Skip to main content
Log in

Electrode reaction of Pr(III) and coreduction of Pr(III) and Pb(II) on W electrode in eutectic LiCl-KCl

  • Original Paper
  • Published:
Ionics Aims and scope Submit manuscript

Abstract

The electrode reaction of Pr(III) and coreduction of Pb(II) and Pr(III) were studied on an inert W electrode in eutectic LiCl-KCl to extract Pr from molten salt. The electrode process kinetic of Pr(III) on W electrode was firstly explored employing cyclic voltammetry (CV) and Tafel technique, such as the diffusion coefficient of Pr(III) in eutectic LiCl-KCl and the exchange current density (j0) for Pr(III)/Pr(0) couple and the electrode reaction activation energy. Then, various electrochemical techniques were used to investigate the coreduction of Pb(II) and Pr(III). Four cathode current peaks ascribed to the formation of PrxPby intermetallic compounds were detected, which indicated that the Pr could deposit on pre-deposited Pb film, react with Pb, and form PrxPby intermetallic compounds. Furthermore, the electrolytic products formed by galvanostatic electrolysis were characterized by scanning electron microscopy coupled with energy dispersive X-ray diffraction, which illustrated the formation of PrPb3 intermetallic compound in LiCl-KCl-PbCl2-PrCl3 melt.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Hutchens RD, Wallace WE (1971) Magnetic properties of rare earth-lead intermetallics. J Solid State Chem 3:564–566. https://doi.org/10.1016/0022-4596(71)90102-2

    Article  CAS  Google Scholar 

  2. Stalinski B (1974) Magnetic properties of some simple metallic and semimetallic compounds of electron metals with main group elements. AIP Conf Proc 18:490

    Google Scholar 

  3. Li DG, Zhou GS, Lin GF et al (2005) Anodic behavior of lead alloy with rare earth additive in sulfuric acid solution. J Chin RE Soc 23(2):224–227

    CAS  Google Scholar 

  4. Liu HT, Yang J, Liang HH et al (2001) Effect of cerium on the anodic corrosion of Pb-Ca-Sn alloy in sulfuric acid solution. J Power Sources 93(1–2):230–233. https://doi.org/10.1016/S0378-7753(00)00583-8

    Article  CAS  Google Scholar 

  5. Chen HY, Li S, Li AJ et al (2007) Lead-samarium alloys for positive grids of valve-regulated lead-acid batteries. J Power Sources 168:79–89. https://doi.org/10.1016/j.jpowsour.2006.11.091

    Article  CAS  Google Scholar 

  6. Li AJ, Chen YM, Chen HY et al (2009) Electrochemical behavior and application of lead-lanthanum alloys for positive grids of lead acid batteries. J Power Sources 189:1204–1211. https://doi.org/10.1016/j.jpowsour.2008.12.093

    Article  CAS  Google Scholar 

  7. Takahisa I, Toshiyuki N, Yasuhiko I (2003) Electrochemical formation of Yb–Ni alloy films by Li codeposition method in a molten LiCl–KCl–YbCl3 system. Electrochim Acta 48(11):1531–1536. https://doi.org/10.1016/S0013-4686(03)00031-8

    Article  CAS  Google Scholar 

  8. Bongyoung K, Donghyoung L, Junyeop L et al (2010) Electrochemical and spectroscopic investigations of Tb(III) in molten LiCl–KCl eutectic at high temperature. Electrochem Commun 12(8):1005–1008. https://doi.org/10.1016/j.elecom.2010.05.009

    Article  CAS  Google Scholar 

  9. Córdoba GD, Laplace A, Conocar O et al (2009) Determination of the activity coefficient of Am in liquid Al by electrochemical methods. J Nucl Mater 393(3):459–464. https://doi.org/10.1016/j.jnucmat.2009.07.002

    Article  CAS  Google Scholar 

  10. Yoon IC (1989) The integral fast reactor. Nucl Technol 88(2):129–138. https://doi.org/10.13182/NT88-129

    Article  Google Scholar 

  11. Tadafumi K, Masatoshi I, Yuichi S et al (1997) An experimental study of molten salt electrorefining of uranium using solid iron cathode and liquid cadmium cathode for development of pyrometallurgical. J Nucl Sci Technol 34(4):384–393. https://doi.org/10.1080/18811248.1997.9733678

    Article  Google Scholar 

  12. Hirotake M, Takuya S, Kimikazu M et al (1994) Reductive extraction behaviour of actinide and lanthanide elements in molten salt and liquid metal binary phase systems. J Alloy Compd 213-214:354–359. https://doi.org/10.1016/0925-8388(94)90930-X

    Article  Google Scholar 

  13. Hirotake M, Hajimu Y, Sataro N et al (1997) Equilibrium distributions of actinides and lanthanides in molten chloride salt and liquid zinc binary phase system. J Nucl Mater 247:197–202. https://doi.org/10.1016/S0022-3115(98)00097-X

    Article  Google Scholar 

  14. Gibilaro M, Massot L, Chamelot P et al (2009) Co-reduction of aluminium and lanthanide ions in molten fluorides: application to cerium and samarium extraction from nuclear wastes. Electrochim Acta 54(22):5300–5306. https://doi.org/10.1016/j.electacta.2009.01.074

    Article  CAS  Google Scholar 

  15. Castrillejoa Y, Fernandez P, Medina J et al (2011) Electrochemical extraction of samarium from molten chlorides in pyrochemical processes. Electrochim Acta 56(24):8638–8644. https://doi.org/10.1016/j.electacta.2011.07.059

    Article  CAS  Google Scholar 

  16. Su LL, Liu K, Liu YL et al (2014) Electrochemical behaviors of Dy(III) and its co-reduction with Al(III) in molten LiCl-KCl salts. Electrochim Acta 147:87–95. https://doi.org/10.1016/j.electacta.2014.09.095

    Article  CAS  Google Scholar 

  17. Ping XY, Liu K, Liu YL et al (2017) Direct electrochemical preparation of Ni-Zr alloy from mixture oxides in LiCl molten salt. J Electrochem Soc 164(13):D888–D894. https://doi.org/10.1149/2.1361713jes

    Article  CAS  Google Scholar 

  18. Castrillejo Y, Bermejo MR, Martínez AM et al (2007) Application of electrochemical techniques in pyrochemical processes- electrochemical behaviour of rare earths at W, Cd, Bi and Al electrodes. J Nucl Mater 360:32–42. https://doi.org/10.1016/j.jnucmat.2006.08.011

    Article  CAS  Google Scholar 

  19. Gibilaro M, Massot L, Chamelot P et al (2008) Study of neodymium extraction in molten fluorides by electrochemical co-reduction with aluminium. J Nucl Mater 382:39–45. https://doi.org/10.1016/j.jnucmat.2008.09.004

    Article  CAS  Google Scholar 

  20. Li M, Gu QQ, Han W et al (2015) Electrochemical behavior of La(III) on liquid Bi electrode in LiCl–KCl melts. Determination of thermodynamic properties of La–Bi and Li–Bi intermetallic compounds. RSC Adv 5:82471–82480. https://doi.org/10.1039/C5RA12723H

    Article  CAS  Google Scholar 

  21. Han W, Li ZY, Li M et al (2017) Electrochemical extraction of holmium and thermodynamic properties of Ho-Bi alloys in LiCl-KCl eutectic. J Electrochem Soc 164(4):E62–E70. https://doi.org/10.1149/2.0741704jes

    Article  CAS  Google Scholar 

  22. Tetsuya K, Tadashi I, Takashi I et al (2006) Separation behaviors of actinides from rare-earths in molten salt electrorefining using saturated liquid cadmium cathode. J Nucl Mater 357:105–114. https://doi.org/10.1016/j.jnucmat.2006.06.003

    Article  CAS  Google Scholar 

  23. Wang L, Liu YL, Liu K et al (2015) Electrochemical extraction of cerium by forming Ce-Zn alloys in LiCl-KCl eutectic on W and liquid Zn electrodes. J Electrochem Soc 162(9):E179–E184. https://doi.org/10.1149/2.1141509jes

    Article  CAS  Google Scholar 

  24. Han W, Li WL, Li M, Li Z, Sun Y, Yang X, Zhang M (2018) Electrochemical coreduction of Y(III) and Zn(II) and extraction of yttrium on Zn electrode in LiCl-KCl eutectic melts. J Solid State Electrchem 22(8):2435–2444. https://doi.org/10.1007/s10008-018-3956-5

    Article  CAS  Google Scholar 

  25. Liu YL, Zhou W, Tang HB et al (2016) Diffusion coefficient of Ho3+ at liquid zinc electrode and co-reduction behaviors of Ho3+ and Zn2+ on W electrode in the LiCl-KCl eutectic. Electrochim Acta 211:313–321. https://doi.org/10.1016/j.electacta.2016.06.061

    Article  CAS  Google Scholar 

  26. Liu YL, Ye GA, Liu K et al (2015) Electrochemical behavior of La(III) on the zinc-coated W electrode in LiCl-KCl eutectic. Electrochim Acta 168:206–215. https://doi.org/10.1016/j.electacta.2015.03.219

    Article  CAS  Google Scholar 

  27. Luo LX, Liu YL, Liu N et al (2016) Electrochemical and thermodynamic properties of Nd (III)/Nd (0) couple at liquid Zn electrode in LiCl-KCl melt. Electrochim Acta 191:1026–1036. https://doi.org/10.1016/j.electacta.2016.01.115

    Article  CAS  Google Scholar 

  28. Liu K, Liu YL, Chai ZF et al (2017) Evaluation of the electroextractions of Ce and Nd from LiCl-KCl molten salt using liquid Ga electrode. J Electrochem Soc 164(4):D169–D178. https://doi.org/10.1149/2.0511704jes

    Article  CAS  Google Scholar 

  29. Castrillejo Y, Bermejo MR, Arocas DP et al (2005) Electrochemical behaviour of praseodymium (III) in molten chlorides. J Electroanal Chem 575:61–74. https://doi.org/10.1016/j.jelechem.2004.08.020

    Article  CAS  Google Scholar 

  30. Castrillejo Y, Bermejo MR, Arocas DP et al (2005) The electrochemical behaviour of the Pr(III)/Pr redox system at Bi and Cd liquid electrodes in molten eutectic LiCl-KCl. J Electroanal Chem 579:343–358. https://doi.org/10.1016/j.jelechem.2005.03.001

    Article  CAS  Google Scholar 

  31. Jiang T, Peng SM, Li M et al (2016) Electrochemical behavior of Pr(III) ions on a Bi-coated W electrode in LiCl-KCl melts. Acta Phys -Chim Sin 32:1708–1714

    Article  CAS  Google Scholar 

  32. Wang YC, Li M, Han W, Zhang M, Yang Y, Sun Y, Zhao Y, Yan Y (2015) Electrochemical extraction and separation of praseodymium and erbium on reactive magnesium electrode in molten salts. J Solid State Electrchem 19:3629–3638. https://doi.org/10.1007/s10008-015-2989-2

    Article  CAS  Google Scholar 

  33. Toshiyuki N, Hiroyuki K, Koji A et al (2005) Electrochemical formation and phase control of Pr-Ni alloys in a molten LiCl-KCl-PrCl3 system. J Electrochem Soc 152(4):C183–C189. https://doi.org/10.1149/1.1864281

    Article  CAS  Google Scholar 

  34. Li M, Li W, Han W et al (2014) Electrochemical behavior of Pr(III) in the LiCl-KCl melt on a Ni electrode. Chem J Chinese U 35(12):2662–2667. https://doi.org/10.7503/cjcu20140405

    Article  CAS  Google Scholar 

  35. Li M, Wang J, Han W et al (2017) Electrochemical formation and thermodynamic evaluation of Pr-Zn intermetallic compounds in LiCl-KCl eutectic melts. Electrochim Acta 228:299–307. https://doi.org/10.1016/j.electacta.2017.01.070

    Article  CAS  Google Scholar 

  36. Berzins T, Delahay P (1953) Theory of electrolysis at constant current in unstirred solution. II Consecutive electrochemical reactions. J Am Chem Soc 75(17):4205–4213. https://doi.org/10.1021/ja01113a022

    Article  CAS  Google Scholar 

  37. Castrillejo Y, Bermejo MR, Diaz P et al (2005) Electrochemical behaviour of praseodymium (III) in molten chlorides. J Electroanal Chem 575:61–74. https://doi.org/10.1016/j.jelechem.2004.08.020

    Article  CAS  Google Scholar 

  38. Bard AJ, Faulkner LR (2001) Electrochemical methods, fundamentals and applications, 2nd edn. Wiley, New York

    Google Scholar 

  39. Lim KH, Yun JI (2019) Study on the exchange current density of lanthanide chlorides in LiCl-KCl molten salt. Electrochim Acta 295:577–583. https://doi.org/10.1016/j.electacta.2018.10.104

    Article  CAS  Google Scholar 

  40. Kim KR, Choi SY, Kim JG et al (2015) Electrochemical investigation of exchange current density of uranium and rare-earths couples (M3+/M0) in LiCl-KCl eutectic electrolyte. Int J Electrochem Sci 10:7660–7670

    CAS  Google Scholar 

  41. Wang YC, Liu YH, Li M, Han W, Liu Y, Liu Y (2019) Extraction of gadolinium on Cu electrode from LiCl-KCl melts by formation of Cu-Gd alloys. Ionics 25:1897–1909. https://doi.org/10.1007/s11581-018-2762-5

    Article  CAS  Google Scholar 

  42. Han W, Wang WJ, Dong YC et al (2018) The kinetics process of a Pb(II)/Pb(0) couple and selective fabrication of Li-Pb alloys in LiCl-KCl melts. RSC Adv 8(53):30530–30538. https://doi.org/10.1039/C8RA06329J

    Article  CAS  Google Scholar 

  43. Zydzik M, Smids M, Vanende MA et al (2014) Critical thermodynamic evaluation and optimization of the Pb-Pr, Pb-Nd, Pb-Tb and Pb-Dy systems. CALPHAD: Computer Coupling of Phase Diagrams and Thermochemistry 46:1–17

    Article  CAS  Google Scholar 

Download references

Funding

The work was financially supported by the National Natural Science Foundation of China (21876034, 11875116, 21790373, 11675044, and 11575047).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Mei Li or Wei Han.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, M., Sun, Z., Guo, D. et al. Electrode reaction of Pr(III) and coreduction of Pr(III) and Pb(II) on W electrode in eutectic LiCl-KCl. Ionics 26, 3901–3909 (2020). https://doi.org/10.1007/s11581-020-03518-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11581-020-03518-4

Keywords

Navigation