Skip to main content
Log in

Electrochemical properties of LiMn2O4 prepared with tartaric acid chelating agent

  • Original Paper
  • Published:
Ionics Aims and scope Submit manuscript

Abstract

Lithium manganese oxide (LiMn2O4) has been prepared using sol-gel technique under acidic (pH = 5.8) and alkaline (pH = 9) conditions with tartaric acid as chelating agent. X-ray studies show that under acidic condition, an Mn2O3 peak was observed indicating the presence of impurities. No impurity was observed for LiMn2O4 under alkaline conditions. The particle size is mostly in the range of 124 to 185 nm from HR-TEM. The lithium diffusion coefficient, D Li+ in LiMn2O4 is of the order 10−9 cm2 s−1. By using density functional theory (DFT) calculations, structural properties have been obtained. The specific discharge capacity of the cells with LiMn2O4 prepared under alkaline condition and with LiMn2O4 prepared under acidic condition discharged at 0.5 C is in the ranges of 132 to 142 and 128 to 139 mAh g−1, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Ji LW, Lin Z, Alcoutlabi M, Zhang XW (2011) Recent developments in nanostructured anode materials for rechargeable lithium-ion batteries. Energ Environ Sci 4(8):2682–2699

    Article  CAS  Google Scholar 

  2. Goodenough JB, Kim Y (2010) Challenges for rechargeable Li batteries. Chem Mater 22(3):587–603

    Article  CAS  Google Scholar 

  3. Luo JY, Li XL, Xia YY (2007) Synthesis of highly crystalline spinel LiMn2O4 by a soft chemical route and its electrochemical performance. Electrochim Acta 52(13):4525–4531

    Article  CAS  Google Scholar 

  4. Wu HM, Tu JP, Chen XT, Li Y, Zhao XB, Cao GS (2006) Electrochemical study on LiMn2O4 as cathode material for lithium ion batteries. J Electroanal Chem 586(2):180–183

    Article  CAS  Google Scholar 

  5. Myung ST, Chung HT, Komaba S, Kumagai N, Gu HB (2000) Capacity fading of LiMn2O4 electrode synthesized by the emulsion drying method. J Power Sources 90(1):103–108

    Article  CAS  Google Scholar 

  6. Sun YK, Oh IH, Choi JG (1999) Characteristics of spinel LiMgxMn2-xO4 cathode materials prepared by a sol-gel method. J New Mat Elect Syst 2(1):51–57

    CAS  Google Scholar 

  7. Shen PZ, Jia DZ, Huang YD, Liu L, Guo ZP (2006) LiMn2O4 cathode materials synthesized by the cellulose-citric acid method for lithium ion batteries. J Power Sources 158(1):608–613

    Article  CAS  Google Scholar 

  8. Michalska M, Lipinska L, Mirkowska M, Aksienionek M, Diduszko R, Wasiucionek M (2011) Nanocrystalline lithium-manganese oxide spinels for Li-ion batteries—sol-gel synthesis and characterization of their structure and selected physical properties. Solid State Ionics 188(1):160–164

    Article  CAS  Google Scholar 

  9. Suryakala K, Marikkannu K, Kalaignan GP, Vasudevan T (2008) Synthesis and electrochemical characterization of LiMn2O4 and LiNd0.3Mn1.7O4 as cathode for lithium ion battery. Int J Electrochem Sc 3(2):136–144

    CAS  Google Scholar 

  10. Yue HJ, Huang XK, Lv DP, Yang Y (2009) Hydrothermal synthesis of LiMn2O4/C composite as a cathode for rechargeable lithium-ion battery with excellent rate capability. Electrochim Acta 54(23):5363–5367

    Article  CAS  Google Scholar 

  11. Ragavendran KR, Lu L, Barner K, Arof AK (2013) Synthesis methods and electrochemical performance: a theory on the valence disproportionation in LiMyMn2-yO4 (M = Mn, Co) with Interalia guiding principles for a photo-chargeable lithium battery. J Phys Chem C 117(45):23547–23557

    Article  CAS  Google Scholar 

  12. Qiao Y, Li SR, Yu Y, Chen CH (2013) Synthesis and electrochemical properties of high performance yolk-structured LiMn2O4 microspheres for lithium ion batteries. J Mater Chem A 1(3):860–867

    Article  CAS  Google Scholar 

  13. Goriparti S, Miele E, De Angelis F, Di Fabrizio E, Zaccaria RP, Capiglia C (2014) Review on recent progress of nanostructured anode materials for Li-ion batteries. J Power Sources 257:421–443

    Article  CAS  Google Scholar 

  14. Hwang BJ, Santhanam R, Liu DG (2001) Effect of various synthetic parameters on purity of LiMn2O4 spinel synthesized by a sol-gel method at low temperature. J Power Sources 101(1):86–89

    Article  CAS  Google Scholar 

  15. Seyedahmadian M, Houshyarazar S, Amirshaghaghe A (2013) Synthesis and characterization of nanosized of spinel LiMn2O4 via sol-gel and freeze drying methods. B Kor Chem Soc 34(2):622–628

    Article  CAS  Google Scholar 

  16. Hwang BJ, Santhanam R, Liu DG (2001) Characterization of nanoparticles of LiMn2O4 synthesized by citric acid sol-gel method. J Power Sources 97-8:443–446

    Article  Google Scholar 

  17. Hon YM, Lin SP, Fung KZ, Hon MH (2002) Synthesis and characterization of nano-LiMn2O4 powder by tartaric acid gel process. J Eur Ceram Soc 22(5):653–660

    Article  CAS  Google Scholar 

  18. Lee YS, Sun YK, Nahm KS (1998) Synthesis of spinel LiMn2O4 cathode material prepared by an adipic acid-assisted sol-gel method for lithium secondary batteries. Solid State Ionics 109(3–4):285–294

    Article  CAS  Google Scholar 

  19. Thirunakaran R, Sivashanmugam A, Gopukumar S, Dunnill CW, Gregory DH (2008) Studies on chromium/aluminium-doped manganese spinel as cathode materials for lithium-ion batteries—a novel chelated sol-gel synthesis. J Mater Process Technol 208(1–3):520–531

    Article  CAS  Google Scholar 

  20. Thirunakaran R, Kim KT, Kang YM, Young-Lee J (2005) Cr (3+) modified LiMn2O4 spinel intercalation cathodes through oxalic acid assisted sol-gel method for lithium rechargeable batteries. Mater Res Bull 40(1):177–186

    Article  CAS  Google Scholar 

  21. Zhao TL, Chen S, Li L, Zhang XF, Chen RJ, Belharouak I, Wu F, Amine K (2013) Synthesis, characterization, and electrochemistry of cathode material Li [Li0.2Co0.13Ni0.13Mn0.54]O-2 using organic chelating agents for lithium-ion batteries. J Power Sources 228:206–213

    Article  CAS  Google Scholar 

  22. Sun HZ, Li HY, Sadler PJ (1997) The biological and medicinal chemistry of bismuth. Chemische Berichte-Recueil 130(6):669–681

    Article  CAS  Google Scholar 

  23. Zhang Y, Shin HC, Dong J, Liu M (2004) Nanostructured LiMn2O4 prepared by a glycine-nitrate process for lithium-ion batteries. Solid State Ionics 171(1–2):25–31

    Article  CAS  Google Scholar 

  24. Rousse G, Tarascon JM (2014) Sulfate-based polyanionic compounds for Li-ion batteries: synthesis, crystal chemistry, and electrochemistry aspects. Chem Mater 26(1):394–406

    Article  CAS  Google Scholar 

  25. Anisimov VI, Gunnarsson O (1991) Density-functional calculation of effective coulomb interactions in metals. Phys Rev B 43(10):7570–7574

    Article  CAS  Google Scholar 

  26. Liechtenstein AI, Anisimov VI, Zaanen J (1995) Density-functional theory and strong-interactions—orbital ordering in Mott-Hubbard insulators. Phys Rev B 52(8):R5467–R5470

    Article  CAS  Google Scholar 

  27. Yi TF, Zhu YR, Zhu RS (2008) Density functional theory study of lithium intercalation for 5V LiNi0.5Mn1.5O4 cathode materials. Solid State Ionics 179(38):2132–2136

    Article  CAS  Google Scholar 

  28. Hasegawa A, Yoshizawa K, Yamabe T (2000) Crystal orbital overlap population analysis of the capacity fading of metal-substituted spinel lithium manganate LiMn2O4. J Electrochem Soc 147(11):4052–4057

    Article  CAS  Google Scholar 

  29. Yahya R, Yahya AH, Basirun WJ, Puteh R, Arof AK, Yahya MZA, Vengidason S (2005) Synthesis of lithium intercalation oxides based on manganese and copper by the sol-gel method. Indonesian Journal of Physics 16(1):21–24

  30. Singh G, Panwar A, Sil A, Ghosh S (2009) Synthesis and characterization of citric acid assisted Cr doped lithium manganese oxide spinel. Ceramics-Silikaty 53(4):260–267

    CAS  Google Scholar 

  31. Liu H, Wu YP, Rahm E, Holze R, Wu HQ (2004) Cathode materials for lithium ion batteries prepared by sol-gel methods. J Solid State Electr 8(7):450–466

    Article  CAS  Google Scholar 

  32. Lee YS, Kumada N, Yoshio M (2001) Synthesis and characterization of lithium aluminum-doped spinel (LiAlxMn2-xO4) for lithium secondary battery. J Power Sources 96(2):376–384

    Article  CAS  Google Scholar 

  33. Wei YJ, Nam KW, Kim KB, Chen G (2006) Spectroscopic studies of the structural properties of Ni substituted spinel LiMn2O4. Solid State Ionics 177(1–2):29–35

    Article  CAS  Google Scholar 

  34. Wang JL, Li ZH, Yang J, Tang JJ, Yu JJ, Nie WB, Lei GT, Xiao QZ (2012) Effect of Al-doping on the electrochemical properties of a three-dimensionally porous lithium manganese oxide for lithium-ion batteries. Electrochim Acta 75:115–122

    Article  CAS  Google Scholar 

  35. Vediappan K, Lee CW (2010) Preliminary studies of biominerals-coated spinel LiMn2O4 as a cathode material on electrochemical performances for Li-ion rechargeable batteries. Phys Scr 2010(T139):014040

  36. Molenda J, Swierczek K, Kucza W, Marzec J, Stoklosa A (1999) Electrical properties of LiMn2O4-delta at temperatures 220-1100 K. Solid State Ionics 123(1–4):155–163

    Article  CAS  Google Scholar 

  37. Hoang K (2014) Understanding the electronic and ionic conduction and lithium over-stoichiometry in LiMn2O4 spinel. J Mater Chem A 2(43):18271–18280

    Article  CAS  Google Scholar 

  38. Das SR, Majumder SB, Katiyar RS (2005) Kinetic analysis of the Li+ ion intercalation behavior of solution derived nano-crystalline lithium manganate thin films. J Power Sources 139(1–2):261–268

    Article  CAS  Google Scholar 

  39. Cheng B, Chen XL, Li XW, Xu HY, Yang J, Qian YT (2012) High rate performance of LiM0.1Mn1.9O4 (M = Mn, Al, Fe) as cathodes of lithium ion battery at 25 degrees C and 55 degrees C. Int J Electrochem Sc 7(7):6453–6464

    CAS  Google Scholar 

  40. Ilango PR, Prasanna K, Do SJ, Jo YN, Lee CW (2016) Eco-friendly nitrogen-containing carbon encapsulated LiMn2O4 cathodes to enhance the electrochemical properties in rechargeable Li-ion batteries. Sci Rep 6:29826

  41. Peng CC, Bai HL, Xiang MW, Su CW, Liu GY, Guo JM (2014) Effect of calcination temperature on the electrochemical properties of spinel LiMn2O4 prepared by solid-state combustion synthesis. Int J Electrochem Sc 9(4):1791–1798

    CAS  Google Scholar 

Download references

Acknowledgements

We gratefully acknowledge funding support from the MOSTI – NANOTEKNOLOGI TOP-DOWN (NANOFUND), Grant No.: 53-02-03-1089 and University of Malaya, Grant No.: RP003C-13AFR.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. K. Arof.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Arof, A.K., Kufian, M.Z., Aziz, N. et al. Electrochemical properties of LiMn2O4 prepared with tartaric acid chelating agent. Ionics 23, 1663–1674 (2017). https://doi.org/10.1007/s11581-017-1997-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11581-017-1997-x

Keywords

Navigation