Skip to main content
Log in

Enhanced high-rate performance of sub-micro Li4Ti4.95Zn0.05O12 as anode material for lithium-ion batteries

  • Original Paper
  • Published:
Ionics Aims and scope Submit manuscript

Abstract

Zn-doped Li4Ti5O12 was prepared by a ball milling-assisted solid-state method, and the characters were determined by X-ray diffraction, Raman spectroscopy, scanning electron microscopy, cyclic voltammetry, and galvanostatic charge–discharge testing. The results show that Li4Ti5−x Zn x O12 (x = 0, 0.05) exhibits the pure phase structure, and Zn doping does not change the electrochemical reaction process and basic spinel structure of Li4Ti5O12. The particle size of both samples is about 300–500 nm. The prepared Li4Ti4.95Zn0.05O12 presents an excellent rate capability and capacity retention. At the charge–discharge rate of 1C, the initial discharge capacity of Li4Ti4.95Zn0.05O12 is 268 mAh g−1. After 90 cycles at 5C, the discharge capacity of Li4Ti4.95Zn0.05O12 is obviously higher than that of Li4Ti5O12. The excellent electrochemical performance of the Li4Ti4.95Zn0.05O12 electrode could be attributed to the improvement of reversibility by doping zinc and the sub-micro particle size.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Shyamal KD, Bhattacharyya AJ (2009) J Phys Chem C 113:17367–17371

    Article  Google Scholar 

  2. Ohzuku T, Ueda A, Yamamoto N (1995) J Electrochem Soc 142:1431

    Article  CAS  Google Scholar 

  3. Li Y, Pan GL, Liu JW, Gao XP (2009) J Electrochem Soc 156:A495–A499

    Article  CAS  Google Scholar 

  4. Huang S, Wen Z, Zhu X, Lin Z (2005) J Electrochem Soc 152:A186–A190

    Article  CAS  Google Scholar 

  5. Huang J, Jiang Z (2008) Electrochim Acta 53:7756–7759

    Article  CAS  Google Scholar 

  6. Amine K, Belharouak I, Chen Z, Tran T, Yumoto H, Ota N, Myung S-T, Sun Y-K (2010) Adv Mater 22:3052–3057

    Article  CAS  Google Scholar 

  7. Ji S, Zhang J, Wang W, Huang Y, Feng Z, Zhang Z, Tang Z (2010) Mater Chem Phys 123:510–515

    Article  CAS  Google Scholar 

  8. Wang Z, Chen G, Xu J, Lv Z, Yang W (2011) J Phys Chem Solids 72:773–778

    Article  CAS  Google Scholar 

  9. Gao J, Ying J, Jiang C, Wan C (2009) Ionics 15:597–601

    Article  CAS  Google Scholar 

  10. Yi T-F, Xie Y, Wu Q, Liu H, Jiang L, Ye M, Zhu R (2012) J Power Sources 214:220–226

    Article  CAS  Google Scholar 

  11. Li X, Qu M, Yu Z (2009) J Alloys Compd 487:L12–L17

    Article  CAS  Google Scholar 

  12. Zhong Z (2007) Electrochem Solid-State Lett 10:A267–A269

    Article  CAS  Google Scholar 

  13. Yu Z, Zhang X, Yang G, Liu J, Wang J, Wang R, Zhang J (2011) Electrochim Acta 56:8611–8617

    Article  CAS  Google Scholar 

  14. Yi TF, Shu J, Zhu YR, Zhu XD, Yue CB, Zhou AN, Zhu RS (2009) Electrochim Acta 54:7464–7470

    Article  CAS  Google Scholar 

  15. Yi T-F, Shu J, Zhu Y-R, Zhu X-D, Zhu R-S, Zhou A-N (2010) J Power Sources 195:285–288

    Article  CAS  Google Scholar 

  16. Tian B, Xiang H, Zhang L, Wang H (2012) J Solid State Electrochem 16:205–211

    Article  CAS  Google Scholar 

  17. Yi TF, Xie Y, Shu J, Wang ZH, Yue CB, Zhu RS, Qiao HB (2011) J Electrochem Soc 158:A266–A274

    Article  CAS  Google Scholar 

  18. Yi TF, Xie Y, Jiang L-J, Shu J, Yue C-B, Zhou A-N, Ye M-F (2012) RSC Adv 2:3541–3547

    Article  CAS  Google Scholar 

  19. Huang S, Wen Z, Zhu X, Gu Z (2004) Electrochem Commun 6:1093–1097

    Article  CAS  Google Scholar 

  20. Wang Y-Y, Hao Y-J, Lai Q-Y, Lu J-Z, Chen Y-D, Ji X-Y (2008) Ionics 14:85–88

    Article  CAS  Google Scholar 

  21. Gao J, Ying J, Jiang C, Wan C (2007) J Power Sources 166:255–259

    Article  CAS  Google Scholar 

  22. Hao Y-J, Lai Q-Y, Lu J-Z, Wang H-L, Chen Y-D, Ji X-Y (2006) J Power Sources 158:1358–1364

    Article  CAS  Google Scholar 

  23. Bai Y, Wang F, Wu F, Wu C (2008) Bao L-y. Electrochim Acta 54:322–327

    Article  CAS  Google Scholar 

  24. Yin SY, Song L, Wang XY, Zhang MF, Zhang KL, Zhang YX (2009) Electrochim Acta 54:5629–5633

    Article  CAS  Google Scholar 

  25. Wu D (2012) Ionics 18:559–564

    Article  CAS  Google Scholar 

  26. Baddour-Hadjean R, Pereira-Ramos J-P (2010) Chem Rev 110:1278–1319

    Article  CAS  Google Scholar 

  27. Julien CM, Zaghib K (2004) Electrochim Acta 50:411

    Article  CAS  Google Scholar 

  28. Julien CM, Massot M, Zaghib K (2004) J Power Sources 136:72–79

    Article  CAS  Google Scholar 

  29. Belharouak I, Sun Y-K, Lu W, Aminea K (2007) J Electrochem Soc 154:A1083

    Article  CAS  Google Scholar 

  30. Ohzuku T, Yamato R, Kawai T, Ariyoshi K (2008) J Solid State Electrochem 12:797

    Article  Google Scholar 

  31. Xia YY, Takeshige H, Noguchi H, Yoshio M (1995) J Power Sources 56:61

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by a Project Funded by the Priority Academic Program Development of Jiangsu Higher Education Institutions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dongmei Wu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wu, D., Cheng, Y. Enhanced high-rate performance of sub-micro Li4Ti4.95Zn0.05O12 as anode material for lithium-ion batteries. Ionics 19, 395–399 (2013). https://doi.org/10.1007/s11581-012-0777-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11581-012-0777-x

Keywords

Navigation