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Abstract
In this work, three genetic regulatory networks are considered, that model the
post–transcriptional regulation of the PTEN onco–suppressor gene, mediated by
microRNAs and competitive endogenous RNAs, in glioblastomamultiforme, themost
severe of brain tumours. We simulate solutions of the resulting stochastic differen-
tial systems and discuss the effects of this miRNA–fashioned regulation on PTEN
expression.

Keywords Numerical modelling · Stochastic ordinary differential equations ·
Euler–Maruyama method · Propensity function · Stoichiometric matrix · PTEN
onco–suppressor gene
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1 Introduction

In the human body, cells contain the approximately twenty thousand genes encoded
in the human genome. Genes get selectively expressed (or turned on) within each cell,
thus determining its type, shape and behaviour. A gene regulatory network (GRN)
is a network inferred from gene expression data [11], so it is a tool for describing
gene–gene (as well as potential protein–protein) interactions and the way genes can
turn each other on and off. In other words, a GRN provides information about the
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regulatory interactions between regulators and their potential targets, interactions that
can be incredibly complicated, even in a network of very few genes, allowing a cell
to respond to signals in various complex ways [11].

GRNmodelling represents, therefore, an important postgenomic–era challenge, and
it has indeed gained more and more interest, also in computational bio–mathematics.
Several methods have been proposed for estimating gene networks from gene expres-
sion data, where both stochastic and deterministic approaches are pursued [4, 5, 22,
28].

In this work, the focus is on the regulation of PTEN (Phosphatase and TENsin
homolog) gene expression specifically in the brain, considering transcriptional and
post–transcriptional interactions, and excluding translation in the PTEN protein, for
which we refer to [8]. PTEN is found at locus 10q23.31 on chromosome 10, and
includes instructions to produce a protein that helps govern the cell life–death cycle
by preventing cells from growing and multiplying too rapidly and uncontrollably.
PTEN is thus an onco–suppressor, but it is also one of the most frequently mutated or
silenced in human cancer [9]. Loss of chromosomal segment 10q is indeed proved to
be linked to glioblastomamultiforme (GBM), a very aggressive brain tumour [21, 29].
Even in the absence of genetic loss or mutation, therefore in a situation where PTEN
levels should be normal, PTEN is found to be low in about 70% of GBM cases, which
prompted research on PTEN regulation in an attempt to justify this unexplained low
expression.

In the GRNs we consider, the crucial factors involved are short non–coding RNAs
(microRNAs or miRNAs) and competitive endogenous RNAs (ceRNAs) [25]. To
understand their role in gene expression control, it is useful to synthesise it as a
process consisting of a sequence of steps, involving transcription of DNA to mRNA,
namely an RNA intermediary or messenger RNA, and translation of mRNA into the
final functional product, the protein. After transcription, miRNAs negatively regulate
expression of their target mRNAs, where one miRNA can regulate many mRNAs,
while the same mRNA can be regulated by a number of miRNAs. As a consequence
of this down–regulation, a miRNA can be an onco–suppressor or an onco–promoter.
The activity of miRNAs can be influenced by the presence of ceRNAs: a miRNA con-
trols expression of a gene by binding to its mRNA, and ceRNAs compete for miRNA
binding sites. The result is a complex network, in whichmiRNAs and ceRNAs interact
and affect the mRNA level of the gene considered (PTEN in our case), available to be
translated into the final protein.

The importance of PTEN ceRNA–mediated regulation in tumour cells is studied
in [17, 25, 26], but a clear quantitative understanding of its miRNA–mediated regula-
tion is still lacking [12]. One attempt is represented by the mass–action mathematical
deterministic model in [1], used to determine optimal conditions for ceRNAs activity
in silico. A stochastic and discrete model can be found in [8], where translation into
PTEN protein and transcriptional and translational delays are also considered. A com-
plex network of a miRNA pool acting in the brain, including corresponding ceRNAs
competing with PTEN for the same miRNAs, is introduced and analysed numeri-
cally in [7], where the continuous and deterministic setting, modelled by ordinary
differential equations, was used to overcome computational and time complexity.
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In the present article, we model the effects of three of the miRNAs included in the
pool studied in [7], one at a time, so tomake clearer their specific contributionwithin the
network [20]. Given the reduced computational complexity of the reacting systems, the
more realistic stochastic and continuous (rather than deterministic) modelling regime
is employable here.

2 GRNsmodelling and simulation regimes

When simulating a Gene Regulatory Newtwork (GRN), three modelling regimes can
be considered: stochastic and discrete, stochastic and continuous, deterministic and
continuous; additional complexity exists, related to simultaneously considering tem-
poral and spatial effects, which is not dealt with in this article [19].

The discrete stochastic regime (also called slow) is characterised by the use of a
Stochastic Simulation Algorithm (SSA), the first of which is due to Gillespie [13].
It is an essentially exact procedure for numerically simulating the evolution of a set
of chemical reactions in a well–stirred and homogeneous chemical reaction system,
taking into account inherent randomness.

If X1, . . . ,Xns representmolecular species, interacting through R1, . . . , Rnr reac-
tion channels, then the system evolution is described by a discrete non–linear Markov
process in which a vector X(t), holding numbers (integer values) of the molecular
species at time t, evolves through time.

The state vector X(t) is thus a discrete jumpMarkov process, whose time evolution
equation, the so–called Chemical Master Equation (CME) reminded in (1) below,
describes the probability P(X, t |X0, t0) that, given an initial condition X(t0) = X0,

then X(t) = X .

Now, any set of nr chemical reactions is uniquely characterised by stoichiometric
vectors ν1, . . . , νnr and by propensity functions a1(X(t)), . . . , anr (X(t)).Vectors ν j ,

each of dimension ns , represent the update of the numbers ofmolecules in the system if
R1, . . . , Rnr respectively occur, while functions a j = a j (X(t)) describe the relative
probabilities of R1, . . . , Rnr occurring, again respectively.

Hence, the CME takes the following form:

∂

∂t
P(X, t |X0, t0)

=
nr∑

j=1

(
a j (X − ν j ) P(X − ν j , t |X0, t0) − a j (X) P(X, t |X0, t0)

)
.

(1)

In general, (1) is a discrete parabolic partial differential equation too difficult to
solve, either analytically or numerically: other techniques are therefore needed to
simulate X(t) .

SSAs, which are rigorously based on the samemicrophysical premise that underlies
the CME, can be employed when there are low molecular numbers and intrinsic, or
internal, noise cannot be ignored; the latter is linked to the fact that it is unknown
which reaction is firing, and at what time it is firing.
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An SSA yields a more realistic representation of a system evolution, compared to
the deterministic ReactionRate Equation (RRE), i.e. system (2) of ordinary differential
equations that ignores the presence of noise:

X′(t) = S · a, (2)

where a = (a1, . . . , anr )
T is the propensity vector, while S = (

νk j
)
is the stoichio-

metric matrix of dimensions ns × nr, whose columns are the stoichiometric vectors.
The RRE intervenes when the chemical reaction system is too large to be treated

within the discrete stochastic setting. The SSA, in fact, remains a computationally
demanding approach, thoughmany authors have attempted to enhance its performance
[6, 16]; this limits its applicability, in particular to the large reaction networks required
for modelling realistic gene networks.

In such a situation, as said, the RRE can come into play, namely solution is sought
within the third regime, deterministic and continuous, aimed at describing, in an aver-
aged manner, the behaviour of a system in which the number of molecules is so large
thatwe can speak of concentrations of reactants and products. This averaged behaviour
can be modelled as an Initial Value Problem formed by (2) together with an initial
condition X(t0) = X0, where usually t0 = 0.

The third regime (also named fast) is, indeed, the standard one in chemical kinetics
where the Law of Mass Action applies, i.e. the solution to the RRE satisfies this
law, and is mainly used to model complex GRNs [7], when the first and second
regimes fail computationally, or when the deterministic component dominates the
noise terms. Note, though, that the RRE is not appropriate if the molecular population
of some critical reactant species is so small that microscopic fluctuations can produce
macroscopic effects, which is essentially true for genetic/enzymatic reactions in living
cells [2, 10, 15].

In this article, we consider the second regime,where noise effects are still important,
but continuity arguments hold up; this continuous stochastic regime is also referred to
as intermediate regime, since it represents a good compromise between accuracy of
SSAs and fastness of RRE solvers.

By applying the Central Limit Theorem and matching the first two moments of
the CME, it is possible to write a stochastic ordinary differential equation (SODE)
that describes the evolution of X(t) [14]. This equation is the so–called Chemical
Langevin Equation (CLE) and takes the form:

d X = (S · a) d t + B dW, (3)

where matrix B =
(
S · �a · ST

)1/2
and the diagonal matrix �a = diag(a)

have dimensions ns × ns and nr × nr , respectively, while vector W = W(t) =(
W1(t), . . . ,Wns(t)

)T
is formed by independent standard Wiener processes, each

with zero drift and unit volatility.
Equation (3) is an Itô SODE that models the continuous stochastic evolution equa-

tion and takes into account intrinsic noise [14].
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General classes of methods can be used to solve (3) in non–stiff cases. The simplest
is the Euler–Maruyama method, where the stochastic increments, at each time step,
take the form:

�Wk ≡ Wk(tn + h) − Wk(tn), k = 1, . . . , ns .

These Wiener increments are distributed according to a normal random variable of
zero mean and variance given by their length h .

The Euler–Maruyama method converges with strong order 1/2 to the Itô solution
of (3) [3, 18, 27].

Before leaving this section, we recall that both SSA and (3) admit solutions con-
verging, in the limit of large numbers of reactants, to the solution of (2), thus satisfying
the Law of Mass Action [14].

3 miRNAs

Three particular miRNAs, involved in the onset of brain cancer, are considered in
Sects. 3.1, 3.2, and 3.3. For each of them, the interaction is modelled with the PTEN
onco-suppressor gene, as well as other genes concurrent with PTEN, namely the
ceRNAs. In particular, for miRNA214, the PTENP1 pseudo–gene acts as ceRNA; for
miRNA19b, CNOT6L gene and PTENP1 pseudo–gene act as ceRNAs; finally, for
miRNA17, VAPA and CNOT6L genes and PTENP1 pseudo–gene act as ceRNAs.

3.1 miRNA214

We consider a set of nr chemical reactions, monomolecular or bimolecular with
distinct reactants, where ns is the total number of X–species that interact through
such reactions. Set (4) represents a realistic example of a system of ten reactions
involving seven X–species.

DNAp
c1−→ RNAp + DNAp

RNAp
c2−→ 0

miDNA214
c3−→ miRNA214 + miDNA214

miRNA214
c4−→ 0

DNAPTENP1
c5−→ ceRNAPTENP1 + DNAPTENP1

ceRNAPTENP1
c6−→ 0

miRNA214
c7−→ lmiRNA214

lmiRNA214 + RNAp
c8−→ lmiRNA214

lmiRNA214 + ceRNAPTENP1
c9−→ lmiRNA214

lmiRNA214
c10−→ 0

(4)
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Table 1 X–species involved in the chemical reactions (5)

k Xk k Xk k Xk k Xk

1 DNAp 3 miDNA214 5 DNAPTENP1 7 lmiRNA214

2 RNAp 4 miRNA214 6 ceRNAPTENP1

By introducing differential variables Xk = Xk(t), each representing the k-th X-
species observed and its biological state at time t, the reaction set can be translated into
a systemof ns differential equations in ns variables. Table 1 shows the correspondence
between X-species and differential variables, so that (4) becomes (5). We seek its
solution X(t) = (X1(t), . . . ,Xns(t))

T , namely the state vector whose evolution in
time t is that of the differential system under consideration. To ease the notation, in
the following we often set X = X(t).

X1
c1−→ X2 + X1 X8

c6−→ 0

X2
c2−→ 0 X4

c7−→ X7

X3
c3−→ X4 + X3 X7 + X2

c8−→ X7

X4
c4−→ 0 X7 + X6

c9−→ X7

X5
c5−→ X6 + X5 X7

c10−→ 0

(5)

For each j-th reaction, a propensity function aj = aj (X(t)) is defined, to express
the link between the reactants involved and the probability cj (per time unit) that a
randomly chosen combination of these reactants will indeed react. In the numerical
simulations presented in Sect. 4, the c j values are inferred according to what is known
in the literature, for which we refer the reader to [7] and references therein, and in the
GeneCard database [24].

The propensity functions corresponding to reactions (5) are shown in equalities (6),
where dependence on time t has been temporarily discarded, again to simplify the
notation.

aj = cj Xj j = 1 . . . 6 ,

a7 = c7 X4, a8 = c8 X2 X7, a9 = c9 X6 X7, a10 = c10 X7.

(6)

In addition to the propensity vector a = (a1, . . . , anr )
T , the other information

needed, to set up the Itô process related to a chemical reaction system, is its stoi-
chiometry.

As seen in Sect. 2, in fact, propensity and stoichiometry values are the ingredients to
build the SODE (3) associated with the set of reactions under observation: vector a and
the ns × nr matrix S = (

νk j
)
determine, in fact, both deterministic and stochastic

components in Eq. (3).
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Table 2 Stoichiometric matrix
S = (

νk j
)
for reactions (5)

ν1 ν2 ν3 ν4 ν5 ν6 ν7 ν8 ν9 ν10

X1 0 0 0 0 0 0 0 0 0 0

X2 1 −1 0 0 0 0 0 −1 0 0

X3 0 0 0 0 0 0 0 0 0 0

X4 0 0 1 −1 0 0 −1 0 0 0

X5 0 0 0 0 0 0 0 0 0 0

X6 0 0 0 0 1 −1 0 0 −1 0

X7 0 0 0 0 0 0 1 0 0 −1

Table 3 Initial conditions
Xk(t0) = Xk,0, with t0 = 0,
for reactions (5)

k Xk,0 k Xk,0 k Xk,0 k Xk,0

1 2 3 2 5 2 7 0

2 0 4 0 6 0

Table 4 Coefficients cj in
reactions (5)

j cj j cj j cj

1 7. ×10−1 5 9.8 × 10−1 9 1. × 10−5

2 3. × 10−3 6 3. × 10−3 10 2.4 × 10−4

3 1.7 × 10−2 7 3.05 × 10−5

4 2.6 × 10−3 8 1. × 10−5

Now, for each j-th reaction, the corresponding column of S is:

νj =
(
ν1 j, . . . , νk j, . . . , ν ns j

)T
, νk j =

⎧
⎪⎨

⎪⎩

−1 if Xk is a reactant;

0 if Xk is not involved;

1 if Xk is a product.

(7)

Hence, in the case of system (5), the S–matrix is as in Table 2.
Tables 3 and4 contain, respectively, initial conditions and c j coefficients employed,

in the numerical simulation Sect. 4, to set and solve the SODE associated with reac-
tions (5).

3.2 miRNA19b

Set (8) represents a realistic example of a thirteen reaction system involving nine X–
species. This time, the chemical reactions are written directly in terms of differential
variables. Table 5 shows the correspondence between X-species and differential
variables in (8).
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Table 5 X–species involved in the chemical reactions (8)

k Xk k Xk k Xk k Xk k Xk

1 DNAp 3 miDNA19b 5 DNACNOT6L 7 ceRNACNOT6L 9 lmiRNA19b

2 RNAp 4 miRNA19b 6 DNAPTENP1 8 ceRNAPTENP1

X1
c1−→ X2 + X1 X8

c8−→ 0

X2
c2−→ 0 X4

c9−→ X9

X3
c3−→ X4 + X3 X9 + X2

c10−→ X9

X4
c4−→ 0 X9 + X7

c11−→ X9

X5
c5−→ X7 + X5 X9 + X8

c12−→ X9

X6
c6−→ X8 + X6 X9

c13−→ 0

X7
c7−→ 0

(8)

Propensity and stoichiometry values for reactions (8) are given respectively in equal-
ities (9) and (10); these latter only report non–zero values in the S–matrix associated
with set (8).

aj = cj Xj j = 1 . . . 8, a9 = c9 X4, a10 = c10 X2 X9,

a11 = c11 X7 X9, a12 = c12 X8 X9, a13 = c13 X9.
(9)

ν2,1 = 1, ν2,2 = ν2,10 = −1, ν4,3 = 1, ν4,4 = ν4,9 = −1,
ν7,5 = 1 , ν7,7 = ν7,11 = −1 , ν8,6 = 1 , ν8,8 = ν8,12 = −1,

ν9,9 = 1 , ν9,13 = −1.
(10)

Tables 6 and7 contain, respectively, initial conditions and c j coefficients employed,
in Sect. 4, to set and solve the SODE associated with reactions (8).

Table 6 Initial conditions
Xk(t0) = Xk,0, with t0 = 0,
for reactions (8)

k Xk,0 k Xk,0 k Xk,0 k Xk,0 k Xk,0

1 2 3 2 5 2 7 0 9 0

2 0 4 0 6 2 8 0

Table 7 Coefficients cj in reactions (8)

j cj j cj j cj j cj

1 7. × 10−1 5 8. × 10−1 9 3.05 × 10−5 13 2.4 × 10−4

2 3. × 10−3 6 5.3 × 10−1 10 1. × 10−5

3 1.7 × 10−2 7 3. × 10−3 11 1. × 10−5

4 2.4 × 10−4 8 3. × 10−3 12 1. × 10−5
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3.3 miRNA17

Set (11) represents a realistic example of a system of sixteen reactions involving eleven
X–species, where the correspondence between X-species and differential variables is
given in Table 8.

X1
c1−→ X2 + X1 X9

c9−→ 0

X2
c2−→ 0 X10

c10−→ 0

X3
c3−→ X4 + X3 X4

c11−→ X11

X4
c4−→ 0 X11 + X2

c12−→ X11

X5
c5−→ X8 + X5 X11 + X8

c13−→ X11

X6
c6−→ X9 + X6 X11 + X9

c14−→ X11

X7
c7−→ X10 + X7 X11 + X10

c15−→ X11

X8
c8−→ 0 X11

c16−→ 0

(11)

The propensity functions associated with reactions (11) are given in equalities (12),
while the stoichiometric matrix has dimensions 11×16 and non–zero values reported
in (13).

aj = cj Xj j = 1 . . . 10, a11 = c11 X4,

a12 = c12 X2 X11, a13 = c13 X8 X11,

a14 = c14 X9 X11, a15 = c15 X10 X11, a16 = c16 X11.

(12)

ν2,1 = 1 , ν2,2 = ν2,12 = −1 , ν4,3 = 1, ν4,4 = ν4,12 = −1,
ν8,5 = 1, ν8,8 = ν8,13 = −1 , ν9,6 = 1, ν9,9 = ν9,14 = −1,

ν10,7 = 1, ν10,10 = ν10,15 = −1, ν11,11 = 1, ν11,16 = −1.
(13)

Tables 9 and 10 contain, respectively, initial conditions and c j coefficients
employed, in Sect. 4, to set and solve the SODE associated with reactions (11).

Table 8 X–species involved in the chemical reactions (11)

k Xk k Xk k Xk k Xk

1 DNAp 4 miRNA17 7 DNAPTENP1 10 ceRNAPTENP1

2 RNAp 5 DNAVAPA 8 ceRNAVAPA 11 lmiRNA17

3 miDNA17 6 DNACNOT6L 9 ceRNACNOT6L

Table 9 Initial conditions
Xk(t0) = Xk,0, with t0 = 0,
for reactions (11)

k Xk,0 k Xk,0 k Xk,0 k Xk,0

1 2 4 0 7 2 10 0

2 0 5 2 8 0 11 0

3 2 6 2 9 0
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Table 10 Coefficients cj in reactions (11)

j cj j cj j cj j cj

1 7. × 10−1 5 8. × 10−1 9 3. × 10−3 13 3. × 10−3

2 3. × 10−3 6 5.3 × 10−1 10 3. × 10−3 14 3. × 10−3

3 1.7 × 10−1 7 9.8 × 10−1 11 3.05 × 10−5 15 3. × 10−3

4 3. × 10−4 8 3. × 10−3 12 3. × 10−3 16 2.4 × 10−4

4 Numerical simulations

In this section, systems (5), (8) and (11) are dealt with within the intermediate mod-
elling regime, stochastic and continuous. An Itô SODE equation of type (3) is then
written for each of the three systems considered, and is solved numerically with the
Euler–Maruyama method.

Fig. 1 Plots of species X2 and X4, respectively PTEN and miRNA214, for reactions (5) over twenty min-
utes (top), one day (centre left), four days (centre right), onemonth (bottom left), twomonths (bottom right).
PTEN always settles around a mean value that is two orders of magnitude greater than that of miRNA214
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Fig. 2 Plots of species X2 and X4, respectively PTEN and miRNA19b, for reactions (8) over twenty
minutes (top), one day (centre left), four days (centre right), one month (bottom left), two months (bottom
right). PTEN always settles around a mean value that is higher than that of miRNA19b, although of the
same order of magnitude

All experiments were carried out on a DELL XPS notebook computer, with 7th
generation Intel Core i7 processor at 2.8 GHz, and 16 GBRAM at 2400MHz, running
under Ubuntu 20.04.4 LTS operating system. The problem solving environment of
Mathematica, version 13, is employed to set up each model, integrate the resulting
SODE, and plot its solution [23]. Timing results, averaged over ten runs for each
experiment, show that the computational time taken by the definition of the Itô process
is around seven seconds, most of which is spent to form the matrix B in (3), while its
integration requires about six seconds.

In all experiments, the focus is on the interaction between PTEN andmiRNA, that is
X2 and X4 . This is done to establish whether down–regulation of X2 or X4 implies
over–expression of the other. Furthermore, the evolution is plotted along five temporal
intervals, to cover short–and long–term behaviours.

Figure 1 illustrates the solution for reactions (5). Simulations show that miRNA214
remains expressed at a very low costant level, so it does not affect the PTEN regulation.
In fact, after a short initial phase during which there is a fairly dramatic increase of
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Fig. 3 Plots of species X2 and X4, respectively PTEN and miRNA17, for reactions (11) over twenty
minutes (top), one day (centre left), four days (centre right), one month (bottom left), two months (bottom
right). miRNA17 rapidly grows and, within a very short time, induces a dramatic decay in the PTEN level

PTEN, its value settles around a constant mean value. This is exactly what we expect
in a physiological, non–pathological, situation within a cell. In particular, it can be
observed that the mean level of miRNA214 remains close to that of its initial condition
of order 100, while that of PTEN oscillates around a value at an order of magnitude
102.

Figure 2 illustrates the solution for reactions (8). Simulations with miRNA19b show
that its expression grows, initially and rapidly, up to a value of about 150, and then
it stabilises, reaching a situation similar to the miRNA214 case. In fact, even if in this
case both PTEN and miRNA19b oscillate around a mean value at the same order of
magnitude 102, miRNA19b has, once again, no effect on PTEN expression.

Figure 3 illustrates the solution for reactions (11). Simulations with miRNA17 show
how it can cause a situation that is no longer physiological inside a cell, but rather
pathological. Here, in fact, miRNA17 grows dramatically to a mean value of order of
magnitude 103, large enough to induce the same dramatic down–regulation of PTEN.
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Due to this highly reduced function of PTEN as an onco–suppressor, the cell is greatly
exposed to tumour occurence.

5 Conclusions

This article investigates the impact of three different miRNAs on the regulation of the
PTEN gene, an onco–suppressor whose low expression is observed in the majority of
cases of glioblastoma multiforme, one of the most aggressive brain tumours. We con-
sideredmiRNA214,miRNA19b andmiRNA17, each targeting different genes other than
PTEN, called ceRNAs. The three resultingGRNs are simulated in a stochastic and con-
tinuous setting, via systems of stochastic ordinary differential equations derived from
jump Markov processes, modelling appropriate chemical reactions. Our simulations
show that, unless miRNAs grow in such a way to exceed PTEN levels by at least one
order of magnitude, PTEN preserves its physiological oscillatory behaviour, around a
mean value of order 102. The above situation occurs with miRNA214 and miRNA19b.

In the case of miRNA17, simulations show that it rapidly becomes over–expressed,
while PTEN is dramatically down–regulated, leaving the cell much more unprotected
from tumour genesis. Amore faithful adherence to reality could be obtained by consid-
ering the stochastic and discrete processes underlying the GRNs models. This choice
is currently under investigation, leading to the use of a stochastic simulation algorithm
and incorporating delays in the reactions that represent transcription of DNA to RNA,
both for PTEN and ceRNAs.
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