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Abstract
The Sarmanov family of bivariate distributions is considered as the most flexible and
efficient extended families of the traditional Farlie–Gumbel–Morgenstern family. The
goal of this work is twofold. The first part focuses on revealing some novel aspects of
the Sarmanov family’s dependency structure. In the second part, we study the Fisher
information (FI) related to order statistics (OSs) and their concomitants about the
shape-parameter of the Sarmanov family. The FI helps finding information contained
in singly ormultiply censored bivariate samples from the Sarmanov family. In addition,
the FI about the mean and shape parameter of exponential and power distributions in
concomitants of OSs is evaluated, respectively. Finally, the cumulative residual FI in
the concomitants of OSs based on the Sarmanov family is derived.

Keywords Fisher information · Concomitants · Order statistics · Sarmanov family ·
Cumulative residual Fisher information

Mathematics Subject Classification 62B10 · 62G30

1 Introduction

The Farlie-Gumbel-Morgenstern (FGM) family is an important and seminal class
of bivariate distributions. For a given set of marginal distribution functions (DFs)
FX (.) and FY (.), the FGM family is defined as GX ,Y (x, y) = FX (x)FY (y)[1 +
λFX (x)FY (y)], −1 ≤ λ ≤ 1, where FX (x) and FY (y) are the survival functions
of the random variables (RVs) X and Y , respectively. One important limitation of the
FGM family is that the correlation coefficient between its marginals is restricted to a
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narrow range
[− 1

3 ,
1
3

]
, where the maximum value of the correlation is attained for

the FGM copula, i.e., with uniform marginals (cf. Schucany et al. [33]). Accordingly,
this family can be used to model the bivariate data that exhibits low correlation.
For this reason, since the inception of this family, several extensions of it have been
introduced in the literature in an attempt to improve the correlation level. Among these
extensions, we recall the one-shape-parameter Sarmanov family, which was suggested
by Sarmanov [30] as a new mathematical model of hydrological processes. Its copula
(with uniform marginals FX (x) = x, FY (y) = y, 0 ≤ x, y ≤ 1) is given by

FX ,Y (x, y;α) = xy
(
1 + 3α(1 − x)(1 − y) + 5α2(1 − x)(1 − y)ϕ(x)ϕ(y)

)
, | α |≤

√
7

5
,

(1.1)

where ϕ(x) = 2x − 1. The corresponding PDF is given by

fX ,Y (x, y;α) = 1 + 3αϕ(x)ϕ(y) + 5

4
α2(3ϕ2(x) − 1)(3ϕ2(y) − 1). (1.2)

The correlation coefficient of the Sarmanov copula is α,whichmeans that the copula’s
maximum correlation coefficient is 0.529 (cf. Balakrishnan and Lai, [11]; page 74).
Clearly, the Sarmanov family is the most efficient one among many known extended
families of the FGM family because on both the positive and negative sides, it delivers
the best improvement in the correlation level. Barakat et al. [17] and Husseiny et
al. [21] revisited the Sarmanov family with general marginals FX and FY (denoted
by SAR(α)) and showed that this family is an extension of the FGM family and
it belongs to a wider family suggested by Sarmanov [29], which has many recorded
applications in the literature (see, e.g., Bairamov et al. [10], and Tank and Gebizlioglu,
[37]). Moreover, they showed that the SAR(α) is the only one of the extended families
of FGM with a radially symmetric copula about (0.5, 0.5). This property was used
by them to reveal several prominent statistical properties for the concomitants of
OSs and record values from this family and some of information measures, namely,
the Shannon entropy, inaccuracy measure, extropy, cumulative entropy, and Fisher
information number (FIN) were studied theoretically and numerically.

Due to its relevance in a wide range of scientific issues, concomitants of OSs have
got a lot of attention in recent years. Suppose (Xi ,Yi ), i = 1, 2, ..., n, is a random
sample from a bivariate DF FX ,Y . If we order the sample by the X−variate, and
obtain the OSs X1:n ≤ X2:n ≤ .... ≤ Xn:n for the X sample, then the Y−variate
associated with the r th OS Xr :n is the concomitant of the r th OS, and is denoted
by Y[r :n], r = 1, ..., n. The concept of concomitants of OSs was first introduced by
David [20] and almost simultaneously under the name of inducedOSs byBhattacharya
[19]. Biological selection problem is the most striking application of concomitants of
OSs. Another application of concomitants of OSs is in reliability theory, see Barakat
et al. [18]. Scaria and Mohan [31] investigated the concomitants of record values
from the Cambanis family with logistic marginals. Moreover, Scaria and Mohan [32]
investigated the concomitants of OSs based on the FGM and Cambanis families with
exponentiated exponential marginals. Recently, Abd Elgawad et al. [4] studied the
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concomitants of m-generalized OSs of the Cambanis family and some information
measures. Furthermore, Alawady et al. [7] studied the concomitants of m-generalized
OSs from the Cambanis family under general setting. For more recent works about
this subject see Abd Elgawad and Alawady [1], Abd Elgawad et al. [2–5], Alawady et
al. [7–9], Barakat et al. [14, 16], Jafari et al. [22], and Tahmasebi et al. [35, 36].

The FI is a way of determining how much information an observable RV has about
an unknown parameter on which the probability of that RV depends. The FI is an
important and fundamental criterion in statistical inference, physics, thermodynamics,
information theory and some other fields. Traditionally, the FI has played a valuable
role in statistical inference through the Cramér–Rao inequality and its association
with the asymptotic properties of the maximum likelihood estimators. Knowing how
much information a sample contains about an unknown parameter can assist determine
bounds on the variance of a particular estimator of that parameter and approximate
the sampling distribution of that estimator when the sample is large enough.

Consider aRV X ,whichhas aPDF fX (x; θ),where θ ∈ � is an unknownparameter
with a parameter space �. Under certain regularity conditions (see, Rao, [28], p. 329
and Abo-Eleneen and Nagaraja, [6]), FI about θ ∈ �, contained in the RV X , is

Iθ (X; θ) := −E
(

∂2 ln fX (x;θ)

∂θ2

)
= E

(
∂ ln fX (x;θ)

∂θ

)2
. For some recent studies on the FI,

one may refer to Barakat and Husseiny [13], Barakat et al. [15], and Kharazmi and
Asadi [25]. Another important kind of the FI is the FIN, which is the second moment
of the score function (the score function of a RV X with a PDF fX is defined by

ρ(x) =
∂ fX (x;θ)

∂x
fX (x;θ)

= ∂ ln fX (x;θ)
∂x ), where the derivative is with respect to x in a given

PDF fX (x; θ) rather than the parameter θ. It is a FI for a location parameter. For some
recent works about this measure, see Abd Elgawad et al. [2], Barakat and Husseiny
[12], Barakat et al. [17], and Tahmasebi and Jafari [34].

In the definition of FI, one should be aware that, the FI is not robust to the pres-
ence of outliers. This is because the FI is an expectation with respect to X , it equally
weights all X values, including large values that may be outliers. The cumulative
residual Fisher information (abbreviated as CF) was recently presented by Kharazmi
and Balakrishnan [26], which is naturally robust to the presence of outliers. This mod-

ified measure is defined as CFθ (X; θ) := ∫ ∞
−∞

(
∂ ln FX (x;θ)

∂θ

)2
FX (x; θ)dx, where

FX (x; θ) is the survival function of X . It is worth mentioning that the CF can be
used effectively for developing suitable goodness-of-fit tests for lifetime distribu-
tions by using empirical versions of this measure. Kharazmi and Balakrishnan [26]
analogously defined the modified FIN via the survival function as CF(X; θ) :=
∫ ∞
−∞

(
∂ ln FX (x;θ)

∂x

)2
FX (x; θ)dx .

The purpose of this work is twofold. The first part (Sect. 2) is to reveal some new
salient features pertaining to the dependence structure of SAR(α),where some bounds
and relationships are shown for the correlation coefficient. In the second part (Sects. 3,
4, and 5), we theoretically and numerically study in Sect. 3 the FI, Iα(Xr :n,Y[r :n];α),

for a single pair (Xr :n,Y[r :n]). Moreover, in Sect. 4, we theoretically and numeri-
cally discuss the FI about the mean of the exponential distribution marginals and the
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shape parameter of the power function distribution marginals for SAR(α). In Sect. 5,
CF(Y[r :n];α) is theoretically and numerically investigated.

2 Dependence structure

In this section, we first obtain the maximum bounds for the correlation coefficient,
between two arbitrary continuous RVs with finite nonzero variances, which are arising
from the SAR(α),whose copula is defined by (1.1). Secondly, we deduce the sufficient
conditions under which the marginal components become uncorrelated, among these
conditions, we have a direct condition that α = 0. The upper bound for the correlation
coefficient, given in the following theorem, is so large as to confirm the usefulness
and distinction of the Sarmanov family.

Theorem 2.1 Let FX (x) and FY (y) be the DFs of some RVs X and Y , respectively. If
the RVs X and Y are bivariate SAR(α) with finite nonzero variances and correlation
coefficient, ρ(X ,Y ), where FX = FY , then ρ(X ,Y ) ≤ 0.8091502.

Proof First, we assume that FX (x) and FY (y) are different. Then in view of (1.1) and
(1.2) and by using the result of Schucany et al. [33], we get

COV (X ,Y ) = 3αδXδY + 5

4
α2

∫ ∞

−∞
x(3ϕ2(FX (x)) − 1)dFX (x)

×
∫ ∞

−∞
y(3ϕ2(FY (y)) − 1)dFY (y), (2.1)

where δ j = ∫ ∞
−∞ xdF2

j (x) − ∫ ∞
−∞ xdFj (x) = ∫ ∞

−∞ xϕ2(Fj (x))dFj (x), j = X ,Y .

Clearly, δ j > 0, j = X ,Y , since δ j is the difference between the mean of the larger
of two independent RVs from Fj and the mean of Fj (cf. Johnson and Kotz, [24],
Schucany et al. [33]). On the other hand, we can easily verify that

Wj :=
∫ ∞

−∞
x(3ϕ2(Fj (x)) − 1)dFj (x)

= 4
∫ ∞

−∞
xdF3

j (x) − 6
∫ ∞

−∞
xdF2

j (x) + 2
∫ ∞

−∞
xdFj (x)

= 4

(∫ ∞

−∞
xdF3

j (x) −
∫ ∞

−∞
xdF2

j (x)

)
− 2

(∫ ∞

−∞
xdF2

j (x) −
∫ ∞

−∞
xdFj (x)

)

:= 4Wj1 − 2Wj2. (2.2)

Moreover, we can show that

Wj = 0, if Fj (x) = x, i.e., for the uniform marginal case. (2.3)

Note that, Wj1 is the difference between the mean of the larger of three independent
RVs from Fj and the mean of two independent RVs from Fj . Furthermore,Wj2 is the
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difference between the mean of the larger of two independent RVs from Fj and the
mean of Fj . Then we get Wji > 0, i = 1, 2. Upon combining (2.1) and (2.2), we
get

COV (X ,Y ) = 3αδXδY + 5

4
α2WXWY , (2.4)

where for the uniform marginal DFs FU and FV , (2.3) entails that COV (U , V ) =
3αδU δV = α

12 , which implies, as it is known, ρ(U , V ) = α. Now, let F := FX (x) =
FY (y), where F has finite nonzero variance, σ 2, and finite mean, μ. Furthermore, let
W := Wj , j = X ,Y . Then, we get

W 2 =
(∫ ∞

−∞
x(3ϕ2(F(x)) − 1)dF(x)

)2

=
(∫ ∞

−∞
(x − μ)(3ϕ2(F(x)) − 1)dF(x)

)2

,

since
∫ ∞
−∞(3ϕ2(F(x)) − 1)dF(x) = ∫ 1

0 (3ϕ2(u) − 1)du = 0. Thus, by applying
Cauchy–Schwartz inequality, we get

W 2 ≤ σ 2
∫ ∞

−∞
(3ϕ2(F(x)) − 1)2dF(x) = σ 2

∫ 1

0
(3ϕ2(u) − 1)2du

= σ 2

2

∫ 1

−1
(3v2 − 1)2dv = 0.8σ 2. (2.5)

In view of the inequality α ≤
√
7
5 and the result of Schucany et al. [33], a combination

between (2.5) and (2.4), thus yields ρ(X ,Y ) ≤ 0.8091502. This completes the proof.
��

Corollary 2.1 Under the conditions of Theorem2.1, possibly except the condition FX =
FY , we have 0.8091502 ≤ max ρ(X ,Y ) ≤ 1.

Proof The proof follows from the general relationmax{x : x ∈ A} ≤ max{x : x ∈ B},
if A ⊆ B, and the result of Theorem 2.1. ��
Corollary 2.2 Let the conditions of Theorem 2.1, possibly except the condition FX =
FY , be satisfied. Assume that WX ,WY 	= 0, α 	= 0, and | δX δY

WxWY
| ≤

√
7

12 . Then, we
get the following interesting result ρ(X ,Y ) = 0, while X and Y are dependent, if

α = −12
5

δX δY
WxWY

.

Proof The proof follows directly from (2.4). ��

3 FI in (Xr:n,Y[r:n]) about˛ based on the copula of SAR(˛)

Let X and Y be uniformly distributed RVs over (0, 1), written X ,Y ∼ U (0, 1), and
let they be jointly distributed as the Sarmanov copula (1.1). This copula is free of any
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unknown parameters except the parameter α. The joint PDF of (Xr :n,Y[r :n]) is given
by (cf. Abo-Eleneen and Nagaraja [6], Barakat et al. [15])

f[r :n](x, y;α) = Cr ,n fX ,Y (x, y;α)FX (x)r−1(1 − FX (x))n−r , (3.1)

where Cr ,n = 1
β(r ,n−r+1) and β(a, b) = ∫ 1

0 ua−1(1− u)b−1 du, a, b > 0, is the beta
function.

3.1 Theoretical result

Before formulating Theorem 3.1 about the FI in (Xr :n,Y[r :n]), we consider the set
� = {α : | 3αϕ(x)ϕ(y) + 5

4α
2(3ϕ2(x) − 1)(3ϕ2(y) − 1) |< 1, ∀ 0 ≤ x, y ≤ 1}.

From now on, we deal only with α ∈ � ∩ ϒ, where ϒ = {α :| α |≤
√
7
5 }. Since

α = 0 ∈ � ∩ ϒ, then the set � ∩ ϒ is not empty. On the other hand, the set
{α : | 3αϕ(x)ϕ(y) + 5

4α
2(3ϕ2(x) − 1)(3ϕ2(y) − 1) |> 1,∀0 ≤ x, y ≤ 1} = ∅

(empty set). Therefore, � ∪ �̃ = U (while � ∩ �̃ 	= ∅), where U is the universal set
and �̃={α : | 3αϕ(x)ϕ(y) + 5

4α
2(3ϕ2(x) − 1)(3ϕ2(y) − 1) |< 1, 0 ≤ x ≤ x0, 0 ≤

y ≤ y0, and | 3αϕ(x)ϕ(y) + 5
4α

2(3ϕ2(x) − 1)(3ϕ2(y) − 1) |≥ 1, x > x0, y >

y0, for some 0 < x0, y0 < 1}. In order to check α ∈ �, for any α ∈ ϒ, draw the
functionF(x, y;α) = | 3αϕ(x)ϕ(y)+ 5

4α
2(3ϕ2(x)−1)(3ϕ2(y)−1) |, 0 ≤ x, y ≤ 1,

as 3D diagram (x, y,F), by using Mathematica 12. If the curve of F falls entirely
within the cube C = {(x, y, z) : −1 ≤ x, y, z ≤ +1}, then α ∈ �, otherwise α /∈ �.

The fact that�∪�̃ = U means that we have only two possibilities. The first possibility
is that the curve of F falls entirely within the cube C, represented by the set �. The
second possibility is that a portion of that curve falls within C and the other portion is
outside the cube C, represented by the set �̃. Parts a,b,c, and d of Fig. 1 show how we
can achieve this check for some values of α ∈ � ∩ ϒ.

Theorem 3.1 Suppose that X and Y ∼ U (0, 1) with joint PDF (1.2), then for any
1 ≤ r ≤ n, and α ∈ � ∩ ϒ, the FI in (Xr :n,Y[r :n]) about α is given by

Iα(Xr :n,Y[r :n];α) = Cr ,n

∞∑

i=0

i∑

j=0

(
i
j

)
(−1)i (α)i

(1
2

) j [I1 + I2 + I3], (3.2)

where

I1 =
i− j+2∑

k=0

j∑

l=0

2l∑

m=0

i− j+2∑

s=0

j∑

t=0

2t∑

p=0

(−2)s+p+k+m(−3)l+t (3)i− j+2(
5α

2
) j

×
(
i − j + 2

k

) (
j
l

) (
2l
m

) (
i − j + 2

s

) (
j
t

) (
2t
p

) β(k + m + r , n − r + 1)

s + p + 1
,

(3.3)
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Fig. 1 3D Diagrams for checking the belonging relationship α ∈ � ∩ ϒ

I2 =
i− j∑

u=0

j+2∑

v=0

2v∑

w=0

i− j∑

z=0

j+2∑

c=0

2c∑

b=0

(−2)u+w+z+b(−3)v+c(3)i− j (
5α

2
) j+2

×
(
i − j

u

) (
j + 2

v

) (
2v
w

) (
i − j

z

) (
j + 2

c

) (
2c
b

) β(u + w + r , n − r + 1)

z + b + 1
,

(3.4)

and

I3 =
i− j+1∑

a=0

j+1∑

d=0

2d∑

e=0

i− j+1∑

f =0

j+1∑

g=0

2g∑

h=0

(−2)a+e+ f+h(−3)d+g(3)i− j+1(5α) j+1(
1

2
) j

×
(
i − j + 1

a

) (
j + 1
d

) (
2d
e

) (
i − j + 1

f

) (
j + 1
g

) (
2g
h

) β(a + e + r , n − r + 1)

f + h + 1
.

(3.5)

Proof From (1.2) and (3.1), we get

ln f[r :n](x, y;α) = lnCr ,n + ln

(
1 + 3αϕ(x)ϕ(y) + 5

4
α2(3ϕ2(x) − 1)(3ϕ2(y) − 1)

)

+(r − 1) ln x + (n − r) ln(1 − x),
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Thus,

∂2 ln f[r :n](x, y;α)

∂α2 =
5
2 (3ϕ

2(x) − 1)(3ϕ2(y) − 1)

fX ,Y (x, y;α)

−
(
3ϕ(x)ϕ(y) + 5

2α(3ϕ2(x) − 1)(3ϕ2(y) − 1)
)2

f 2X ,Y (x, y;α)
.

(3.6)

Therefore, by using (3.1), (3.6) and the binomial expansion under the condition α ∈
� ∩ ϒ, the FI about the shape parameter α is given as

Iα(Xr :n,Y[r :n];α)

= −E

(
∂2 ln f[r :n](Xr :n,Y[r :n];α)

∂α2

)

= Cr ,n

∞∑

i=0

i∑

j=0

(−1)i
(
i
j

)
(α)i (

1

2
) j

×
∫ 1

0

∫ 1

0

(
3ϕ(x)ϕ(y) + 5

2
α(3ϕ2(x) − 1)(3ϕ2(y) − 1)

)2

(3ϕ(x)ϕ(y))i− j

×
(
5

2
α(3ϕ2(x) − 1)(3ϕ2(y) − 1)

) j

xr−1(1 − x)n−r dxdy

= Cr ,n

∞∑

i=0

i∑

j=0

(−1)i
(
i
j

)
(α)i (

1

2
) j [I1 + I2 + I3], (3.7)

where

I1 =
∫ 1

0

∫ 1

0
(3ϕ(x)ϕ(y))i− j+2(

5

2
α(3ϕ2(x) − 1)

(3ϕ2(y) − 1)) j xr−1(1 − x)n−r dxdy

=
∫ 1

0
(3ϕ(x))i− j+2(

5

2
α(3ϕ2(x) − 1)) j xr−1(1 − x)n−r dx

∫ 1

0
(ϕ(y))i− j+2(3ϕ2(y) − 1) j dy

=
i− j+2∑

k=0

j∑

l=0

2l∑

m=0

i− j+2∑

s=0

j∑

t=0

2t∑

p=0

(−2)s+p+k+m(−3)l+t (3)i− j+2(
5α

2
) j

×
(
i − j + 2

k

) (
j
l

) (
2l
m

) (
i − j + 2

s

) (
j
t

) (
2t
p

) β(k + m + r , n − r + 1)

s + p + 1
,

(3.8)
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I2 =
∫ 1

0

∫ 1

0
(3ϕ(x)ϕ(y))i− j (

5

2
α(3ϕ2(x) − 1)

(3ϕ2(y) − 1)) j+2xr−1(1 − x)n−r dxdy

=
∫ 1

0
(3ϕ(x))i− j (

5

2
α(3ϕ2(x) − 1)) j+2xr−1(1 − x)n−r dx

∫ 1

0
(ϕ(y))i− j (3ϕ2(y) − 1) j+2dy

=
i− j∑

u=0

j+2∑

v=0

2v∑

w=0

i− j∑

z=0

j+2∑

c=0

2c∑

b=0

(−2)u+w+z+b(−3)v+c(3)i− j (
5α

2
) j+2

×
(
i − j

u

) (
j + 2

v

) (
2v
w

) (
i − j

z

) (
j + 2

c

) (
2c
b

) β(u + w + r , n − r + 1)

z + b + 1
,

(3.9)

and

I3 =
∫ 1

0

∫ 1

0
(3ϕ(x)ϕ(y))i− j+1(5α(3ϕ2(x) − 1)(3ϕ2(y) − 1)) j+1

(
1

2
) j xr−1(1 − x)n−r dxdy

=
∫ 1

0
(3ϕ(x))i− j+1(5α(3ϕ2(x) − 1)) j+1(

1

2
) j xr−1(1 − x)n−r dx

×
∫ 1

0
(ϕ(y))i− j+1((3ϕ2(y) − 1)) j+1dy

=
i− j+1∑

a=0

j+1∑

d=0

2d∑

e=0

i− j+1∑

f =0

j+1∑

g=0

2g∑

h=0

(−2)a+e+ f +h(−3)d+g(3)i− j+1(5α) j+1(
1

2
) j

×
(
i − j + 1

a

) (
j + 1
d

) (
2d
e

) (
i − j + 1

f

) (
j + 1

g

) (
2g
h

) β(a + e + r , n − r + 1)

f + h + 1
.

(3.10)

Combining (3.8), (3.9), and (3.10), we get Iα(Xr :n,Y[r :n];α). The theorem is proved.
��

3.2 Computing I˛(Xr:n, Y[r:n];˛)with discussion

Table 1 displays the FI Iα(Xr :n,Y[r :n];α) as a function of n, r ≤ n+1
2 , and α, for

n = 1, 3, 5, 15, α = −0.2,−0.15,−0.1, 0.1, 0.15, 0.2, where α ∈ � ∩ ϒ. The
entries are computed using the relations (3.2)–(3.5). We only compute 9 terms from
the infinite series included in (3.2), as this procedure gives us satisfactory results.
The first row of Table 1 represents the FI Iα(X ,Y ;α). Based on the fact that the
FI Iα(X ,Y ;α) in a random sample of size n is nIα(X ,Y ;α), Table 1 allows us to
compute the proportion of the sample FI Iα(Xr :n,Y[r :n];α) contained in a single pair.
For example, when n = 5, the FI Iα(Xr :n,Y[r :n];α) about α in the extreme pair ranges
from 26% to 35.5% of the total information, as α ranges from−0.2 to 0.2. In addition,
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Table 1 FI for (Xr :n , Y[r :n]) about the parameter α

Sample size n Rank r α = 0.1 α = −0.1 α = 0.15 α = −0.15 α = 0.2 α = −0.2

1 1 1.03326 1.03326 1.07828 1.08118 1.31893 0.965084

3 1 1.23267 1.23267 1.27645 1.27657 1.3496 1.36565

3 2 0.634429 0.634428 0.679603 0.67801 0.906024 0.486046

5 1 1.60332 1.60332 1.64701 1.647 1.71117 1.71155

5 2 0.747139 0.747139 0.789877 0.789897 0.860308 0.853786

5 3 0.465364 0.465364 0.513183 0.513331 0.853771 0.602498

15 1 2.37775 2.37775 2.43437 2.43437 2.51868 2.51868

15 2 1.79123 1.79123 1.82747 1.82747 1.88187 1.88188

15 3 1.30306 1.30306 1.33433 1.33433 1.38107 1.38098

15 4 0.90896 0.90896 0.943696 0.943696 0.995571 0.995437

15 5 0.605641 0.605641 0.647302 0.647302 0.709143 0.708444

15 6 0.390654 0.390654 0.439363 0.439339 0.510503 0.509824

15 7 0.262317 0.262317 0.316036 0.315932 0.38843 0.383647

15 8 0.219646 0.219646 0.27528 0.275038 0.366608 0.322666

the FI Iα(Xr :n,Y[r :n];α) in the central pair ranges from 9% to 13% of what is available
in the complete sample in all cases. Another useful application of Table 1 is that it may
be used to quickly extract the FI contained in singly or multiply censored bivariate
data sample from the SAR(α). Simply sum up the FI in each pair that constitutes the
censored sample. For example, when n = 5, the FI about α in the type-II censored
sample consisting of the bottom (or the top) three pairs ranges from 52% to 65% as
α ranges from −0.2 to 0.2. The following interesting features can be extracted from
Table 1:

• Iα(Xr :n,Y[r :n];α) increaseswhen the difference between the rank r and the sample
size n, increases for r ≤ n+1

2 .
• For fixed n and r , the value of Iα(Xr :n,Y[r :n];α) is close to Iα(Xr :n,Y[r :n]; −α).

Moreover, Iα(Xr :n,Y[r :n];α) = Iα(Xr :n,Y[r :n]; −α) in some cases.

4 FI in concomitant Y[r:n] based on some distributions

Barakat et al. [17] studied the concomitants of OSs based on the Sarmanov family with
marginal generalized exponential DFs, where the DF of the generalized exponential
distribution is defined as FX (x) = (

1 − e−θx
)a

, x; a, θ > 0, and is denoted by
GE(θ; a). Barakat et al. [17] expressed the marginal PDF of the concomitant Y[r :n] as
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f[r :n](y;α, θ) =
(
1 − 3�(α)

1,r :n + 5

2
�

(α)
2,r :n

)
fY (y)

+
(
3�(α)

1,r :n − 15

2
�

(α)
2,r :n

)
fV1(y) + 5�(α)

2,r :n fV2(y), (4.1)

where V1 ∼ GE(θ; 2a), V2 ∼ GE(θ; 3a) , �
(α)
1,r :n = α(2r−n−1)

n+1 and �
(α)
2,r :n =

2α2
[
1 − 6 r(n−r+1)

(n+1)(n+2)

]
.

Proposition 1 Let the FI associated with concomitants of OSs based on SAR(α) with
marginal DFs GE(θ; a) about unknown parameter θ be denoted by Iθ (Y[r :n];α, θ).

Then,

1. Iθ (Y[r :n]; −α, θ) = Iθ (Y[n−r+1:n];α, θ).

2. Iθ (Y[ n+1
2 :n];α, θ) = Iθ (Y[ n+1

2 :n]; −α, θ).

Proof From (4.1), we get

Iθ (Y[r :n]; −α, θ) = E

[
∂2 ln f[r :n](Y[r :n]; −α, θ)

∂θ2

]2
.

By applying the easy-check relations

�
(α)
1,r :n = α(2r − n − 1)

n + 1
= �

(−α)
1,n−r+1:n,

�
(α)
2,r :n = 2α2

[
1 − 6

r(n − r + 1)

(n + 1)(n + 2)

]
= �

(α)
2,n−r+1:n, and �

(α)
2,r :n = �

(−α)
2,r :n,

we immediately get the relation f[r :n] (y;−α, θ) = f[n−r+1:n](y;α, θ). The first
part of the proposition is thus proved. Also, for the second part we have �

(α)

1, n+1
2 :n =

2�(−α)

1, n+1
2 :n = 0, This completes the proof. ��

4.1 FI in Y[r:n] about E(Y) of exponential distributionmarginal

By putting a = 1 in (4.1), we get the marginal PDF of the concomitant Y[r :n] based
on the exponential distribution as

f[r :n](y;α, θ)

= 1

θ
exp(

−y

θ
) + 3�(α)

1,r :n
(
2

θ
exp(

−y

θ
)

(
1 − exp(

−y

θ
)

)
− 1

θ
exp(

−y

θ
)

)

+5

2
�

(α)
2,r :n

(
1

θ
exp(

−y

θ
) − 6

θ
exp(

−y

θ
)

(
1 − exp(

−y

θ
)

)
+ 6

θ
exp(

−y

θ
)(1 − exp(

−y

θ
))2

)
.
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This expression, after some algebra, can be written as

f[r :n](y;α, θ) = 1

θ
exp(

−y

θ
)

(
A1 + A2 exp(

−y

θ
) + A3 exp(

−2y

θ
)

)
,

where A1 =
(
1 + 3�(α)

1,r :n + 5
2�

(α)
2,r :n

)
, A2 = −

(
6�(α)

1,r :n + 15�(α)
2,r :n

)
, and A3 =

(
15�(α)

2,r :n
)
. Therefore,

∂ ln f[r :n](y;α, θ)

∂θ

= 1

θ

(
y

θ
− 1 + y

θ

A2 exp(
−y
θ

) + 2A3 exp(
−2y
θ

)

A1 + A2 exp(
−y
θ

) + A3 exp(
−2y
θ

)

)

= 1

θ

(
2y

θ
− 1 − A1

y
θ

A1 + A2 exp(
−y
θ

) + A3 exp(
−2y
θ

)
+ A3

y
θ
exp(−2y

θ
)

A1 + A2 exp(
−y
θ

) + A3 exp(
−2y
θ

)

)

.

Thus,

(
∂ ln f[r :n](y;α, θ)

∂θ

)2

= 1

θ2

(

4w2 + 1 + A2
1w

2

(A1 + A2e−w + A3e−2w)2

+ A2
3w

2e−4w

(
A1 + A2e−w + A3e−2w

)2 − 4w − 4A1w
2

A1 + A2e−w + A3e−2w

+ 4A3w
2e−2w

A1 + A2e−w + A3e−2w + 2A1w

A1 + A2e−w + A3e−2w

− 2A3we−2w

A1 + A2e−w + A3e−2w − 2A1A3w
2e−2w

(
A1 + A2e−w + A3e−2w

)2

)

,

(4.2)

where w = y
θ
. On the other hand, the PDF of the RV W = Y[r :n]

θ
is fW (w) = e−w(A1

+A2e−w + A3e−2w). Therefore, the relation (4.2) yields

Iθ (Y[r :n];α, θ) =
∫ ∞

0

(
∂ ln fW (w)

∂θ

)2

fW (w) dw = 1

θ2

10∑

i=1

Ti ,

where

T1 = 4
∫ ∞

0
w2e−w

(
A1 + A2e

−w + A3e
−2w)

dw = 4

(
2A1 + A2

4
+ 2A3

27

)
,

T2 =
∫ ∞

0
e−w

(
A1 + A2e

−w + A3e
−2w)

dw = 1,

T3 = A2
1

∫ ∞

0

w2e−w

A1 + A2e−w + A3e−2w dw, T4 = A2
3

∫ ∞

0

w2e−5w

A1 + A2e−w + A3e−2w dw,
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T5 = −4
∫ ∞

0
we−w

(
A1 + A2e

−w + A3e
−2w)

dw = −4

(
A1 + A2

4
+ A3

9

)
,

T6 = −4A1

∫ ∞

0
w2e−w dw = −8A1, T7 = 4A3

∫ ∞

0
w2e−3w dw = 8A3

27
,

T8 = 2A1

∫ ∞

0
we−w dw = 2A1, T9 = −2A3

∫ ∞

0
we−3w dw = −2A3

9
,

and

T10 = −2A1A3

∫ ∞

0

w2e−3w

A1 + A2e−w + A3e−2w dw.

Therefore, we get

Iθ (Y[r :n];α, θ) = 1

θ2

(
1 − 2A1 − 2A3

27
+ T3 + T4 + T10

)
. (4.3)

We use Mathematica 12 to compute the values of the infinite integrals T3, T4, and
T10, consequently, the FI Iθ (Y[r :n];α, θ) can be computed by using (4.3). Table 2
provides the values of Iθ (Y[r :n];α, θ), for n = 5, 15, θ = 1. From Table 2, the
following properties can be extracted:

• In the vast majority of the cases Iθ (Y[r :n];α, 1) increases when the difference n−r
decreases. In contrast, almost Iθ (Y[r :n]; −α, 1) increases when n − r increases.
Moreover, Table 2 reveals that the greatest values of FI are obtained almost at the
maximum OSs.

• Generally, we have Iθ (Y[ n+1
2 :n];α, 1) = Iθ (Y[ n+1

2 :n]; −α, 1).

• Iθ (Y[r :n];α, 1) =Iθ (Y[n−r+1:n]; −α, 1), which endorse Proposition 2.

4.2 FI in Y[r:n] about the shape parameter of power distributionmarginal

Let fY (y) = cyc−1, c > 0, 0 ≤ y ≤ 1. By using (4.1) we get the marginal PDF of
the concomitant Y[r :n] based on the power function distribution as:

f[r :n](y;α, c) = cyc−1 + 3�(α)
1,r :n

(
2cy2c−1 − cyc−1

)

+5

2
�

(α)
2,r :n

(
cyc−1 − 6cy2c−1 + 6cy3c−1

)
.

This expression, after some algebra, can be written as f[r :n](y;α, c) = cyc−1

(
B1 + B2yc + B3y2c

)
, where B1 =

(
1 − 3�(α)

1,r :n + 5
2�

(α)
2,r :n

)
, B2 =

(
6�(α)

1,r :n
−15�(α)

2,r :n
)
and B3 =

(
15�(α)

2,r :n
)
. Therefore,

∂ ln f[r :n](y;α, c)

∂c
= 1

c
+ ln y + B2yc ln y + 2B3y2c ln y

B1 + B2yc + B3y2c
,
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which implies
(

∂ ln f[r :n](y;α, c)

∂c

)2

= 1

c2
+ (ln y)2 +

(
B2yc ln y+2B3y2c ln y

B1+B2yc+B3y2c

)2

+ 2 ln y

c

+2

c

(
B2yc ln y+2B3y2c ln y

B1+B2yc+B3y2c

)
+ 2

(
B2yc ln y+2B3y2c ln y

B1 + B2yc+B3y2c

)
ln y.

(4.4)

Thus, (4.4) yields

Ic(Y[r :n];α, c) =
∫ 1

0

(
∂ ln fY[r :n](y;α, c)

∂c

)2

f[r :n](y;α, c) =
6∑

i=1

ki ,

where

k1 = 1

c2

∫ 1

0
cyc−1

(
B1 + B2y

c + B3y
2c

)
dy = 1

c2
,

k2 = c
∫ 1

0
yc−1

(
B1 + B2y

c + B3y
2c

)
(ln y)2dy = 27(8B1 + B2) + 8B3

108c2
,

k3 = c
∫ 1

0
yc−1

(
B2yc ln y + 2B3y2c ln y

)2

B1 + B2yc + B3y2c
dy,

k4 = 2
∫ 1

0
yc−1(B1 + B2y

c + B3y
2c) ln ydy = −36B1 + 9B2 + 4B3

18c2
,

k5 = 2
∫ 1

0
yc−1

(
B2y

c ln y + 2B3y
2c ln y

)
dy = −9B2 + 8B3

18c2
,

and

k6 = 2c
∫ 1

0
yc−1

(
B2y

c ln y + 2B3y
2c ln y

)
ln ydy = 27B2 + 16B3

54c2
.

Therefore, we get Ic(Y[r :n];α, c) = 1
c2

(
1 − 1

4 B2 − 8
27 B3

) + k3. Table 3 provides the
values of Ic(Y[r :n];α, c), for n = 5, 15, c = 2. From Table 3, the following properties
can be extracted:

• Generally, we have that Ic(Y[r :n];α, 2) increases when the difference n − r
increases. In contrast, Ic(Y[r :n];α, 2) increaseswhen the difference n−r decreases.
Moreover, Table 3 reveals that the greatest values of FI are obtained at the maxi-
mum OSs.

• Generally, we have that Ic(Y[ n+1
2 :n];α, 2) = Ic(Y[ n+1

2 :n]; −α, 2).

• Ic(Y[r :n];α, 2) =Ic(Y[n−r+1:n]; −α, 2).
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5 Cumulative residual FI in Y[r:n]

Theorem 5.1 Let F[r :n](y;α) be the DF of the concomitant of Y[r :n] based on SAR(α).

Then, the CF for location parameter based on Y[r :n], is given by

CF(Y[r :n];α) =
∫ ∞

−∞

(
∂ ln F [r :n](y;α)

∂ y

)2

F [r :n](y;α)dy

= CF(Y ) + ζ(α) + 2η(α) + ξ(α),

where

ζ(α) =
∫ ∞

−∞

(
∂ ln FY (y)

∂ y

)2 (
3�(α)

1,r :n FY (y) + 5

2
�

(α)
2,r :n FY (y)ϕ(FY (y))

)
FY (y)dy,

η(α) = −
∫ ∞

−∞

(
3�(α)

1,r :n − 5

2
�

(α)
2,r :n + 10�(α)

2,r :n FY (y)

)
f 2Y (y)dy,

and

ξ(α) =
∫ ∞

−∞

[
fY (y)

(
3�(α)

1,r :n − 5
2�

(α)
2,r :n + 10�(α)

2,r :n FY (y)
)]2

1 + (3�(α)
1,r :n − 5

2�
(α)
2,r :n)FY (y) + 5�(α)

2,r :n F2
Y (y)

FY (y)dy.

Proof By using (4.1), the CF of Y[r :n] is given by

CF(Y[r :n];α)

=
∫ ∞

−∞

(
∂ ln FY (y)

∂ y
+ ∂ ln(1 + 3�(α)

1,r :n FY (y) + 5
2�

(α)
2,r :n FY (y)ϕ(FY (y))

∂ y

)2

×
(
FY (y)

[
1 + 3�(α)

1,r :n FY (y) + 5

2
�

(α)
2,r :n FY (y)ϕ(FY (y))

])
dy

=
∫ ∞

−∞

(
∂ ln FY (y)

∂ y

)2

FY (y)dy +
∫ ∞

−∞

(
∂ ln FY (y)

∂ y

)2

×
(
3�(α)

1,r :n FY (y) + 5

2
�

(α)
2,r :n FY (y)ϕ(FY (y))

)
FY (y)dy

+
∫ ∞

−∞

(
∂ ln(1 + 3�(α)

1,r :n FY (y) + 5
2�

(α)
2,r :n FY (y)ϕ(FY (y))

∂ y

)2

×
(
1 + 3�(α)

1,r :n FY (y) + 5

2
�

(α)
2,r :n FY (y)ϕ(FY (y))

)
FY (y)dy

+2
∫ ∞

−∞

(
∂ ln FY (y)

∂ y

)

×
(

∂ ln(1 + 3�(α)
1,r :n FY (y) + 5

2�
(α)
2,r :n FY (y)ϕ(FY (y))

∂ y

)
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×
(
1 + 3�(α)

1,r :n FY (y) + 5

2
�

(α)
2,r :n FY (y)ϕ(FY (y))

)
FY (y)dy.

��
Proposition 2 Let F [r :n](y;α) and R[r :n](y;α) be the survival and hazard functions of

concomitant Y[r :n] from SAR(α), respectively, where R[r :n](y;α) = f[r :n](y;α)

F [r :n](y;α)
. Then,

CF(Y[r :n];α) = E
[
R[r :n](Y[r :n];α)

] ≥ 1

E(Y[r :n])
.

Proof From the definition of CF(Y[r :n];α) and by using the result of Nanda [27], that
E[RFX (X)] ≥ 1

E(X)
, we get

CF(Y[r :n];α) =
∫ ∞

−∞

(
∂ ln F [r :n](y;α)

∂ y

)2

F [r :n](y;α)dy

=
∫ ∞

−∞

(
− f[r :n](y;α)

F [r :n](y;α)

)2

F [r :n](y;α)dy

=
∫ ∞

−∞
R[r :n](y;α) f[r :n](y;α)dy ≥ 1

E(Y[r :n])
.

The proof is completed. ��
Example 5.1 Let X and Y have exponential distributions with means 1

θ∗ and 1
θ
, respec-

tively. Then, CF(Y[r :n];α) = θ, ζ(α) = θ
2 (3�(α)

1,r :n − 5
2�

(α)
2,r :n) + 5θ

3 �
(α)
2,r :n, and

η(α) = θ
2 (−3�(α)

1,r :n + 5
2�

(α)
2,r :n) − 5θ

3 �
(α)
2,r :n Thus, the CF of Y[r :n] is given by

CF(Y[r :n];α)

= (1 − 3�(α)
1,r :n + 5

2
�

(α)
2,r :n)θ + (3�(α)

1,r :n − 5

2
�

(α)
2,r :n)

θ

2
− 5θ

3
�

(α)
2,r :n + θ2 J (θ),

where

J (θ)=
∫ ∞

0

(
3�(α)

1,r :n − 5
2�

(α)
2,r :n + 10�(α)

2,r :n(1 − e−θ y)
)2

e−3θ y

1 + (3�(α)
1,r :n − 5

2�
(α)
2,r :n)(1 − e−θ y) + 5�(α)

2,r :n(1 − e−θ y)2
dy.

Table 4 provides CF(Y[r :n];α) values for n = 5, 15, θ = 1. From Table 4 following
properties can be extracted:

• Generally, we have CF(Y[ n+1
2 :n];α) = CF(Y[ n+1

2 :n]; −α, ). Moreover,

CF(Y[r :n];α) = CF(Y[n−r+1:n]; −α).

• with fixed n and α > 0, the value ofCF(Y[r :n];α) slowly decreases as r increases.
In contrast, the value of CF(Y[r :n];α) slowly increases as r increases for α < 0.
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6 Concluding remarks

Among all the known families that generalize the FGM family, we exclusively found
that the Sarmanov family shares two properties with the FGM family of theoretical and
practical importance. The first property is that they both have one shape parameter,
which makes it easy to work with them for bivariate data modeling. The second
property is the radial symmetry, which gives many of the measures of information
associatedwith them,mathematical flexibility in termsof simplifying themathematical
relationships that describe those measures. On the other hand, the Sarmanov family
surpassed all known families in terms of the high coefficient of correlation between
its components.

If we transfer to the issue of modelling multivariate data (with more than two vari-
ables), we find the multivariate FGM, which was proposed by Johnson and Kotz [23].
Themultivariate FGM family, which has a direct structure and can describe the interre-
lationships of two or more variables, is useful as an alternative to a multivariate normal
distribution and it has been applied to statistical modeling in various research fields.
The formulation of the Sarmanov family as a multivariate distribution, which benefits
from the radial symmetry property and offers high partial correlations between its
variables, will be a very useful contribution in the field of multivariate data modelling
and represents a potential future development for the current work.
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