R\(−̃λ, λ̃),
such that y + λd ∈ Feas(QP), where R \ (−̃λ, λ̃) = (−∞, −̃λ] ∪ [̃λ,∞).

We now present the following results connected to these assumptions.
In these, we consider the Minkowski sum, i.e. for two sets X ,Y , we define
X + Y : = {x + y | x ∈ X , y ∈ Y}, and we note that ∅ + X = ∅.

Lemma 6 If Assumption 2 holds then Feas+(QP) + L+∞ ⊆ Feas+ (QPC).

Proof This follows immediately from Corollary 4. ��
Lemma 7 Consider problems (QP) and (QPC) such that Assumptions 1 and 2 hold.
Then Feas+ (QPC) = Feas+(QP) + L+∞.

Proof From Lemma 6 we have Feas+(QP) + L+∞ ⊆ Feas+ (QPC).
We shall now show that Feas+(QP) + L+∞ ⊇ Feas+ (QPC). If Feas+(QPC) = ∅

then ∅ = Feas+(QP) + L+∞ and we are done. From now on we assume that

Feas+ (QPC) �= ∅ and consider an arbitrary

(
1 xT

x X

)
∈ Feas+ (QPC), which we

will show to be in Feas+(QP) + L+∞.
From Corollary 5, there exists λ1, . . . , λp > 0 and x1, . . . , xp ∈ K and

d1, . . . , dq ∈ K∞ with p + q = M , where M equals the dimension of the space
containing C∗

{1}×K, such that

(
1 xT

x X

)
=

p∑
i=1

λi

(
1
xi

)(
1
xi

)T

+
q∑

i=1

(
0
di

)(
0
di

)T

.

We have 1 = ∑p
i=1 λi and thus p > 0. For all j = 1, . . . , m we have

0 = b2
j − 2b2

j + b2
j

= aT
j Xa j − 2b j (aT

j x) + b2
j

=
p∑

i=1

λi (aT
j xi )

2 +
q∑

i=1

(aT
j di )

2 − 2b j

p∑
i=1

λi (aT
j xi ) + b2

j

p∑
i=1

λi

=
q∑

i=1

(aT
j di )

2

︸ ︷︷ ︸
≥0

+
p∑

i=1

λi︸︷︷︸
>0

(aT
j xi − b j )

2

︸ ︷︷ ︸
≥0

≥ 0.
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1392 P. J. C. Dickinson et al.

Therefore di ∈ L∞ for all i = 1, . . . , q, and aT
j xi = b j for all i = 1, . . . , p,

j = 1, . . . , m. From Assumption 1, we have that (xi ) j ∈ [0, 1] for all i = 1, . . . , p,
j ∈ B, and from Assumption 2, we have that (di ) j = 0 for all i = 1, . . . , q, j ∈ B.
Using this, for all j ∈ B we have

0 = (x) j − (X) j j

=
p∑

i=1

λi (xi ) j −
p∑

i=1

λi (xi )
2
j −

q∑
i=1

(di )
2
j

=
p∑

i=1

λi︸︷︷︸
>0

(xi ) j (1 − (xi ) j )︸ ︷︷ ︸
≥0

≥ 0.

Therefore (xi ) j ∈ {0, 1} for all i = 1, . . . , p, j ∈ B, which implies that xi ∈ Feas(QP)

for all i = 1, . . . , p. This along with our earlier observation that di ∈ L∞ for all
i = 1, . . . , q completes the proof. ��

We now consider Assumption 3 in addition to Assumptions 1 and 2.

Theorem 8 Consider problems (QP) and (QPC) such that Assumptions 1, 2 and 3
hold. Then Val(QP) = Val (QPC). Furthermore, if we let Opt(QP) and Opt (QPC) be
the set of optimal solutions of (QP) and (QPC) respectively, then

Opt+ (QPC): =
{(

1 xT

x X

) ∣∣∣∣ (x, X) ∈ Opt (QPC)

}

= conv

{(
1
x

)(
1
x

)T
∣∣∣∣∣ x ∈ Opt(QP)

}
+ conv

{(
0
d

)(
0
d

)T
∣∣∣∣∣

d ∈ L∞,

dT Qd = 0

}
.

Proof From the previous lemma we have that Feas+ (QPC) = Feas+(QP) + L+∞. We
now split this proof into two cases:
Case 1 Feas+(QP) = ∅: Then Feas+ (QPC) = ∅ and the results immediately follow.

Case 2 Feas+(QP) �= ∅: We shall show that 〈Q, D〉 ≥ 0 for all

(
0 0T

0 D

)
∈ L+∞,

from which the required results immediately follow.

We consider an arbitrary Z ∈ Feas+(QP) and

(
0 0T

0 D

)
∈ L+∞. As L+∞ is a cone,

for all λ ≥ 0 we have that Z + λ

(
0 0T

0 D

)
∈ Feas+(QP) + L+∞ = Feas+ (QPC).

Therefore we must have that 〈Q, D〉 ≥ 0, otherwise Val (QPC) = −∞. ��
We next consider Assumption 4 in addition to Assumptions 1 and 2.

Lemma 9 Consider problems (QP) and (QPC) such that Assumptions 1, 2 and 4 hold.
Then Feas+(QP) + L+∞ = Feas+ (QPC) = cl (Feas+(QP)).

Proof If Feas(QP) = ∅ then both Feas+(QP) and Feas+ (QPC) are empty. Therefore,
in this case, ∅ = Feas+(QP) + L+∞ = Feas+ (QPC) = cl (Feas+(QP)), and we are
done. From now on we shall assume that Feas(QP) �= ∅.

123



Erratum to: On the set-semidefinite representation of nonconvex quadratic programs 1393

From Lemma 7 we have Feas+(QP) + L+∞ = Feas+ (QPC), and in
the remainder of this proof we shall show that we also have
Feas+(QP) + L+∞ ⊆ cl (Feas+(QP)) ⊆ Feas+ (QPC).

Feas+(QPC) is the intersection of closed sets, and so is itself closed. Therefore, we
have Feas+ (QPC) = cl (Feas+(QP) + L+∞) ⊇ cl (Feas+(QP)).

We now consider an arbitrary Y ∈ Feas+(QP) and

(
0 0T

0 D

)
∈ L+∞. By

Carathéodory’s Theorem we have that for M equal to the dimension of the space
containing C∗

{1}×K, there exists d1, . . . , dM ∈ L∞ such that D = ∑M
i=1 di dT

i . We
now consider an arbitrary x ∈ Feas(QP) and note from Assumption 4, that there exists
a set {λi, j | j ∈ N, i = 1, . . . , M} such that for all i, j we have λ2

i, j ≥ M exp( j) and
x + λi, j di ∈ Feas(QP). We then have the following for all i, j :

0 ≤ λ−2
i, j ,

M∑
i=1

λ−2
i, j ≤ exp(− j) ≤ 1.

From the definition of Feas+(QP)we have

(
1

x + λi, j di

)(
1

x + λi, j di

)T

∈ Feas+(QP)

for all i, j . Now, using the fact that Feas+(QP) is convex, we have the following for
all j ∈ N:

[
M∑

i=1

λ−2
i, j

(
1

x + λi, j di

)(
1

x + λi, j di

)T

+
(

1 −
M∑

i=1

λ−2
i, j

)
Y

]
∈ Feas+(QP).

Finally, considering j → ∞, we get λ−1
i, j → 0, λ−2

i, j → 0 and
(

1 − ∑M
i=1 λ−2

i, j

)
→ 1,

which implies

[
Y +

(
0 0T

0 D

)]
∈ cl (Feas+(QP)). ��

We now need the following lemma from [4].

Lemma 10 [4, Lemma 8] We have that the optimal value of (QP) is equal to

inf

{〈(
0 cT

c Q

)
, Y

〉 ∣∣∣∣ Y ∈ cl (Feas+(QP))

}
.

Using the obvious fact that the set of optimal solutions of an unbounded problem
is empty and ∅ + X = ∅ for every set X , we immediately get the following theorem
from the previous two lemmas and the proof of Theorem 8.

Theorem 11 Consider problems (QP) and (QPC) such that Assumptions 1, 2 and 4
hold. Then Val(QP) = Val (QPC), and

Opt+ (QPC) = conv

{(
1
x

)(
1
x

)T
∣∣∣∣∣ x ∈ Opt(QP)

}
+ conv

{(
0
d

)(
0
d

)T
∣∣∣∣∣

d ∈ L∞,

dT Qd = 0

}
.
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1394 P. J. C. Dickinson et al.

3 Main theorem

We consider the following assumptions, which are simpler to verify and are more
commonly used in the literature. Recall for these that K ⊆ R

n is nonempty.

Assumption 5 K is closed and B = ∅.

Assumption 6 K is closed and bounded.

Assumption 7 K is closed and for all d ∈ K∞, x ∈ K, λ̃ ∈ R+, there exists
λ ∈ R\(−̃λ, λ̃) such that x + λd ∈ K.

Assumption 8 K is closed and K∞ = recc(K), where

recc(K): = {d ∈ R
n | x + ωd ∈ K for all x ∈ K, ω ∈ R+}.

(Note that, from the definition, we have K∞ ⊇ recc(K).)

Assumption 9 K is closed and convex.

We now consider the following lemmas connected to these assumption.

Lemma 12 If Assumption 5 holds then Assumption 2 also holds.

Proof This is trivial to see. ��
Lemma 13 If Assumption 6 holds then Assumptions 2 and 4 also hold.

Proof If K is bounded then K∞ = {0} and the implication immediately follows. ��
Lemma 14 If Assumptions 1 and 7 hold then Assumptions 2 and 4 also hold.

Proof Suppose there exists x ∈ K such that aT
i x = bi for all i . Then for all λ̃ ∈ R+,

d ∈ L∞ ⊆ K∞, there exists λ ∈ R\ (−̃λ, λ̃) such that x +λd ∈ K. We then also have
that aT

i (x+λd) = bi for all i . Now combining this observation with Assumption 1 and
K being closed, we get that Assumption 2 holds, from which we get that Assumption 4
also holds. ��
Lemma 15 If Assumption 8 holds then Assumption 7 also holds.

Proof Trivial from the definition of the recession cone. ��
Lemma 16 If Assumption 9 holds then 8 also holds.

Proof This is a well known result. ��
Combining these lemmas with Theorems 8 and 11 gives us the following theorem,

which is the best approximation to the disproved Theorem 10 from [4].

Theorem 17 Consider problems (QP) and (QPC) such that Assumption 1 holds and
at least one of the following is true:
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Erratum to: On the set-semidefinite representation of nonconvex quadratic programs 1395

1. Assumptions 2 and 3 hold,
2. Assumptions 2 and 4 hold,
3. Assumptions 3 and 5 hold,
4. Assumptions 4 and 5 hold,
5. Assumption 6 holds,
6. Assumption 7 holds,
7. Assumption 8 holds,
8. Assumption 9 holds.

Then Val(QP) = Val (QPC) and we have that

Opt+ (QPC) = conv

{(
1
x

)(
1
x

)T
∣∣∣∣∣ x ∈ Opt(QP)

}
+ conv

{(
0
d

)(
0
d

)T
∣∣∣∣∣

d ∈ L∞,

dT Qd = 0

}
.

Note from this theorem that, in such cases as described, Opt(QP) = ∅ if and only if
Opt (QPC) = ∅. In other words, the optimal solution in (QP) is attained if and only if
the optimal solution to (QPC) is attained.

4 Dealing with one quadratic inequality constraint

In this section we show that Corollary 14 from [4], stating that Theorem 10 from
the same paper is valid for K defined by a (possibly non-convex) quadratic inequal-
ity, is still true even though Theorem 10 is disproved. Recall that we consider
K = {x ∈ R

n | xT Px + 2pTx + p0 ≤ 0} with P ∈ Sn , p ∈ R
n and p0 ∈ R,

such that K �= ∅.
First we provide an explicit description of K∞.

Theorem 18 For K = {x ∈ R
n | xT Px + 2pTx + p0 ≤ 0} we have

1. K∞ ⊆ {d ∈ R
n | dT Pd ≤ 0},

2. If P /∈ S+ then K∞ = {d ∈ R
n | dT Pd ≤ 0} = cl {d ∈ R

n | dT Pd < 0},
3. If P ∈ S+ and K �= ∅, then K∞ = recc(K) = {d ∈ R

n | dT Pd = 0, pTd ≤ 0}.
Proof We shall prove each point in turn.

1. We consider an arbitrary d∈K∞. There exists a sequence {(λi , xi )| i ∈N}⊆R+×K
such that limi→∞ λi = 0 and limi→∞ λi xi = d. We then have that

0 ≥ lim
i→∞(λ2

i (x
T
i Pxi + 2pTxi + p0))

= lim
i→∞((λi xi )

T P(λi xi ) + 2λi pT(λi xi ) + λ2
i p0))

= dT Pd.

2. We consider an arbitrary d ∈ R
n such that dT Pd < 0. There exists a ω̂ > 0

such that for all ω ≥ ω̂ we have ω2dT Pd + 2ωpTd + p0 ≤ 0. We now define
the sequence {(λi , xi ) | i ∈ N} ⊆ R+ × K such that λi = (ω̂ + i)−1 and
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1396 P. J. C. Dickinson et al.

xi = (ω̂ + i)d. Using this sequence, we can immediately see that d ∈ K∞, and
thus K∞ ⊇ {d ∈ R

n | dT Pd < 0}.
We now suppose that P /∈ S+ and consider an arbitrary x ∈ R

n such that
xT Px = 0. There exists y such that yT Py < 0. As (−y)T P(−y) = yT Py < 0,
we may assume w.l.o.g. that xT Qy ≤ 0. Then for all ε > 0 we have
(x + εy)T P(x + εy) < 0. Therefore, by the previous paragraph, x + εy ∈ K∞
for all ε > 0. Hence, using the fact that K∞ is a closed cone, we have
x ∈ cl {d ∈ R

n | dT Pd < 0} ⊆ cl K∞ =K∞.

3. From now on we suppose that P ∈ S+ and K �= ∅.

We first consider an arbitrary d ∈ K∞. From the first part, and P ∈ S+, we have
dT Pd = 0, and there exists a sequence {(λi , xi ) | i ∈ N} ⊆ R+ × K such that
limi→∞ λi = 0 and limi→∞ λi xi = d. We then have that

2pTd = lim
i→∞(λi 2pTxi )

≤ lim
i→∞(λi (−xT

i Pxi − p0))

≤ lim
i→∞(−λi p0)

= 0.

Therefore K∞ ⊆ {d ∈ R
n | dT Pd = 0, pTd ≤ 0}.

We next consider an arbitrary d ∈ R
n such that dT Pd = 0 and pTd ≤ 0. As

P ∈ S+, we have Pd = 0. Now, for any x ∈ K and ω ≥ 0, we observe that

(x + ωd)T P(x + ωd) + 2pT(x + ωd) + p0

= xT Px + 2pTx + p0︸ ︷︷ ︸
≤0

+ 2ωpTd︸ ︷︷ ︸
≤0

≤ 0,

and thus x+ωd∈K, from which it can immediately be seen that d∈ recc(K)⊆K∞.
��

We now get the following theorem connecting the quadratic case to one of our
earlier assumptions.

Theorem 19 For K as given at the start of this section, we have that Assumption 7
holds.

Proof We consider an arbitrary d ∈ K∞, x ∈ K, λ̃ ∈ R+, and let λ ∈ R\(−̃λ, λ̃) such
that

λ =
{

−̃λ if dT(2Px + 2p) ≥ 0

+̃λ if dT(2Px + 2p) < 0.
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From the previous theorem we have that dT Pd ≤ 0, and thus

(x + λd)T P(x + λd) + 2pT(x + λd) + p0

= xT Px + 2pTx + p0︸ ︷︷ ︸
≤0

+ λdT(2Px + 2p)︸ ︷︷ ︸
≤0

+ λ2dT Pd︸ ︷︷ ︸
≤0

≤ 0.

Therefore x + λd ∈ K, and so Assumption 7 holds. ��
Corollary 20 Corollary 14 from [4] is correct.

5 Conclusion

Due to precise observation of P.J.C. Dickinson, it has been found that the proof of
Lemma 9 in [4] by Eichfelder and Povh has a nontrivial gap. All three authors of this
erratum paper worked jointly to provide new proofs to show that although Theorem 10
from [4] is not true in general, it is possible to correct this by adding some commonly
used assumptions, as presented in Theorem 17. Using this, the three authors of this
erratum were then able to show that Corollary 14 from [4] is fortunately still correct.
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