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Abstract
The approximation of functions and data in one and high dimensions is an important
problem in many mathematical and scientific applications. Quasi-interpolation is a
general and powerful approximation approach having many advantages. This paper
deals with spline quasi-interpolants and its aim is to collect the main results obtained
by the authors, also in collaboration with other researchers, in such a topic through
spline dimension, i.e. in the 1D, 2D and 3D setting, highlighting the approximation
properties and the reconstruction of functions and data, the applications in numerical
integration and differentiation and the numerical solution of integral and differential
problems.
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Mathematics Subject Classification 65D07 · 41A15

1 Introduction

The approximation of functions and data in one and high dimensions is an important
problem in many mathematical and scientific applications. Interpolation and quasi-
interpolation are both highly useful tools used in such a context.

The interpolation technique requires that the approximant exactly matches the data
at certain points and this requirement could be a problem if we are dealing with noisy
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data. Moreover, there is often no guarantee that such interpolants exist. So it is more
appropriate to use other constructive techniques and one of them is quasi-interpolation.

Quasi-interpolation is a general and powerful approximation approach introduced
by Schoenberg several decades ago for function approximation [73, 74] (see also [75]).
Its advantages are manifold: quasi-interpolants are able to approximate in any number
of dimensions, they are efficient and relatively easy to formulate for scattered and
meshed nodes and for any number of data, they can be computed without solving
linear systems of equations.

The importance of this subject in the current literature is proved by the publication
of the recent book [19] focused on the topic.

If we search keywords related to Quasi-Interpolation in the Scopus database [78]
(accessed on June 24, 2022), we obtain the following results:

• searching for quasi-interpolation, quasi-interpolating, quasi-interpolant, quasi-
interpolants in the “Article Title” field, Scopus returns 389 papers, 351 of which
from the year 2000 and the first one published in 1974;

• searching for quasi-interpolation, quasi-interpolating, quasi-interpolant, quasi-
interpolants in the “Article Title/Abstract/Keywords” field, Scopus returns 722
papers, 643 of which from the year 2000 and the first one published in 1987.

It is also worthwhile to recall that Schoenberg referred to this kind of approximation
as smoothing interpolation, that is what now we call quasi-interpolation.

The choice of the function space that is behind the quasi-interpolant construction
is of fundamental importance. Important features are its approximation power, its
applicability in high space dimension and its simplicity in formulating and stating the
approximation problem.

In this paper we focus on spline quasi-interpolants, i.e. the approximants here
considered are piecewise polynomials [18, 19, 21, 76, 77, 82]. In particular, the aim of
this paper is to collect the main results obtained by the authors, also in collaboration
with other researchers, in such a topic, highlighting the approximation properties and
the reconstruction of functions and data [3, 5, 6, 8–10, 26, 32–34, 36, 43, 45, 47, 57,
58, 67, 69–71], the applications in numerical integration and differentiation [22, 25,
27–31, 35, 37, 39–42, 44, 56, 68] and the numerical solution of integral and differential
problems [2, 13, 24, 38, 46]. The above results can also be considered through spline
dimension: 1D [2, 13, 25, 28, 29, 35–37, 39–42, 46, 57, 68], 2D [6, 8, 9, 22, 24, 26,
27, 30–34, 38, 43, 45, 56–58, 67, 70] and 3D [3, 5, 10, 44, 47, 69, 71].

Moreover, if we narrow our Scopus Research in the “Article Title/Abstract/Keyw-
ords” field, adding also the word spline (accessed on June 24, 2022) we obtain 367
papers and if we consider the papers published from 2017, we can also mention the
following works, subdividing them into different topics. In particular, [62, 79] deal
with the construction and study of new quasi-interpolating operators, in [12, 48, 59]
generalized spline quasi-interpolants are proposed, in [1, 20, 49–51, 53] new integra-
tion formulas based on spline quasi-interpolants are constructed, in [15, 54, 61, 63,
64, 80, 81, 84] and [4, 11] quasi-interpolants are used for the numerical approximation
of the solution of differential and integral equations, respectively. Furthermore, in [7,
16, 17, 23, 52, 65, 66] quasi-interpolants are used in different areas of science and
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engineering: imaging, Computer Aided Geometric Design, industry, etc. Finally, in
[19], we find some other interesting references to papers on the above topics.

The paper is organized as follows. In Sect. 2 we give a general definition of
spline quasi-interpolant operators, shared by the cited papers, and we recall their
important properties and features. Then, in Sect. 3 we report some results about
quasi-interpolation in the field of approximation of functions and data, in Sect. 4 the
applications in numerical integration and differentiation and in Sect. 5 in differential
and integral equations.

2 Spline quasi-interpolating operators in C
(
R
s)

Although there are many possibilities to express quasi-interpolating splines, for exam-
ple constructing local and stableminimal determining sets (see e.g. [55] and references
therein) or by setting their Bernstein–Bézier coefficients to appropriate combinations
of the given data values (see e.g. [6, 8, 9] and references therein), in the following we
consider the use of locally supported spanning functions (see e.g. [14, 21, 55, 60, 72,
82] and references therein).

Therefore, we consider a linear quasi-interpolating operator

Q : C (�) −→ S, � ⊂ R
s, s ≥ 1,

where S is a suitable spline space, spanned by a set of non-negative compactly sup-
ported functions. It is supposed that they form a convex partition of unity. Usually
quasi-interpolation operators are constructed to be exact on the space of polynomials
of maximum degree included in S and have the following form

Q f (u) =
∑

α∈A

λα ( f ) Bα(u), u ∈ �, (1)

where

– A ⊂ Z
s is a (finite or infinite) set of indices usually closely connected to the

information about the function that is available for the approximation;
– {Bα, α ∈ A} is the set of non-negative compactly supported functions spanning
S with support �α and called B-splines;

– {λα, α ∈ A} is a set of continuous linear forms, called coefficient functionals. They
can be of different types, chosen according to the provided information about the
function f to be approximated. Usually they are point, derivative or integral linear
functionals. In the first case, λα( f ) is a finite linear combination of values of f
at some points in a neighbourhood of �α . In the second case, λα( f ) is a finite
linear combination of values of f and some of its (partial) derivatives at some
points in a neighbourhood of �α . Finally, in the third case, λα( f ) is a finite linear
combination of weighted mean values of f .

We will refer to Q as quasi-interpolation operator (QIO) and to Q f as quasi-
interpolant (QI), provided by Q for the given function f .
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Among the different methods known in literature about spline QIOs of the above
type, our contribution to this topic is related to point QIOs, i.e., given a set of quasi-
interpolation knots {Pα, α ∈ M}, M ⊂ Z

s , the coefficient functionals λα in (1) have
the following form

λα( f ) =
∑

β∈Fα

σα(β) f (Pβ), (2)

where the finite set of points
{
Pβ, β ∈ Fα

}
, Fα ⊂ M , lies in some neighbourhood of

�α and the σα(β)’s are convenient real coefficients that provide a suitable polynomial
reproduction. We recall that a point QIO can also be written in the quasi-Lagrange
form

Q f (u) =
∑

α∈M
f (Pα) Lα(u), u ∈ � ⊂ R

s, (3)

where {Lα, α ∈ M} is the set of so called fundamental functions obtained as linear
combinations of Bα , according to the definition of the point linear functionals λα in
(2).

The main advantage of QIs is that they have a direct construction without solving
any system of linear equations. Moreover they are local, in the sense that the value of
Q f (u) depends only on values of f in a neighbourhood of u.

Now, we want to recall some general results on the approximation properties of
such operators. We require that the QIOs reproduce at least all constant functions.
The majority of them are at least exact on linear polynomials too, as for example
the well-known Schoenberg variation-diminishing operator. However, usually we are
interested in operators that are exact on polynomials of higher degree, possibly on
the space of polynomials of maximum degree included in S. Increasing the order of
polynomial reproduction is one possible option to get better error estimates. Being h
the maximum of the step size used in � to construct the knot vectors in the definition
of S, we say that a QI has approximation order k if

‖ f − Q f ‖∞ ≤ Chk, f ∈ Ck(�),

i.e. the maximum error is O(hk) for h → 0, with an h-independent constant C . The
maximum value of k we can obtain, that provides optimal approximation, is related
to the polynomial reproduction properties of Q. Finally, we recall that, if the operator
is exact on S, it is called quasi-interpolating projector (QIP).

3 Approximation of functions and data

Since they entered the numerical analysis scene, splines have been used in approxi-
mation of functions and data.

In this context, in [57] 1D and 2D spline QI schemes, having tension and shape
preserving properties, are presented. The point coefficient functionals of (1) are deter-
mined in order to ensure the QI spline reproduces constants and/or polynomials of first
degree. Then two tension parameters with values in (0, 1] are introduced to generate
a family of C2 non-negative compactly supported functions, so called B-spline-like,
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Table 1 Some point QIOs of type (1) with s = 2 and the corresponding coefficient functionals, where

Mi, j =
(
1
2 (xi−1 + xi ),

1
2 (y j−1 + y j )

)
, Aγ,τ = (xγ , yτ ), −1 ≤ γ ≤ m + 1, −1 ≤ τ ≤ n + 1 and bi j ,

ai , ci , a j , c j depending on step sizes hi = xi+1 − xi , k j = y j+1 − y j

QI λα( f ), α = (i, j)

S1 f (Mi j )

W2 2 f (Mi j ) − 1
4

∑0
h=−1

∑0
k=−1 f (Ai+h, j+k )

S2 bi j f (Mi j ) + ai f (Mi−1, j ) + ci f (Mi+1, j ) + a j f (Mi, j−1) + c j f (Mi, j+1)

(a) (b)

Fig. 1 Criss-cross triangulation of � with some supports �α , α = (i, j), of B-splines in case of (a) simple
knots, (b) multiple knots on the boundary ∂� of �

that move from hat functions to classical C2 cubic B-splines. Thus, on one hand the
corresponding QI spline approaches the piecewise linear function interpolating the
data and on the other hand it reproduces quadratic polynomials.

Taking into account [82], with s = 2 and u = (x, y) in (1), C1 quadratic spline QIs
on a criss-cross triangulation of a bounded domain � = [a, b]× [c, d] (Fig. 1(a)) are
considered and studied in [32, 33]. They are defined by the knots

x−2 < x−1 < a = x0 < x1 < . . . < xm = b < xm+1 < xm+2,

y−2 < y−1 < c = y0 < y1 < . . . < yn = d < yn+1 < yn+2,
(4)

for general point coefficient functionals λα . Their approximation power both in case of
uniform [32] and non uniform [33] partitions is studied. Such an approach is interesting
since it provides the approximation of a real function and its partial derivatives up to
an optimal order with local and global upper bounds both for the errors and for the
spline partial derivatives, in case the spline is more differentiable than the function.

In particular, for any f ∈ C(�) the spline QIOs S1 and W2 are introduced and
studied in the above two papers. Their approximation order is nearly optimal and
optimal, respectively, and their coefficient functionals are reported in Table 1. We
recall that S1 is the well-known Schoenberg variation-diminishing operator. However,
the above QIOs are defined by B-splines having supports not completely included in
� and some QI knots are outside the domain, so that the function f has to be defined
in an open set containing � (Fig. 1(a)).

In order to have all QI knots inside � or on ∂�, a possible approach consists: i) in
defining C1 quadratic B-splines with supports completely contained in � (Fig. 1(b)),
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i.e. assuming
x−2 ≡ x−1 ≡ a, b ≡ xm+1 ≡ xm+2,

y−2 ≡ y−1 ≡ c, d ≡ yn+1 ≡ yn+2,
(5)

in (4), and ii) in choosing coefficient functionals based on QI knots lying inside � or
on ∂�, for which extra values outside the domain are not necessary.

Therefore with such a new partition S1, S2 and W2 operators (see Table 1) are
proposed, taking into account both boundary conditions [26] (see also [36] for 1D
case) and the presence of multiple knots [43]. Moreover some computational aspects
of their construction are presented in [34] and an error analysis for f and its derivatives
is provided in [45], making a particular effort to give error bounds in terms of the
smoothness of f and the characteristics of the triangulation, also in the case of functions
that are not regular enough. In Fig. 2(a) we show the quadratic C1 B-spline surface
W2 f approximating the function

f (x, y) = e− (5−10x)2
2 + 3

4
e− (5−10y)2

2 + 3

4
e− (5−10x)2

2 e− (5−10y)2

2 , on � = [0, 1] × [0, 1].
(6)

The presence of multiple knots is also exploited in [24], where NURBS (Non-
Uniform Rational B-splines), based on quadratic B-splines on criss-cross triangula-
tions with supports inside �, are investigated and applications related to the modeling
of objects are presented. In particular, given a set of control points {Cα}α∈A in R3 and
a set of positive weights {Wα}α∈A, the corresponding quadratic NURBS surface S has
the form

S =
∑

α∈A

CαRα, with Rα = Wα Bα∑
β∈A Wβ Bβ

. (7)

The functions {Rα}α∈A are quadraticNURBSon criss-cross triangulations. In Fig. 2(b)
a quadratic NURBS surface reproducing a goblet is reported.

The above approach of multiple knots on the boundary ∂� implies the definition
of boundary B-spline of first and second layer, in addition to the classical ones with
octagonal support (see Fig. 1(b)). So, in order to avoid these further constructions
and use only octagonal support B-splines, in [67] spline QIs, based on C1 quadratic
B-splines on criss-cross triangulations, with supports not completely included in �

(Fig. 1(a)), but with all QI knots inside� or on ∂� are proposed. In this case the main
problem consists in finding good coefficient functionals associated with boundary
generators (i.e. generators with support not completely inside the domain), giving
the optimal approximation order 3, small infinity norm of the operator and using QI
knots inside � or on ∂�. For inner generators (i.e. generators with support inside �)
the coefficient functionals are those defining S2 in Table 1. The boundary coefficient
functionals are constructed in two different ways: either byminimizing an upper bound
for the QIO infinity norm, or by inducing superconvergence at some specific points.
In particular in the first case, for ‖ f ‖∞ ≤ 1 and α ∈ A, then |λα( f )| ≤ ‖σα‖1, where
σα is the vector with components σα(β) in (2), and we deduce immediately

|Q f | ≤
∑

α∈A

|λα( f )|Bα ≤ max
α∈A

|λα( f )| ≤ max
α∈A

‖σα‖1 ,
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Fig. 2 (a)W2 f with f defined in (6),m = n = 16 and ‖ f − W2 f ‖∞ = 9.72 ·10−3 on a 55×55 uniform
rectangular grid of evaluation points in the domain � [34]; (b) a quadratic NURBS surface reproducing a
goblet, defined by 63 control points [24]

concluding ‖Q‖∞ ≤ maxα∈A ‖σα‖1. Therefore, we find σα
∗ ∈ R

card(Fα) as solution
of the minimization problem

∥∥σα
∗∥∥

1 = min
{
‖σα‖1 ; σα ∈ R

card(Fα), s.t. Q is exact on quadratic polynomials
}
.

In the second case, we impose superconvergence of the operator at some specific points
of �: we require that the quasi-interpolation error at such points is O(h4), beside a
global error O(h3). In [70] the same approaches are used in the space of C2 cubic
splines on uniform Powell-Sabin triangulations of a rectangular domain.

Bringing together the ideas of spline QIOs and multilevel techniques [83], recently
new spline QIOs with s = 2 in (1) and p + 1 levels, defined by

QpL f = Q(p) f +
p∑

r=1

Q(r−1)�
p+1−r
r f , (8)

are studied in [58], with

– � = [0, 1]× [0, 1] endowed with a criss-cross triangulation based on (4) uniform
and (5) inside-uniform partitions;

– 0 ≤ p ≤ min{γ, τ } with m = ε · 2γ , n = η · 2τ , ε, η, γ, τ ∈ N and ε, η odd
numbers;

– �
p+1−r
r f = �1

r (�
p−r
r+1 f ) = �

p−r
r+1 f − Q(r)�

p−r
r+1 f , r = p − 1, . . . , 1, with

�1
p f = f − Q(p) f the (p + 1 − r)-th error function;

– Q(�) f the spline QI defined by the knots
(
2�xi , 2�y j

)
.
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They provide some improvement in the performances of the corresponding classical
spline QIOs Q f with 1 level (p = 0), especially in case of the operator S1 that for
p > 0 reaches the optimal approximation order 3. In fact in [58] the unexpected result
of quadratic polynomial reproduction for S pL

1 , p > 0, is proved, while S1 usually
reproduces bilinear polynomials.

Concerning quasi-interpolation in the three-dimensional setting, we recall that the
reconstruction of volume data is an active area of research, due to its relevance to
many applications, such as scientific visualization, medical imaging and computer
graphics. Indeed, volume data sets typically represent some kind of density acquired
by special devices that often require structured input data, so that the samples are
arranged on a regular three-dimensional grid. In classical approaches the underlying
mathematical models use local trivariate tensor-product polynomial splines, defined
as linear combinations of univariate B-spline products.

A possible 3D spline model, beyond the classical tensor product schemes, is repre-
sented by blending sums of univariate and bivariate spline QIs. This technique allows
to combine 1D and 2D QIOs as boolean sum

R = S1T + T S1 − S1S1,

where S1 and S1 denote the univariate and bivariate Schoenberg variation-diminishing
operator exact on linear polynomials, respectively, while T and T represent univari-
ate and bivariate optimal approximation operators, respectively. In particular, in [5]
univariate and bivariate C1 quadratic spline QIs are considered and a trivariate QI
of near-best type is constructed, i.e. the coefficients functionals are determined by
minimizing an upper bound of its infinity norm, derived from the Bernstein-Bézier
coefficients of its Lebesgue function. Moreover, an alternative method that combines
the blending sum of 1D and 2D QIOs and the near-best approach is proposed in [10].
The above methods allow oversampling. If we have to use only QI knots inside � or
on ∂�, it is necessary to construct coefficient functionals associated with boundary
generators. In [71], the problem is faced proposing two blending sums of univari-
ate and bivariate C1 quadratic spline QIs having optimal approximation order and a
reasonable infinite norm.

An alternative 3D spline model consists in the construction of QIOs of type (1) with
s = 3, where Bα is the trivariate C2 quartic box spline defined on a type-6 tetrahedral
partition of the domain� (see Fig. 3) and the point coefficient functionals λα( f ) have
their support in some neighbourhood of �α .

In this case, as in the bivariate setting, firstly spanning functions with supports
not completely included in � and QI knots also outside the domain are considered
and studied. In particular, in [69], starting from a differential QI, whose coefficient
functionals are defined as linear combinations of values of f with its partial derivatives
at the center of the support of Bα , by convenient discretizations, three different kinds
of point QIs are defined, all of them achieving the optimal approximation order 4. The
first one, Q1, is constructed so that it is exact on the space of all polynomials contained
in S, as the differential one. The second one, Q2, is exact only on the space of cubic
polynomials and it minimizes an upper bound for its infinity norm. Finally, the third
one, Q3, is constructed so that it is exact on cubic polynomials and in addition it shows
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Fig. 3 (a) Cube partition and uniform type-6 tetrahedral partition obtained by subdividing each cube into
24 tetrahedra. (b) Support of the trivariate C2 quartic box spline

some superconvergence properties at specific points of the domain. Their expression is
reported in Table 2.Moreover, the construction of newQIs based on the same trivariate
C2 quartic box spline, having optimal approximation order and small infinity norm
is addressed in [3]. Such near-best QIs are obtained imposing exactness on the space
of cubic polynomials and minimizing an upper bound of their infinity norm which
depends on a finite number of free parameters. This problem has always a unique
solution, which is explicitly given. Then, in order to deal with bounded domain, using
only QI knots inside � or on ∂�, a new class of quartic quasi-interpolating splines is
proposed in [47], where the support of λα( f ) is in some neighbourhood of �α ∩ �.
In particular, QIOs of near-best type and achieving the optimal approximation order
4 are constructed, with coefficient functionals for boundary generators obtained by
minimizing an upper bound for their infinity norm and some interesting results are
obtained about reconstruction of medical imaging. Indeed, starting from a discrete
set of data, we obtain a non-discrete model of a real object with C2 smoothness: in
Fig. 4(a) we show two isosurfaces, corresponding to the isovalues ρ = 60, 90, of the
near-best C2 quartic QI spline approximating a gridded volume data set consisting of
256×256×99 data samples, obtained from a CT scan of a cadaver head. Similarly, in
Fig. 4(b), we show the spline, corresponding to the isovalue ρ = 40, approximating a
gridded volume data set of 256 × 256 × 99 data samples, obtained from a MR study
of head with skull partially removed to reveal brain. In order to visualize the above
isosurfaces we evaluate the splines at N ≈ 8, 6 × 106 points.

4 Numerical integration and differentiation

This section deals with numerical methods for integration and differentiation of func-
tions, based on QI splines. In the approximation of integrals and derivatives of a
function f , the choice of the method for their numerical evaluation is not a secondary
consideration.

A problem that arises in many physical applications is the evaluation of the one-
dimensional integral
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Table 2 Some point QIOs of type (1) with s = 3 and the corresponding coefficient functionals, where Mα

are the centres of the cubes in the partition given in Fig. 3(a), e1 = (1, 0, 0), e2 = (0, 1, 0), e3 = (0, 0, 1),
e4 = (1, 1, 1), e5 = (−1, 1, 1), e6 = (1, −1, 1), e7 = (−1,−1, 1)

QI λα( f ), α = (i, j, k)

Q1
191
64 f (Mα) − 107

288
(
f (Mα±e1 ) + f (Mα±e2 ) + f (Mα±e3 )

)

+ 47
1152

(
f (Mα±2e1 ) + f (Mα±2e2 ) + f (Mα±2e3 )

)

Q2
21
16 f (Mα) − 5

96
(
f (Mα±2e1 ) + f (Mα±2e2 ) + f (Mα±2e3 )

)

Q3
16871
4416 f (Mα) − 507

736
(
f (Mα±e1 ) + f (Mα±e2 ) + f (Mα±e3 )

)

+ 47
1152

(
f (Mα±2e1 ) + f (Mα±2e2 ) + f (Mα±2e3 )

)

+ 1435
13248 ( f (Mα±(e1+e2)) + f (Mα±(e1−e2)) + f (Mα±(e1+e3)) f (Mα±(e1−e3))

+ f (Mα±(e2+e3)) f (Mα±(e2−e3))) − 2
69 ( f (Mα±e4 ) + f (Mα±e5 ) + f (Mα±e6 ))

Fig. 4 Isosurfaces of the C2 trivariate quartic spline approximating: (a) the CT Head data set (courtesy of
University of North Carolina) with isovalue ρ = 60 and ρ = 90, respectively; (b) the MR brain data set
(courtesy of University of North Carolina) with isovalue ρ = 40

I (k f ) =
∫ b

a
k(x) f (x)dx, [a, b] ⊂ R, (9)

or of the Cauchy Principal Value (CPV) integral

J (w f ; λ) =
∫ b

a
− w(x)

f (x)

x − λ
dx, a < λ < b, (10)

where k is a singular, but absolutely integrable function, f is a bounded function for
the case (9) and w, f are such that J (w f ; λ) exists for the case (10). Univariate point
QIOs are useful tools to construct quadrature formulas both for (9) and for (10). In
[25, 28, 29, 35, 39–42] we generate integration rules based on the approximation of
f in (9) or in (10) by point QI splines, we prove a very satisfactory error theory and
we provide experimental results.

By means of product of quadratures such as those obtained for (10), in [27] we
construct and study cubature formulas for the numerical evaluation of the following
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CPV integral:

J̃ (w1w2 f ; λ,μ) =
∫ 1

−1
−

∫ 1

−1
− w1(x)w2(y)

f (x, y)

(x − λ)(y − μ)
dxdy

where w1(x) = (1 − x)α1(1 + x)β1 , w2(y) = (1 − y)α2(1 + y)β2 , αi , βi > −1,
i = 1, 2 and −1 < λ,μ < 1.

For � = [a, b] × [c, d] and s = 2 in (1) and (3), cubatures for the evaluation of
integrals

I ( f ) =
∫

�

f (x, y)dxdy, f ∈ C(�), (x, y) ∈ R
2 (11)

are generated in [30, 56] by approximating f with point QI splines, defined on a
criss-cross triangulation with partitions of kind (4) and (5), as follows

I ( f ) ≈ I (Q f ) =
∫

�

Q f (x, y)dxdy =

⎧
⎪⎪⎨

⎪⎪⎩

∑

α∈A

ωαλα ( f )

∑

α∈M
wα f (Pα)

,

where α = (i, j) and
ωα =

∫

�

Bα(x, y)dxdy, wα =
∫

�

Lα(x, y)dxdy. (12)

Since the Bα’s are known, we can compute ωα in (12). Moreover, for Q = S1, S2,W2
(see Table 1) we get a closed expression of the cubature weights wα in (12), for which
we prove some interesting computational features: for example some symmetry prop-
erties and the local support ofB-splines lead to cubature formulaswith reduced number
of weights. An application of the above rules to 2D finite part integral evaluation is
presented in [31], where cubature convergence properties are also proved.

In [22] multilevel spline QIs (8) are used to get new efficient cubature formulas
for (11). This procedure is carried out for all three QIOs S1, S2,W2 of Table 1 on
both uniform (4) and inside-uniform (5) criss-cross triangulations and with weights
w

(�)
i j := 4�wi j , � = 0, . . . , p for a (p + 1)−level QIO and for suitable function

evaluation sums, instead of f
(
Pi j

)
of a classical 1−level QIO.

Adding again one dimension, i.e. assuming s = 3 in (1), we use a QI spline in a
similar way to approximate the integrand function defined on a volume domain. This
is done in [44] with the trivariateC2 quartic spline QIs proposed in [69] and introduced
in Sect. 3.

We remark, in case of evaluation of proper integrals, the convergence order can be
easily deduced from the approximation order of the spline QI sequence for h → 0: if
|| f − Q f ||∞ is O(hk), then also |I ( f ) − I (Q f )| is O(hk).

In the case of differentiation, a local spline method based on an optimal non-
uniform C1 quadratic QI spline of the form (1), with s = 1, is proposed in [68] and
differentiating it the pseudo-spectral derivative at the QI knots and the corresponding

123



408 ANNALI DELL’UNIVERSITA’ DI FERRARA (2022) 68:397–415

differentiation matrix are constructed. Indeed, since

Q′ f (Pβ) =
∑

α∈A

λα ( f ) B ′
α(Pβ), β ∈ M,

the pseudo-spectral derivative at the QI knots
{
Pβ

}
can be computed using only the

values of f and B ′
α at such points. The values of B ′

α at the QI knots can be stored in
the matrix D ∈ R

card(M)×card(M) and, defining v as the vector of components v(β) =
f (Pβ), v′ as the vector of components v′(β) = Q′ f (Pβ), then v′ = Dv. Moreover, in
[37], for the particular case of uniform knot vectors, the pseudo-spectral derivative at
the QI knots and the corresponding differentiation matrices are computed, considering
local optimal QI splines of degree 3, 4 and 5 and applications in collocation methods
for the solution of some univariate boundary-value problems are given. Regarding the
global error, || f ′ − Q′ f ||∞ is O(hk−1) if || f − Q f ||∞ is O(hk), h → 0. We remark
a superconvergence phenomenon for odd case degrees is present at the inner QI knots.

5 Integral and differential problems

QI spline models can be very useful for the construction of approximating solution in
problems governed by either differential or integral equations.

In this context, the application of NURBS, based on quadratic B-splines, to the
solution of partial differential equations with mixed boundary conditions on a given
physical domain is provided in [24]. Let � ⊂ R

2 be an open, bounded and Lipschitz
domain, whose boundary ∂� is partitioned into two relatively open subsets, �D and
�N , i.e. ∅ ⊆ �D,�N ⊆ ∂�, �D �= ∅, �D ∩ �N = ∅ and ∂� = �̄D ∪ �̄N and let

⎧
⎪⎨

⎪⎩

−∇ · (X∇ψ) = f , in �,

ψ = g, on �D, (Dirichlet condition)
∂ψ

∂nX
= gN , on �N , (Neumann condition)

(13)

be the differential problem, where X ∈ R
2×2 is a symmetric positive-definite matrix,

nX = Xn is the outward conormal vector on �N , f ∈ L2(�), gN ∈ L2(�N ) and g ∈
H1/2(�D), having denoted by H1/2(�D) the space of functions of L2(�D) that are
traces of functions of H1(�), with H1(�) := {v ∈ L2(�) : Dαv ∈ L2(�), |α| ≤ 1}.
Since many domains of interest in applications are often described by conic sections,
they can be exactly represented by such NURBS in the form (7). Furthermore, in
order to avoid the heavy computations related to their derivatives and integrals, since
the computation with B-splines is strictly related to the corresponding NURBS, the
same above B-splines are used to get the basis for the solution space of the differential
problem. In this way, a unique description of the geometry is kept, while avoiding the
use of rational functions in the discretization of the solution.Moreover, to impose non-
homogeneous Dirichlet boundary conditions, several spline approximation schemes,
also based on quasi-interpolation, are considered. The problem (13) is solved using
Galerkin procedure and the numerical solution is able to approximate the exact one
achieving the optimal approximation order 3.
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Concerning the solution of integral equations, we mention the papers [2, 13, 38,
46]. In particular, spline QIPs of the form (1), with s = 1 and � a bounded interval,
are used for the numerical solution of linear [46] and non linear [13] integral equations
of the second kind

ϕ − K (ϕ) = f , (14)

where K is defined as

K (ϕ)(x) :=
∫ 1

0
k(x, y)ϕ(y)dy, x ∈ [0, 1], ϕ ∈ C[0, 1],

in the linear case, with k ∈ C([0, 1]2) and as the Urysohn integral operator

K (ϕ)(x) :=
∫ 1

0
k(x, y, ϕ(y))dy, x ∈ [0, 1], ϕ ∈ C[0, 1],

in the non linear case, with k(x, y, ϕ) a real valued function defined on [0, 1]×[0, 1]×
R. We assume that, for f ∈ C[0, 1], (14) has a unique solution ϕ in both cases. In
the linear case collocation, Kantorovich, Sloan and Kulkarni schemes based on QI
projectors of degree 2 and 3 are considered and studied, showing that higher orders
of convergence can be obtained by Kulkarni scheme. Similarly, in the non linear case
collocation and Kulkarni schemes, based on spline QIPs, are proposed. Given a QIP
Q, in the collocation method K is approximated by Kc = QKQ and the right hand
side f by Q f . The approximate equation is then ϕc − QKQ(ϕc) = Q f . Instead,
in Kulkarni’s type method K is approximated by Kk = QK + K Q − QKQ and
the approximate equation is ϕk − Kk(ϕk) = f . Regarding the convergence of the
methods, in both linear and non linear case, the collocation method achieves order 3
for quadratic QIPs and order 4 for the cubic ones, while Kulkarni method achieves
order 7 and 8, respectively. In the non linear case Green’s function type kernels are
also considered and the convergence of collocation and Kulkarni schemes is studied.
In this case we have a reduction of the convergence order, according to the smoothness
of the kernel.

In [2] spline QIOs, which are not projectors, are applied to solve linear Fredholm
integral equations of second kind by using superconvergent Nyström and degenerate
kernel methods. Also in this case the presence of Green’s function type kernels is
investigated and the corresponding error analysis is studied.

In the 2D setting, spline methods for the numerical solution of integral equations

ϕ(�1) −
∫

S
k(�1,�2)ϕ(�2)dS�2 = f (�1), �1 ∈ S, (15)

on a connected surface S in R
3, described by a sufficiently smooth map F : � → S,

with� a polygonal domain inR2, and the kernel k(�1,�2) continuous for�1,�2 ∈ S,
are proposed in [38], by using optimal superconvergent QIs of the form (1) with s = 2,
defined on the space of C1 quadratic splines on uniform criss-cross triangulations.
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Therefore, the integral Eq. (15) can be written in the form (14) with

K (ϕ)(F(x, y)) =
∫

�

k(F(x, y),F(v, z))ϕ(F(v, z))|(DvF × DzF)(v, z)| dvdz,

where (x, y) ∈ � and |(DvF × DzF)(v, z)| is the Jacobian of the map F(v, z). We
remark that (15) has a unique solution ϕ ∈ C(S) for any given f ∈ C(S). The problem
is faced by proposing amodified version of the classical collocationmethod (achieving
convergence order 3) and two spline collocation methods with high order of conver-
gence (achieving convergence order 7). In particular, given the superconvergent QI Q,
in the collocationmethod the integral equation is approximated byϕc−QK (ϕc) = Q f
and in the spline collocation methods with high order of convergence K is approxi-
mated by one of the following finite rank operators Ki = QK +K ∗

i −QK ∗
i , i = 1, 2,

where K ∗
1 is the degenerate kernel operator defined by

K ∗
1 (ϕ)(F(x, y)) =

∫

�

Q (k(F(x, y),F(v, z))|(DvF × DzF)(v, z)|) ϕ(F(v, z)) dvdz

and K ∗
2 is the Nyström operator based on Q. Since for many surfaces S, getting

the derivatives of F can be a major inconvenience, both to specify and to program,
so surface approximations based on quasi-interpolation (for which the Jacobians are
more easily computed) are also considered and the effects on the spline modified
collocation method are investigated.

6 Concluding remarks

This workmeans to be a sum up of themain results obtained by the authors, also in col-
laborationwith other researchers, framed in the literature on spline quasi-interpolation,
highlighting the approximation properties and the reconstruction of functions and data,
the applications in numerical integration and differentiation and in the numerical solu-
tion of integral and differential problems. As proved also by the other cited references,
such a technique is still avant-garde and it is a useful tool for the construction of new
approximation operators, providing good results in several fields of science and engi-
neering for the solution of real problems (imaging,ComputerAidedGeometricDesign,
scientific computing, industry, etc.). Indeed several open problems, regarding exten-
sion to higher dimensional problems, adaptive refinement schemes, multiresolution,
higher order singularities in quadratures with applications to the numerical solution
of integral equations and other interesting issues are currently under investigation.
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