Skip to main content
Log in

Hybrid solid electrolytes with excellent electrochemical properties and their applications in all-solid-state cells

  • Original Paper
  • Published:
Ionics Aims and scope Submit manuscript

Abstract

Three types of inorganic electrolytes [Li10GeP2S12 (LGPS), 75Li2S·24P2S5·1P2O5 (LPOS), Li1.5Al0.5Ge1.5(PO4)3 (LAGP)] with different particle sizes and electrochemical properties are selected as active fillers incorporated into poly(ethylene oxide) (PEO) matrix to fabricate hybrid solid electrolytes. The optimum composition of each filler is found in consideration of ionic conductivity. Their electrochemical characteristics are investigated. The optimal conductivities are 1.60 × 10−5, 1.18 × 10−5, and 2.12 × 10−5 S cm−1 at room temperature for PEO-1%LGPS, PEO-1%LPOS, and PEO-20%LAGP, respectively. The electrochemical stability windows of these hybrid solid electrolytes are all above 5 V (vs. Li+/Li). The results show that these fillers have positive effects on the ionic conductivity, lithium ion transference number, and electrochemical stability. The relationship between the type of filler and electrochemical properties has been investigated. All-solid-state cells LiFePO4/Li are fabricated and present fascinating electrochemical performance with high capacity retention and good cycling stability. This work provides promising electrolytes prepared by a simple method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Goodenough JB, Kim Y (2011) Challenges for rechargeable batteries. J Power Sources 196:6688–6694

    Article  CAS  Google Scholar 

  2. Bouchet R, Maria S, Meziane R, Aboulaich A, Lienafa L, Bonnet JP, Phan TNT, Bertin D, Gigmes D, Devaux D, Denoyel R, Armand M (2013) Single-ion BAB triblock copolymers as highly efficient electrolytes for lithium-metal batteries. Nat Mater 12:452–457

    Article  CAS  Google Scholar 

  3. Nguyen CA, Argun AA, Hammond PT, Lu XH, Lee PS (2011) Layer-by-layer assembled solid polymer electrolyte for electrochromic devices. Chem Mat 23:2142–2149

    Article  CAS  Google Scholar 

  4. Christie AM, Lilley SJ, Staunton E, Andreev YG, Bruce PG (2005) Increasing the conductivity of crystalline polymer electrolytes. Nature 433:50–53

    Article  CAS  Google Scholar 

  5. Thokchom JS, Gupta N, Kumar B (2008) Superionic conductivity in a lithium aluminum germanium phosphate glass-ceramic. J Electrochem Soc 155:A915–A920

    Article  CAS  Google Scholar 

  6. Kamaya N, Homma K, Yamakawa Y, Hirayama M, Kanno R, Yonemura M, Kamiyama T, Kato Y, Hama S, Kawamoto K, Mitsui A (2011) A lithium superionic conductor. Nat Mater 10:682–686

    Article  CAS  Google Scholar 

  7. Minami K, Hayashi A, Ujiie S, Tatsumisago M (2011) Electrical and electrochemical properties of glass-ceramic electrolytes in the systems Li2S-P2S5-P2S3 and Li2S-P2S5-P2O5. Solid State Ionics 192:122–125

    Article  CAS  Google Scholar 

  8. Scrosati B (1993) Applications of electroactive polymers. Chapman & Hall, London

    Book  Google Scholar 

  9. Gray FM (1997) Polymer electrolytes, in: RSC materials monographs. The Royal Society of Chemistry, Cambridge

    Google Scholar 

  10. Kim JG, Son B, Mukherjee S, Schuppert N, Bates A, Kwon O, Choi MJ, Chung HY, Park S (2015) A review of lithium and non-lithium based solid state batteries. J Power Sources 282:299–322

    Article  CAS  Google Scholar 

  11. Inda Y, Katoh T, Baba M (2007) Development of all-solid lithium-ion battery using Li-ion conducting glass-ceramics. J Power Sources 174:741–744

    Article  CAS  Google Scholar 

  12. Nan CW, Fan LZ, Lin YH, Cai Q (2003) Enhanced ionic conductivity of polymer electrolytes containing nanocomposite SiO2 particles. Phys Rev Lett 91:4

    Article  Google Scholar 

  13. Choi JH, Lee CH, Yu JH, Doh CH, Lee SM (2015) Enhancement of ionic conductivity of composite membranes for all-solid-state lithium rechargeable batteries incorporating tetragonal Li7La3Zr2O12 into a polyethylene oxide matrix. J Power Sources 274:458–463

    Article  CAS  Google Scholar 

  14. Jung YC, Lee SM, Choi JH, Jang SS, Kim DW (2015) All solid-state lithium batteries assembled with hybrid solid electrolytes. J Electrochem Soc 162:A704–A710

    Article  CAS  Google Scholar 

  15. Yin JY, Yao XY, Peng G, Yang J, Huang Z, Liu D, Tao YC, Xu XX (2015) Influence of the Li-Ge-P-S based solid electrolytes on NCA electrochemical performances in all-solid-state lithium batteries. Solid State Ionics 274:8–11

    Article  CAS  Google Scholar 

  16. Tao YC, Chen SJ, Liu D, Peng G, Yao XY, Xu XX (2016) Lithium superionic conducting oxysulfide solid electrolyte with excellent stability against lithium metal for all-solid-state cells. J Electrochem Soc 163:A96–A101

    Article  CAS  Google Scholar 

  17. Yang J, Huang Z, Huang BX, Zhou J, Xu XX (2015) Influence of phosphorus sources on lithium ion conducting performance in the system of Li2O-Al2O3-GeO2-P2O5 glass-ceramics. Solid State Ionics 270:61–65

    Article  CAS  Google Scholar 

  18. Evans J, Vincent CA, Bruce PG (1987) Electrochemical measurement of transference numbers in polymer electrolytes. Polymer 28:2324–2328

    Article  CAS  Google Scholar 

  19. Masoud EM, El-Bellihi AA, Bayoumy WA, Mousa MA (2013) Organic-inorganic composite polymer electrolyte based on PEO-LiClO4 and nano-Al2O3 filler for lithium polymer batteries: dielectric and transport properties. J Alloy Compd 575:223–228

    Article  CAS  Google Scholar 

  20. Kim JW, Ji KS, Lee JP, Park JW (2003) Electrochemical characteristics of two types of PEO-based composite electrolyte with functional SiO2. J Power Sources 119:415–421

    Article  Google Scholar 

  21. Chinnasamy RM, Chihiro Y, Fabio R, Bernhard R (2011) Correlation between micro-structural properties and ionic conductivity of Li1.5Al0.5Ge1.5(PO4)3 ceramics. J Power Sources 196:6456–6464

    Article  Google Scholar 

  22. Wetjen M, Navarra MA, Panero S, Passerini S, Scrosati B, Hassoun J (2013) Composite poly(ethylene oxide) electrolytes plasticized by N-alkyl-N-butylpyrrolidinium bis(trifluoromethanesulfonyl)imide for lithium batteries. ChemSusChem 6:1037–1043

    Article  CAS  Google Scholar 

  23. Plylahan N, Letiche M, Barr MKS, Djenizian T (2014) All-solid-state lithium-ion batteries based on self-supported titania nanotubes. Electrochem Commun 43:121–124

    Article  CAS  Google Scholar 

  24. Srivastava S, Schaefer JL, Yang Z, Tu Z, Archer LA (2014) 25th anniversary article: polymer-particle composites: phase stability and applications in electrochemical energy storage. Adv Mater 26:201–234

    Article  CAS  Google Scholar 

  25. Abraham KM, Alamgir M, Moulton RD (1991) Polyphosphazene-poly(olefin oxide) mixed polymer electrolytes: II. Characterization of MEEP/PPO(LiX)n. J Electrochem Soc 138:921–927

    Article  CAS  Google Scholar 

  26. Park CH, Kim DW, Prakash J, Sun YK (2003) Electrochemical stability and conductivity enhancement of composite polymer electrolytes. Solid State Ionics 159:111–119

    Article  CAS  Google Scholar 

  27. Marcinek M, Bac A, Lipka P, Zalewska A, Zukowska G, Borkowska R, Wieczorek W (2000) Effect of filler surface group on ionic interactions in PEG-LiClO4-Al2O3 composite polyether electrolytes. J Phys Chem B 104:11088–11093

    Article  CAS  Google Scholar 

  28. Croce F, Appetecchi GB, Persi L, Scrosati B (1998) Nanocomposite polymer electrolytes for lithium batteries. Nature 394:456–458

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors are grateful for financial support from the National Natural Science Foundation of China (Grant No. 51502317), the Strategic Priority Research Program of the Chinese Academy of Sciences (Grant Nos. XDA09010201 and XDA09010203), the Key Scientific and Technological Innovation Team Project of Zhejiang province (Grant No. 2013PT16), and Natural Science Foundation of Ningbo (Grant Nos. 2015A610238 and 2015A610027).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaoxiong Xu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, S., Zhao, Y., Yang, J. et al. Hybrid solid electrolytes with excellent electrochemical properties and their applications in all-solid-state cells. Ionics 23, 2603–2611 (2017). https://doi.org/10.1007/s11581-016-1905-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11581-016-1905-9

Keywords

Navigation